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ABSTRACT

Steady-state heat transfer problems in heterogeneous solid are simulated by developing an adaptive extended
isogeometric analysis (XIGA) method based on locally refined non-uniforms rational B-splines (LR NURBS).
In the XIGA, the LR NURBS, which have a simple local refinement algorithm and good description ability for
complex geometries, are employed to represent the geometry and discretize the field variables; and some special
enrichment functions are introduced into the approximation of temperature field, thus the computational mesh is
independent of the material interfaces, which are described with the level set method. Similar to the approximation
of temperature field, a temperature gradient recovery technique for heterogeneous media is proposed, and based on
the Zienkiewicz–Zhu recovery technique a posteriori error estimator is defined to automatically identify the locally
refined regions. The convergence and performance properties of the developed method are verified by using three
numerical examples. The numerical results show that (1) The convergence speed of the adaptive local refinement
is faster than that of the uniform global refinement; (2) The convergence rate of the high-order basis functions is
faster than that of the low-order basis functions; and (3) The existing inclusions change the local distributions of
the temperature, and the extreme values of the temperature gradients take place around the inclusion interfaces.
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1 Introduction

Heat transfer in heterogeneous media widely exist in many fields. Numerical simulation is
an efficient method for solving the common heat transfer problem, and heat transfer problem
in heterogeneous media has been investigated with various numerical methods, such as mesh-
less method [1], discrete element method [2], finite element method [3–6] and lattice Boltzmann
method [7–9].

Most of the numerical methods used for the heat transfer are based on the finite element
method (FEM). However, owing to the requirement of element edges to be lined up with the
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discontinuity (e.g., crack, material interface, hole boundary), mesh generation of heterogeneous
structure is very time-consuming. In order to overcome the issue, the extended FEM (XFEM) [10]
was developed by introducing some special enrichment functions into the FEM approximation,
thus the computational mesh is not related to the internal discontinuities. Yu et al. [11] solved
steady and unsteady temperature fields in heterogeneous materials using the XFEM. Yvonnet
et al. [12] proposed a simple and effective numerical procedure for simulating the Kapitza thermal
resistance at an arbitrarily shaped interface using the XFEM combined with the level set method,
and high accuracy and robustness can be obtained. Zuo et al. [13] obtained the thermal field in
concrete with cooling pipe using the XFEM. Stapór [14] solved nonlinear transient problems with
a phase change using the XFEM. The XFEM is a very effective numerical method for modeling
the discontinuity, however, it has several drawbacks, for instance, discretization errors exist for
complex-shaped structures; only C0-continuity of shape function exists; and mesh generation is
still required. In order to overcome the above-mentioned shortcomings, the extended isogeometric
analysis (XIGA) [15] was introduced by taking the spline functions used in the computer-aided
design (CAD) as the shape functions in the XFEM. The XIGA possesses some desirable features
besides those in the XFEM, for example, arbitrarily complex structure can be exactly represented,
the higher-order continuity of shape functions can be easily obtained, and the traditional mesh
generation process is avoided. Due to such excellent characteristics, the XIGA has been applied
to solve various discontinuities [16–23].

The adaptive technique can enhance the computational efficiency and the accuracy. Recently,
the adaptive XIGA for modeling the discontinuity has received much attention. In order to
locally refine, the researchers proposed some splines with local refinement ability, such as
T-splines [24,25], Hierarchical B-splines [26], PHT-splines [27], Hierarchical NURBS [28], and LR
B-splines [29,30]. Nguyen-Thanh et al. [31,32] presented an isogeometric analysis based on PHT-
splines which facilitates adaptive refinement, and solved two-dimensional solids and thin shell.
Later, they presented a multi-patch isogeometric large deformation thin shell formulation based
on RTH splines, and developed a stress recovery technique to drive the adaptive h-refinement
procedure [33]. Recently, we proposed the adaptive LR B-splines based XIGA and successfully
simulated inclusions [34], holes [35], and cracks [36–38]. Yang et al. [39] developed an adaptive
XIGA based on the PHT-splines for cracked thin plates and shells.

