
A Generative Adversarial Networks for Log Anomaly Detection

Xiaoyu Duan1, Shi Ying1,*, Wanli Yuan1, Hailong Cheng1 and Xiang Yin2

1School of Computer Science, Wuhan University, Wuhan, 430072, China
2Institute of Information Engineering, Chinese Academy of Sciences, Beijing, 100093, China

�Corresponding Author: Shi Ying. Email: yingshi@whu.edu.cn
Received: 30 August 2020; Accepted: 22 September 2020

Abstract: Detecting anomaly logs is a great significance step for guarding system
faults. Due to the uncertainty of abnormal log types, lack of real anomaly logs and
accurately labeled log datasets. Existing technologies cannot be enough for
detecting complex and various log point anomalies by using human-defined rules.
We propose a log anomaly detection method based on Generative Adversarial
Networks (GAN). This method uses the Encoder-Decoder framework based on
Long Short-Term Memory (LSTM) network as the generator, takes the log key-
words as the input of the encoder, and the decoder outputs the generated log tem-
plate. The discriminator uses the Convolutional Neural Networks (CNN) to
identify the difference between the generated log template and the real log tem-
plate. The model parameters are optimized automatically by iteration. In the stage
of anomaly detection, the probability of anomaly is calculated by the Euclidean
distance. Experiments on real data show that this method can detect log point
anomalies with an average precision of 95%. Besides, it outperforms other exist-
ing log-based anomaly detection methods.

Keywords: Generative adversarial networks; anomaly detection; data mining;
deep learning

1 Introduction

Logs record system states and application behaviors, Operation &Maintenance Personnel (OPS) usually
analyze system logs to locate the fault [1]. Besides, such log data is universally available in nearly all
computer systems. Therefore, system logs are an essential data source for performance monitoring,
understanding system status and anomaly detection.

System anomalies can be classified into three groups: point anomalies, execution sequence anomalies,
and collective or group anomalies. This paper focuses on detecting log point anomalies. Traditional point
anomaly detection methods are usually based on rules. There are many defects in traditional methods, for
example, (1) it needs domain knowledge; (2) it is difficult to identify the unknown faults; (3) with the
growth of log data and log update, it is challenging to build rule base effectively. Therefore, traditional
anomaly detection methods are no longer workable. In log anomaly detection, it is not easy to get the
labeled data. Therefore, most existing popular approaches that leverage system log data for log point

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.014030

Article

echT PressScience

http://dx.doi.org/10.32604/csse.2021.014030
http://dx.doi.org/10.32604/csse.2021.014030

anomaly detection are based on unsupervised and semi-supervised technology, such as clustering [2],
isolation forest [3], and support vector machines (SVM) [4,5]. The challenges of log point anomaly
detection can be summarized as follows:

� Uncertainty: It is difficult to define the characteristics of all abnormal logs. Besides, the boundary
between normal logs and abnormal logs is unclear. Therefore, the outlier observations close to the
edge might be a normal log.

� Imbalance: The training samples belonging to normal logs are much more than ones belonging to
abnormal logs, and it is not easy to gain the labeled log datasets.

� Unstructured: Log data has unstructured characteristics.

Our research is based on unsupervised technology Generative Adversarial Network [6], namely GAN-
EDC (GAN based on Encoder-Decoder framework and Convolutional Neural Networks [7]). In recent years,
GAN has made significant progress in many fields, such as image detection [8,9], image segmentation [10],
and speech production [11]. To apply GAN in detecting abnormal logs, we use the Encoder-Decoder
framework as the generator, Convolutional Neural Networks as the discriminator. The encoder maps the
input log keywords to potential representation and then generates the corresponding log template through
the decoder. CNN discriminator identifies the differences between the generated log template and the
actual template and then gives a scalar (realistic or fake). The model parameters are optimized
automatically by iteration. Finally, we use the Euclidean distance to calculate the abnormal value of logs.
Compared with the existing unsupervised point anomaly detection methods, this method can (1) update
the optimization model parameters through the confrontation between generator and discriminator; (2) no
boundary needs to be found for anomaly detection, which avoids the influence of imbalanced data; (3)
not limited to detecting known types of abnormal logs and has high versatility. We evaluated GAN-EDC
on real log datasets with over 300 thousand log entries. The results show that GAN-EDC has high accuracy.

The primary contributions of this paper are as follows:

� We propose a detection model aimed at log point anomaly, namely GAN-EDC.

� We study the feasibility of GAN in log anomaly detection and the effect of parameter k value on
the model.

� We summarize and compare a variety of log point anomaly detection methods and prove the
superiority of GAN-EDC.

The rest of this paper is organized as follows: Section 2 presents related work on log anomaly detection.
Section 3 introduces the basic structure and the pre-processing of the log dataset. Section 4 presents the
design and construction of GAN-EDC. We evaluated the performance of GAN-EDC in Section 5. Finally,
Section 6 presents the final remarks.

2 Related Work

Anomaly detection has long played an essential role in a wide variety of fields such as internet
security [12], software security [13], web security [14], social network [15], big data [16]. Errors in the
data can cause anomalies, but anomalies sometimes indicate a new, previously unknown, underlying
process. As early as 1987, Paper [17] has defined the anomalies. Enderlin pointed out that the anomaly
data is the data that deviates from other observation data seriously (i.e., abnormal instances are markedly
different from normal instances). Therefore, anomaly detection is also called outlier detection. Existing
approaches that leverage log data for log point anomaly detection can be broadly classified into four
groups: rule-based methods, statistics-based methods, machine learning algorithm-based methods, and
deep learning-based methods.

136 CSSE, 2021, vol.37, no.1

Rule-based methods are put forward early. Detection is a two-step process. These methods first use the
algorithm to get the rules or make rules by the expert and then determine whether it is an abnormal log
according to the rules. These methods have high detection accuracy but only successful in specific
scenarios. For example, Ren et al. [18] uses the Apriori algorithm to find the association rules and
frequent episodes in log datasets. The disadvantages of this method are limited by the domain knowledge.
If there are new types of abnormal, the existing rule base is ineffective.

Statistics-based methods considered that the normal log entries are in the high probability interval of the
random model. On the contrary, the abnormal log entries are usually in the low probability interval. These
methods first build a statistical model for the given normal dataset and determine whether the newly arrived
data is the same as the statistical model. For example, Goldstein et al. [19] proposed an anomaly detection
method based on the histogram. It first models univariate feature densities using histograms with a fixed or a
dynamic bin width. Then, all histograms are used to compute an anomaly score for each data instance. These
methods are over-reliant on strong independence between features, so it is difficult to detect anomalies in real
log datasets. Statistical-based methods also include literature [20].

In recent years, machine learning-based methods and deep learning-based anomaly detection methods are
popular research directions. These two methods can be divided into supervised, semi-supervised and
unsupervised. Supervised methods have higher accuracy, such as decision trees [21] and random forest [22].
However, supervised anomaly detection methods generally require a lot of labeled samples to accomplish
their training tasks. Besides, it is difficult for experts to label all data manually, and anomalies rarely occur
in log datasets. Therefore, the semi-supervised method is widely used. The normal techniques include
Recursive Neural Network (RNN) [23], CNN [24], and Restricted Boltzmann Machine (RBM) [25].
Compared with supervised anomaly detection methods, although semi-supervised anomaly detection
methods need fewer labeled objects, it still needs a certain number of labeled objects to ensure accuracy.
Unsupervised anomaly detection methods such as LSTM [1], Isolation Forest (IForest) [3] and Cluster [26]
do not need the labeled data. Paper [2] proposed LogCluster, an approach that clusters the logs to ease log-
based problem identification. LogCluster facilitates problem identification by clustering similar log
sequences and retrieving recurrent issues. This model first clusters log sequence to construct an initial
knowledge base. Second, it analyzes the log sequences and checks if the clusters can be found in the
knowledge base. In the end, it only examines a small number of representative log sequences from the
clusters that are previously unseen. LogCluster improves the effectiveness, but the strategy is too coarse-
grained. Du proposes DeepLog [1], a deep neural network model utilizing Long Short-Term Memory, to
model a system log as a natural language sequence. DeepLog uses the normal log dataset in the training
stage to train a log key anomaly detection model for diagnosis purposes. In the detection stage, it compares
the predicted results and the actual results to determine whether the system is abnormal or not. Papers that
model log sequences as natural language sequences also include [27,28].

Ian Goodfellow proposed the Generative Adversarial Networks network in 2014, which is widely used
in the field of image processing [29–32] and has an excellent performance. In 2017, Yu et al. [33] was the one
who first applies GAN in text generation, namely SeqGAN. Inspired by SeqGAN, we use GAN in log point
anomaly detection. We compare the generated log entry and the log entry generated by the system to
determine whether the system is normal. The experimental results show the superiority of GAN in log
anomaly detection.

3 Log Parser

Log parsing is the basis of anomaly detection. In log anomaly detection, it is not feasible to detect
anomalies on massive unstructured logs directly. Therefore, we need to parse unstructured, free-text log
entries into a structured representation to learn log patterns over a structured dataset.

CSSE, 2021, vol.37, no.1 137

The log dataset contains both template words and parameter words. Parameter words have no semantic
information and usually appear in different forms. Template words reveal the event template of the log entry
and remain the same for every event occurrence. Each log entry includes three parts: timestamp, log type, and
log event. Timestamp records the time when an event occurs, log type usually shows the severity level of the
event (e.g., “INFO” or “WARN”), and log event records the system execution information. The original log
entries, the log templates of each raw log entry and classification log data are shown in Fig. 1.