The existing studies reveal the efficiency of the adaptive XIGA in modeling discontinuous
problems. Studies on modeling heat transfer problems in heterogeneous media using an adaptive
XIGA have not be found in literature. The purpose of this study is to solve the steady-state
heat transfer problems in heterogeneous media using an adaptive XIGA. We modeled the steady-
state heat transfer problems using an adaptive LR B-splines based IGA [40], so this work is an
extension of our previous work [40]. The methods based on LR B-splines possess the adaptable
and diversified local refinement scheme, however, the LR B-splines can not exactly represent
some complex geometries. LR NURBS [41] by combining NURBS with the LR B-spline theory
can effectively overcome this issue. Hence, the adaptive LR NURBS based XIGA is adopted in
this work. The LR NURBS basis functions are utilized for the structure discretization and the
approximation of field variables. The smoothed temperature gradient field [42] is constructed, and
according to the Zienkiewicz–Zhu recovery technique [43], a posteriori error estimator is evaluated
to guide the local refinement. The main advantages of the proposed method include: (a) The
geometry can be exactly described, i.e., without the discretization error; (b) The computational
mesh is not related to the material interfaces, so mesh generation for heterogeneous media is very
simple, and good shape elements can be obtained; (c) Only the required regions are automatically
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and locally refined; (d) The accuracy and the computational cost can be concurrently taken into
account; and (e) Fast convergence rate is achieved.

The organization of this article is as follows: The main equations for steady-state heat transfer
in heterogeneous media are described in Section 2; Section 3 presents the adaptive LR NURBS
based XIGA for steady-state heat transfer in heterogeneous media; Section 4 demonstrates the
accuracy and the effectiveness of the proposed method; and some main concluding remarks are
given in Section 5.

2 Problem Description

An isotropic heterogeneous media is considered. According to the theory of heat trans-
fer, the temperature T in isotropic solid satisfies the following differential equations and
boundary conditions:

∇ · (k∇T)+ qv = 0 (1)

with

T =T on �1 (2a)

− kT,n = qn on �2 (2b)

− kT,n = h(T −Tw) on �3 (2c)

T1 =T2, k1T1,n= k2T2,n on �4 (2d)

where k, k1 and k2 denote the thermal conductivity parameter; qv is the heat source; T and qn are
the prescribed temperature and heat flux density on the boundary, respectively; Tw is the ambient
temperature, while h is the convective heat transfer coefficient; T1 and T2 are the temperatures of
two materials on the interface; n denotes the outward normal on the boundary.

The first and the second class boundary conditions (Eqs. (2a) and (2b)) mean that the tem-
perature function and the heat flux density on the boundary of the object are known, respectively.
The third class boundary condition (Eq. (2c)) refers to the convective or radiative heat transfer on
the boundary of the object. Assumed the perfect contact between two different solids, continuous
temperature and heat flux exist on the interface, which is known as the fourth class boundary
condition (Eq. (2d)).

Based on the variational principle, the steady-state heat transfer problem in heterogeneous
media may be changed into solving the extreme-value problem of the following function:

∏
=
∫
�

(
1
2
k
((
T,x

)2+ (T,y
)2)− qvT

)
d�+

∫
�2

qnT d�+
∫
�3

h

(
T2

2
−T Tw

)
d� (3)

3 Adaptive LR NURBS Based XIGA for Heat Transfer Problem

3.1 XIGA for Steady-State Heat Transfer in Heterogeneous Media
From Eq. (2), we can find that the temperature is continuous across the material interface,

but the temperature gradients are discontinuous. According to the XFEM theory, the XIGA
approximation for the temperature field can be written as [11]

T(x, y)=
∑
i∈I1

Ri (ξ ,η)Ti+
∑
j∈I2

ajRj (ξ ,η)ψ (4)
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with

ψ =
∑
i∈I1

|φi|Ri (ξ ,η)−
∣∣∣∣∣∣
∑
i∈I1

Ri (ξ , η)φi

∣∣∣∣∣∣ (5)

where Ri and Rj denote the LR NURBS basis functions [41], which are defined with the local
coordinates (ξ , η) in the parametric domain; Ti and aj are the temperature and the enrichment
variable at control point i and j, respectively; I1 and I2 are the set of control points in the
discretized domain and the set of control points whose supports are intersected by the material
interface, respectively; ψ is the enrichment function, and φi denotes the level set function value at
the ith control point.