As seen in Fig. 1, the parameter words are highlighted in red. We first parses raw logs to find the log
templates. Second, we extract the keywords of each log template. We select the log type, log subtype and
the first word of log event as the log keywords. Note that each log keyword is a log template word.
Finally, we build a dictionary C, which includes all log template words. The log keywords are shown in
the log keywords item of Fig. 1.

Let LD ¼ d1; d2; � � � ; dnf g be the log dataset, each di in LD is a log entry. For example, the dataset in
Fig. 1 is LD ¼ d1; d2; d3f g. Each log entry di is composed of multiple words, clearly di ¼ w1; w2; � � � ;wnf g,
where each wi is a word (template word or parameter word). If wi occurs frequently (i.e. wi has a large
support), wi will be a template word. In log template extraction, (1) the first step is to scan the whole log
dataset and use the regular expression to delete symbols and parameter words with a fixed format, such
as IP address, mac address, and file path. Remarkably, special symbols are not in the research scope of
this paper. We purposely count the symbols of six data sets with 10MB. The results are shown in Tab. 1.

Figure 1: Raw logs from HDFS

138 CSSE, 2021, vol.37, no.1

There are no special symbols in these data sets, and we can easily delete these symbols by using the regular
expression. (2) Then, we compute the number of times that word wi in log event has occurred in the dataset (i.
e., Word Frequency) and derive a list F of words in descending order of their Word Frequency. Each word has
a fixed serial number (ID). (3) When a new log entry arrives. We create the root of a tree, which is labeled
with the log type. In our case, it is “INFO” and “WARN”. Then we construct the first path of the tree
according to the ID of the words in list F. When the next log entry is processed, if the current log entry
has the common prefix word with processed log entries, then share a common prefix with the existing
path; otherwise, a new branch is created as a sub-tree of the node. Finally, we prune the tree. For
example, if a node is not in the top 5 nodes and has too many children (exceeding a threshold k), all its
children (or sub-trees) are deleted from the tree, and the node becomes leaf itself. Each root-to-leaf path
is a log template. The algorithm of extract log template is shown in Algorithm 1.

Table 1: The count result of symbol on six log datasets

HDFS OpenStack Spark Hadoop Zookeeper BGL

. 400450 1005200 205750 728900 228850 623250

: 250500 615000 333050 528200 501450 225550

/ 177800 352750 223850 30600 69950 34350

− 67350 1514500 8900 394100 407250 1179250

_ 163700 181350 68850 178850 7000

$ 52850 650 71700

* 32950 100 14250 3500

(50 15800 37900 16050 6850 11800

) 50 15800 37900 16050 6850 11800

[127500 100 118100 108150

] 127500 100 118100 108150

'' 101700

, 23700 88200 122100 134900 28250

= 6250 75000 25150 37950 14150

‘ 700 3200 100

% 400

& 150

? 100

@ 100 32750 100050

; 350 7800 2000

+ 2250 550

< 7400

> 7400 50

3600

\ 350

{ 150

} 150

! 50 100

CSSE, 2021, vol.37, no.1 139

4 Design and Construction

In this section, we first describe traditional Generative Adversarial Networks. Second, we introduce the
generator model based on the Encoder-Decoder framework and the discriminator model based on
Convolutional Neural Networks. Finally, we present the process of anomaly detection by using the
anomaly detection model. The GAN-EDC architecture is shown in Fig. 2 with three key components:
generator model, discriminator model and anomaly detection model.

Training stage. Training data for GAN-EDC are log entries from the normal system. Each log entry is
parsed to a log template. Then GAN-EDC extracts log keywords of each log entry. We input the log keyword
into the generator and train the generator to generate instances of log template. The input of the discriminator
is the log template generated by the generator and the real log template. The discriminator is to distinguish
between the real log template and the generated sample.

Detection stage. A newly arrived log entry is parsed to log keywords and log words. The anomaly detection
model uses the log template and the generated sample to check whether the incoming log entry is normal. The
output of the anomaly detection model is the detection result (normal log entry or abnormal log entry).

Figure 2: GAN-EDC architecture

Algorithm 1: extract log template

Input: A log dataset D and a threshold k

output: A log template tree T
1: Scan the log dataset D.

2: Calculate the Word Frequency for each log word
3: Derive a list F of log words in descending order of their Word Frequency.
4: Create the root.
5: for each log entry in D do
6: Sort the log words according to the order in list F
7: end for
8: for Child node N in T do

9: if N is not the top 5 node and has more than k children then
10: Eliminate all the children of N
11: end if
12: end if
13: return T

140 CSSE, 2021, vol.37, no.1

4.1 Generative Adversarial Networks

GAN is a dynamic game model, which comprises two adversarial models: a generator G that captures
the data distribution, and a discriminatorD that estimates the probability that a sample came from the training
data rather than generator. In the process of dynamic game training, the purpose of the generator is to increase
the error probability of discriminator, the purpose of the discriminator is distinguishing between the real data
and the generated samples. Training of GANs involves both finding the parameters of a discriminator that
maximize its classification accuracy and finding the parameters of a generator which maximally confuse
the discriminator.

Set a prior on input noise variables Pz zð Þ, then represent a mapping to data space as G z; hg
� �

, where G is
a differentiable function represented by a multilayer perceptron with parameters hg. Set second multilayer
perceptron D x; hdð Þ, x is the data, hd is the parameter. D xð Þ represents the probability that x came from
the data rather than the generator's distribution pg. D and G play the following two-player minimax game
with value function V G;Dð Þ.
min
G

max
D

V D;Gð Þ ¼ Ex�Pdata xð Þ logD xð Þ½ � þ Ez�Pz zð Þ log 1� D G zð Þð Þð Þ½ � (1)

4.2 Generative Based on Encoder-Decoder

In our research, we choose the Encoder-Decoder framework based on LSTM to build the generative
model G. First, we input the log keyword into the LSTM of the encoder phase and get the hidden state
with fixed dimension. After encoder processing, input the hidden state into the LSTM of the decoder
phase. Finally, we get the log template from the generator (i.e., we train the generator to generate the
instances of log template).

Encoder. The LSTM encoder learns fixed-length vector representation of the input. Given a log dataset
S ¼ s1; s2; � � � ; snf g, where n is the total number of log templates, si is a log template. Each log template si is
composed of multiple words, clearly si={w1; w2; � � � ;wn}, where each wi denotes the i-th word in log
template si. Some of these words are log keywords, let log keyword of si is K ¼ k1; k2; � � � ; knf g
(K 2 si), ki is a log keyword. Consider a keyword sequence K ¼ k1; k2; � � � ; kLf g of length L, h ið Þ

E is the

hidden state of the encoder at time ti for each i 2 1; 2; � � � ;Lf g, where h ið Þ
E 2 Rc, c is the number of

LSTM units in the hidden layer of the encoder. Enter the log keywords into the LSTM encoder. Memory
Cell is the core part of the LSTM, composed of parameters and a gating unit system. It is used to judge
whether the information is useful or not. Each gating unit system includes three gates, namely input gate,
forgetting gate and output gate. LSTM uses a separate memory cell to remember long term dependencies,
which can be updated depending on the current input. At each time step, an LSTM takes current input xi
and previous memory cell state h i�1ð Þ

E as input and computes the current cell state h ið Þ
E . Finally, we get the

end hidden state h Lð Þ
E .

Decoder. The final state h Lð Þ
E of the encoder is used as the initial state for the decoder. For example,

the decoder takes x1 and h 1ð Þ
E h 1ð Þ

E ¼ h Lð Þ
E

� �
as input to obtain the next hidden state h 2ð Þ

E . Processing

continues in this same way. We can get the hidden state of each time. The hidden state of each time
inputs into a Softmax function, and the output is a probability distribution describing the probability for
each template word from the dictionary C. We choose the word with the highest probability as the output.
The output can be expressed as

yi ¼ g yi�1; h
ið Þ
D ; h Lð Þ

E

� �
(2)

CSSE, 2021, vol.37, no.1 141

where h ið Þ
E is the hidden state of decoder LSTM at the time t, yi�1 is the output of the previous time and take as

the input as time t. g is a non-linear multi-layer perceptron, which produces the probability that each word in
dictionary C belongs to yi.

4.3 Discriminator Based on CNN

We use CNN to build the discriminator model of GAN, and the discriminator is a binary classifier. The
input of the discriminator is the generated log template and the real log template. The output is a number
between 0 and 1. The number represents the probability that the input log template is real.

The discriminator consists of a convolution layer and a max-pooling operation over the entire sentence
for each feature map. Set the log template generated as Y ¼ y1; y2; � � � ; ynf g, each word yt is embedded into
a k-dimensional word vector xt ¼ We yt½ �, where We 2 Rk�V is a word embedding matrix (to be learned).
Then a log template of length T (padded where necessary) is represented as a matrix X 2 Rk�T , by
concatenating its word embeddings as columns, i.e., the t-th column of X is xt. Set the convolution kernel
is Wc 2 Rk�h, where h is the number of words. For example, the convolution kernel with a window size
of one word can be expressed as Wc 2 Rk�1. First, we get the feature map c ¼ f X �Wc þ bð Þ by
convolution of the input matrix X , where f �ð Þ is a nonlinear activation function, � denotes the
convolutional operator, b is a bias vector. Second, we apply a max-over-time pooling operation to the
feature map and take its maximum value ĉ ¼ max cf g. Third, we apply the fully connected layer of
sigmoid function to output a scalar, the scalar represents the probability of X is from the log data
distribution, rather than from adversarial G.

Training. G and D share a set of parameters, which are updated alternately by a stochastic gradient
descent method. G and D are trained simultaneously. The training strategy is to train the k-steps D and
then train the 1-step G, i.e., The discriminator is trained until optimal with respect to the current
generator. Then, the generator is updated again. We adjust parameters for G to minimize
log 1� D G Sð Þð Þð Þ and adjust parameters for D to minimize logD xð Þ, as if they are following the two-
player min-max game with value function V D;Gð Þ.
min
G

max
D

V D;Gð Þ ¼ Ex�Pdata xð Þ logD xð Þ½ � þ ES�PS log 1� D G Sð Þð Þð Þ½ � (3)

where S is the keyword sequence.

4.4 4.4 Anomaly Detection

GAN-EDC has learned the feature distributions of normal log entries. Therefore, we design an abnormal
score to evaluate the error between the input templates and templates from G. The abnormal score can be
expressed as

A X ; hð Þ ¼k X � G Sð Þk2 (4)

where A X ; hð Þ is the abnormal score, X is the input log entry, h is the parameters of G. We select a suitable
threshold q. If A X ; hð Þ is less than q, the input log entry is normal; otherwise, it is abnormal.

5 Evaluation

In this section, we first introduce the datasets and experimental environment. All log datasets are
collected from the real-world. Second, we evaluate the performance of GAN-EDC and compare it with
those methods, such as Cluster, SVM, decision tree, PCA. Finally, we assess the effect of the k value.

142 CSSE, 2021, vol.37, no.1

5.1 Log Data Sets and Experiment Setup

We use distributed system log datasets as training sets and test sets, including the HDFS dataset and
BGL dataset. HDFS dataset is generated through running Hadoop MapReduce jobs on more than
100 Amazon’s EC2 nodes. There are 29 log templates and 575056 execution sequences in the HDFS
dataset, including normal and abnormal log. The Blue Gene/L supercomputer system log dataset contains
4747963 log entries and 385 log templates. There are 348698 (7%) log entries labeled as anomalies.
These two datasets are labeled by experts. Details of the HDFS dataset and Blue Gene/L dataset could be
found in these papers [1,34,35,36]. Zhu et al. [34] has officially released these datasets, and we have
made no modification to these datasets in this paper. These datasets have been downloaded over
7000 times. Tab. 2 summarizes the two datasets.

The platform used in sections 6.2, 6.3 and 6.4 is Python 3.7. All experiments use the same machine with
an Intel (R) Xeon (R) Silver 2.20 GHz CPU, 128 G memory, and Windows 10 operating system.

5.2 Accuracy Evaluation of Anomaly Detection

In this section, we evaluate the accuracy of the GAN-EDC. The following three intuitive metrics usually
assess a method's effect to detect abnormal log: Precision, Recall and F � measure. These evaluation metrics
are used in previous studies, frequently [37–39]. Eqs. (5), (6) and (7) show the formulas of these
three metrics.

Precision ¼ TP

TP þ FP
(5)

Recall ¼ TP

TP þ FN
(6)

F � measure ¼ 2Recall � Precision
Recall þ Precision

(7)

where TP is true positive, TN is true negative, FP is false positive, FN is false negative. F � measure is
the harmonic mean of Precision and Recall. We ran two supervised methods (i.e., decision tree and SVM)
and two unsupervised methods (i.e., clustering and PCA) to detect the log point anomalies for the HDFS
dataset and BGL dataset, respectively. For all methods, we choose the first 80% data as the training data
and the remaining 20% as the testing data. Fig. 3 shows the comparison using Precision, Recall and
F � measure.

As illustrated in Fig. 3. We can observe that supervised methods (namely decision tree and SVM) and
GAN-EDC achieve high accuracy (over 0.95) in the HDFS dataset. Clearly, GAN-EDC has achieved the best
overall performance in two datasets, especially in the BGL dataset with Precision 96%, Recall 89% and
F � measure 92%. The result proves that GAN-EDC can effectively separate normal instances and
abnormal instances by using feature representation. Besides, the overall accuracy on the HDFS dataset is
higher than the accuracy on the BGL dataset. Because the HDFS dataset only records 29 log templates,
which is much less than that in the BGL dataset (it records 385 log templates). The detection strategy of

Table 2: Log data sets

Dataset Data Size Log Entry Log template

HDFS 1.45 GB 11197954 29

BGL 708MB 4747963 385

CSSE, 2021, vol.37, no.1 143

the cluster is too coarse-grained, so it has the lowest accuracy. Compared with the supervised methods, all
unsupervised methods relatively low accuracy on two datasets.

5.3 Efficiency Evaluation of Anomaly Detection

In Fig. 4, the efficiency of all these anomaly detection methods is evaluated on both HDFS and BGL
datasets with varying log sizes. Because the clustering cannot handle large-scale datasets in an acceptable
time, the running time results of clustering are not fully plotted. All methods can detect anomalies in a
short time (except clustering). The time complexity of clustering is O n2ð Þ. The other detection methods
scale linearly as the log size increases. Furthermore, the decision tree is the fastest detection method and
slightly quicker than GAN-EDC, but GAN-EDC is higher than the decision tree in detection accuracy.
Combine detection accuracy, GAN-EDC has achieved the best overall performance than other methods in
two datasets. It is proved that GAN-EDC is effective for large-scale datasets.

5.4 The Effect of K Value

In this section, we evaluate the effect of k value on the generator by using the evaluation metric NLLoracle
[33]. In our case, we assume that the expert has learned an accurate model of the real data distribution

Figure 3: Evaluation on HDFS dataset and BGL dataset. (a) Accuracy on HDFS dataset. (b) Accuracy on
BGL dataset

144 CSSE, 2021, vol.37, no.1

pexpert xð Þ. Only the negative log-likelihood is minimized, i.e., �Ex�plogq xð Þ, the real data and the generated
data are difficult to distinguish. Therefore, we use the LSTM network to capture the relationship between words
in real log templates. We first initialize the parameters of an LSTM network following the normal distribution
N 0; 1ð Þ as the oracle (namely Goracle) describing the real log distribution Goracleðxtjx1; � � � ; xt�1Þ. Then, we use
it to generate 10,000 sequences as the training dataset for the generative G. Finally, we evaluate G by using the
oracle model. The evaluation function can be expressed as

NLLoracle ¼ �EY1:T�Gh

XT
t¼1

GoracleðyT jY1:T�1Þ
" #

(8)

where Y1:T�1 is the generated series before time T. Goracle is the oracle model and Gh is the generative model.

We use Gh to generate 10,000 samples and calculate NLLoracle with different k (k = 1, 3, 5) for each
sample by Goracle and their average score. We vary the values of k while using the same values for others.
Fig. 5 shows the evaluation result.

Figure 4: Evaluation running time with increasing log size. (a) HDFS dataset. (b) BGL dataset

CSSE, 2021, vol.37, no.1 145

We can see the impact of k. when k = 3, the baselines outperform other baselines significantly and pay
equal attention to convergence speed. The baselines of k = 1 and k = 3 also converge to stable values, but the
results are imperfect 8.83 and 8.79 respectively. When k = 5, the convergence speed of the model is the fast,
and the result is the best 8.74. This proofs that the selection of the k has great effects on the convergence time
of the model and the quality of generated data. Therefore, we set k = 5 in this paper.

6 Conclusion

In this paper, we propose a log anomaly detection method based on GAN. This method uses the
Encoder-Decoder framework based on LSTM as the generator. The discriminator uses the CNN network
to identify the difference between the generated log template and the real log template. In the phase of
anomaly detection, the probability of anomaly is calculated by the Euclidean distance. Experiments on
real data set show the effectiveness of GAN-EDC. Compared with the state of the art, GAN-EDC can not
only detect log point anomalies with high accuracy but also outperform other existing log-based anomaly
detection methods. Our future work considers using a reinforcement learning method to select k value
instead of a human setting automatically. For example, we consider but are not limited to combine the Q-
learning algorithm [40] or the Actor-Critic algorithm (A3C) [41].

Funding Statement: The work was supported by National Natural Science Foundation of China under grant
NO.61672392 and NO.61373038, the National Key Research and Development Program of China under
grant NO.2016YFC1202204.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Du, F. Li, G. Zheng and V. Srikumar, “DeepLog: Anomaly detection and diagnosis from system logs through

deep learning,” in Proc. of the ACM Conf. on Computer and Communications Security, Dallas, Texas, USA,
pp. 1285–1298, 2017.

[2] R. Vaarandi and M. Pihelgas, “Logcluster - a data clustering and pattern mining algorithm for event logs, ” in Int.
Conf. on Network & Service Management, IEEE, Barcelona, Spain, pp. 1–7, 2015.

[3] F. T. Liu, K. M. Ting and Z. H. Zhou, “Isolation-based anomaly detection,” ACM Transactions on Knowledge
Discovery from Data, vol. 6, no. 1, pp. 1–39, 2012.

Figure 5: Negative log-likelihood convergence performance of GAN-EDC with different k-steps

146 CSSE, 2021, vol.37, no.1

[4] S. M. Erfani, S. Rajasegarar, S. Karunasekera and C. Leckie, “High-dimensional and large-scale anomaly
detection using a linear one-class SVM with deep learning,” Pattern Recognition, vol. 58, pp. 121–134, 2016.

[5] J. Inoue, Y. Yamagata, Y. Chen, C. M. Poskitt and J. Sun, “Anomaly detection for a water treatment system using
unsupervised machine learning, ” in 2017 IEEE Int. Conf. on Data Mining Workshops (ICDMW), IEEE, Los
Alamitos, CA, USA, pp. 1058–1065, 2017.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley et al., “Generative adversarial networks,”
Advances in Neural Information Processing Systems, vol. 3, pp. 2672–2680, 2014.

[7] Y. Kim, “Convolutional neural networks for sentence classification,” in Proc. of the 2014 Conf. on Empirical
Methods in Natural Language Processing, Doha, Qatar, pp. 1746–1754, 2014.

[8] J. Li, X. Liang, Y. Wei, T. Xu, J. Feng et al., “Perceptual generative adversarial networks for small object
detection,” in Proc. 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Los Alamitos,
CA, USA, pp. 1951–1959, 2017.

[9] K. Ehsani, R. Mottaghi and A. Farhadi, “Segan: Segmenting and generating the invisible, ” in 2018 IEEE/CVF
Conf. on Computer Vision and Pattern Recognition (CVPR), IEEE, Los Alamitos, CA, USA, 6144–6153, 2018.

[10] Y. Xue, T. Xu, H. Zhang, R. Long and X. Huang, “Segan: Adversarial network with multi-scale l1 loss for medical
image segmentation,” Neuroinformatics, vol. 16, no. 3–4, pp. 383–392, 2018.

[11] C. C. Hsu, H. T. Hwang, Y. C. Wu, Y. Tsao and H. M. Wang, “Voice conversion from unaligned corpora using
variational autoencoding wasserstein generative adversarial networks,” 18th Annual Conference of the Speech
Communication Associatio (INTERSPEECH 2017), Stockholm, Sweden, pp. 3364–3368, 2017.

[12] D. Kwon, H. Kim, J. Kim, S. Suh, I. Kim et al., “A survey of deep learning-based network anomaly detection,”
Cluster Computing, vol. 22, no. S1, pp. 949–961, 2019.

[13] A. N. Jahromi, S. Hashemi, A. Dehghantanha, K. K. R. Choo, H. Karimipour et al., “An improved two-hidden-
layer extreme learning machine for malware hunting,” Computers & Security, vol. 89, pp. 101655, 2020.

[14] A. Javed, P. Burnap and O. Rana, “Prediction of drive by download attacks on twitter,” Information Processing &
Management, vol. 56, no. 3, pp. 1133–1145, 2019.

[15] R. Kaur and S. Singh, “A comparative analysis of structural graph metrics to identify anomalies in online social
networks,” Computers & Electrical Engineering, vol. 57, pp. 294–310, 2017.

[16] B. Mudassar, J. Ko and S. Mukhopadhyay, “An unsupervised anomalous event detection framework with class
aware source separation, ” in 2018 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, Calgary, AB, Canada, pp. 2671–2675, 2018.

[17] G. Enderlein, “Identification of outliers,” Biometrical Journal, vol. 29, no. 2, pp. 198, 1987.

[18] R. Ren, X. Fu, J. Zhan and W. Zhou, “Logmaster: Mining event correlations in logs of large-scale cluster
systems,” in Proc. of the IEEE Sym. on Reliable Distributed Systems, Irvine, CA, USA, pp. 71–80, 2012.

[19] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised anomaly detection algorithms for
multivariate data,” PLoS One, vol. 11, no. 4, pp. 1–31, 2016.

[20] Y. Watanabe, H. Otsuka, M. Sonoda, S. Kikuchi and Y. Matsumoto, “Online failure prediction in cloud
datacenters by real-time message pattern learning,” in 4th IEEE Int. Conf. on Cloud Computing Technology
and Science Proceedings, Taipei, Taiwan, pp. 504–511, 2012.

[21] W. Xu, L. Huang, A. Fox, D. Patterson and M. Jordan, “Detecting large-scale system problems by mining console
logs,” in Proc. of the ACM SIGOPS 22nd Sym. on Operating Systems Principles, Taipei, Taiwan, pp. 37–46, 2010.

[22] N. Farnaaz and M. Jabbar, “Random forest modeling for network intrusion detection system,” Procedia Computer
Science, vol. 89, pp. 213–217, 2016.

[23] H. Wu and S. Prasad, “Semi-supervised deep learning using pseudo labels for hyperspectral image classification,”
IEEE Transactions on Image Processing, vol. 27, no. 3, pp. 1259–1270, 2018.

[24] E. Racah, C. Beckham, T. Maharaj, S. E. Kahou, Prabhat et al., “Extreme weather: A large-scale climate dataset
for semi-supervised detection, localization, and understanding of extreme weather events,” in Proc. of the 31st Int.
Conf. on Neural Information Processing Systems NIPS’17, Long Beach, CA, USA, pp. 3405–3416, 2017.

CSSE, 2021, vol.37, no.1 147

[25] X. Jia, K. Li, X. Li and A. Zhang, “A novel semi-supervised deep learning framework for affective state
recognition on EEG signals, ” in 2014 IEEE Int. Conf. on Bioinformatics and Bioengineering, IEEE, Boca
Raton, FL, USA, pp. 30–37, 2014.

[26] G. Yuan, B. Li, Y. Yao and S. Zhang, “A deep learning enabled subspace spectral ensemble clustering approach
for web anomaly detection, ” in 2017 Int. Joint Conf. on Neural Networks (IJCNNI), IEEE, Anchorage, AK, USA,
pp. 3896–3903, 2017.

[27] Z. Fengming, L. Shufang, G. Zhimin, W. Bo, T. Shiming et al., “Anomaly detection in smart grid based on
encoder-decoder framework with recurrent neural network,” Journal of China Universities of Posts and
Telecommunications, vol. 24, no. 6, pp. 67–73, 2017.

[28] A. Chawla, “Host based intrusion detection system with combined cnn/rnn model,” in Proc. ECML PKDD 2018,
Dublin, Ireland, pp. 149–158, 2019.

[29] W. Fang, F. Zhang, Y. Ding and J. Sheng, “A new sequential image prediction method based on LSTM and
DCGAN,” CMC-Computers, Materials & Continua, vol. 64, no. 1, pp. 217–231, 2020.

[30] C. Li, Y. Jiang and M. Cheslyar, “Embedding image through generated intermediate medium using deep
convolutional generative adversarial network,” CMC-Computers, Materials & Continua, vol. 56, no. 2, pp.
313–324, 2018.

[31] T. Li, S. Zhang and J. Xia, “Quantum generative adversarial network: A survey,” CMC-Computers, Materials &
Continua, vol. 64, no. 1, pp. 401–438, 2020.

[32] K. Fu, J. Peng, H. Zhang, X. Wang and F. Jiang, “Image super-resolution based on generative adversarial
networks: A brief review,” CMC-Computers, Materials & Continua, vol. 64, no. 3, pp. 1977–1997, 2020.

[33] L. Yu, W. Zhang, J. Wang and Y. Yu, “Seqgan: Sequence generative adversarial nets with policy gradient,” in
Proc. of the Thirty-First AAAI Conf. on Artificial Intelligence (AAAI’17), San Francisco, California, USA,
pp. 2852–2858, 2017.

[34] J. Zhu, S. He, J. Liu, P. He, Q. Xie et al., “Tools and benchmarks for automated log parsing, ” in 2019 IEEE/ACM
41st Int. Conf. on Software Engineering: Software Engineering in Practice (ICSE-SEIP), IEEE/ACM, Montreal,
QC, Canada, pp. 121–130, 2019.

[35] W. Xu, L. Huang, A. Fox, D. Patterson and M. Jordan, “Online system problem detection by mining patterns of
console logs, ” in 2009 Ninth IEEE Int. Conf. on Data Mining, IEEE, Miami, Florida, USA, pp. 588–597, 2009.

[36] X. Duan, S. Ying, H. Cheng, W. Yuan and X. Yin, “OILog: An online incremental log keyword extraction
approach based on MDP-LSTM neural network,” Information Systems, vol. 95, pp. 101618, 2020.

[37] C. Bertero, M. Roy, C. Sauvanaud and G. Tredan, “Experience report: Log mining using natural language
processing and application to anomaly detection, ” in 2017 IEEE 28th Int. Sym. on Software Reliability
Engineering (ISSRE), IEEE, Toulouse, France, pp. 351–360, 2017.

[38] A. Siddiqui, A. Fern, T. Dietterich, R. Wright, A. Theriault et al., “Feedback-guided anomaly discovery via online
optimization,” in Proc. of the 24th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining KDD ’18,
London, UK, pp. 2200–2209, 2018.

[39] P. He, J. Zhu, S. He, J. Li and M. R. Lyu, “An evaluation study on log parsing and its use in log mining, ” in 2016
46th Annual IEEE/IFIP Int. Conf. on Dependable Systems and Networks (DSN), IEEE, Toulouse, France,
pp. 654–661, 2016.

[40] V. Mnih, K. Kavukvuoglu, D. Silver, A. Graves, I. Antonoglou et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[41] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley et al., “Asynchronous methods for deep reinforcement
learning,” in Proc. of the 33rd Int. Conf. on Machine Learning, New York City, NY, USA, pp. 1928–1937, 2016.

148 CSSE, 2021, vol.37, no.1

	A Generative Adversarial Networks for Log Anomaly Detection
	Introduction
	Related Work
	Log Parser
	Design and Construction
	Evaluation
	Conclusion
	References