Combining Eq. (3) with Eq. (4) and applying variation rule lead to

KT = F (6)

where T is the global temperature vector. K and F are the global heat transfer matrix and
temperature load vector, respectively. In addition, the element contributions to K and F are
written as

kij =
⎡
⎣kTTij kTaij

kaTij kaaij

⎤
⎦ (7)

f i = [f Ti f ai ] (8)

where

krsij =
∫
�e

(
Bri
)T DBsj d�+

∫
�3

(
Rri
)T hRsj d� (r, s=T , a) (9)

f ri =
∫
�e

qv
(
Rri
)T d�−

∫
�2

qn
(
Rri
)T d�+

∫
�3

hTw
(
Rri
)T d� (r=T , a) (10)

with

D=
[
k 0

0 k

]
(11)

BTi =
[
Ri,x

Ri,y

]
, Bai =

[
Ri,x (Riψ),x

Ri,y (Riψ),y

]
(12)

RTi = [Ri], Rai = [Ri Riψ ] (13)

For elements without any enriched control point, the numerical integration is conducted with
(p+ 1)× (q+ 1) integral points, where p and q are the order of LR NURBS basis function in the
ξ and η directions, respectively. For elements containing the material interface, the sub-triangle
scheme [36] is used, and seven integration points are applied in each sub-triangle element.

Taking into account the first class boundary condition (Eq. (2a)), the temperatures and
enrichment variables of control points are solved with Eq. (6). It is noted that the temperature
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approximation presented in Eq. (4) can directly satisfy the fourth class boundary condition [11],
thus the fourth class boundary condition in this method does not need special treatment.

3.2 Error Estimation
According to the Zienkiewicz and Zhu method [43], we can use the smoothed temperature

gradients instead of the exact value to conduct the error estimation. The temperature gradients
across the material interface are discontinuous, similar to the temperature approximation, the
approximation of the smoothed temperature gradients can be expressed as

Gs =
∑
i∈I1

Ri (ξ , η)G∗
i +

∑
j∈I2

Rj (ξ , η)
(
H (ξ , η)−H

(
ξj, ηj

))
a∗j (14)

with

Ri =
[
Ri 0

0 Ri

]
(15)

where H equals 1 on one side of a material interface and −1 on the other side, G∗
i and a∗i are

the smoothed temperature gradient vector and the corresponding enrichment variable vector at
the control point i, respectively.

Eq. (14) is rewritten in a matrix form, i.e.,

Gs =R∗g∗ (16)

Through a least square fit between the temperature gradients Gh obtained from the XIGA
and the smoothed temperature gradients Gs, the following equation can be obtained

�(G∗)=
∫
�

(
Gs−Gh

)T (
Gs−Gh

)
d� (17)

Minimizing Eq. (17) about the unknown variable vector g∗ yields

AG∗ =B (18)

where

A=
∫
�e

R∗(R∗)T d� (19)

B=
∫
�e

(R∗)TGh d� (20)

The previous studies [40,44] show that the error in heat dissipation can effectively evaluate the
accuracy of the numerical method for the heat transfer problems. According to the Zienkiewicz
and Zhu error estimation [43], the posteriori error estimator is calculated with the smoothed
temperature gradients instead of the exact value. For one element with area �e, the L2 error norm
in the heat dissipation and the heat dissipation norm of the smoothed temperature gradient field
are given by

‖e‖2 =
∫
�e

(
Gs−G

)T D (Gs−Gs) d� (21)
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‖q‖2 =
∫
�e

(
Gs)T DGs d� (22)

The relative error for each element is evaluated with the following equation:

θ = ‖e‖
‖q‖ × 100% (23)

4 Numerical Results

Three numerical examples are analyzed to demonstrate the accuracy and the effectiveness
of the present method. The first example, whose exact solution is available, is used to test the
accuracy of the method. The second example considers a plate with one circular inclusion. The
third example simulates a plate with four circular inclusions. The quadratic-order LR NURBS
basis functions are used if not special specified in the following examples.

4.1 A Bi-Material Ring
Consider a bi-material ring with fixed temperatures on the inner and outer surfaces, as shown

in Fig. 1a. r1 = 2 m, r2 = 4.2 m, r3 = 6 m, T1 = 0◦C, and T3 = 20◦C. The materials of the inner and
outer rings are ordinary concrete and foamed concrete, and the thermal conductivity coefficients
of the ordinary concrete and the foamed concrete are 10 KJ/(mh◦C) and 0.377 KJ/(mh◦C),
respectively. Due to the symmetry, a quarter of the bi-material ring is taken into account for
the analysis, and the adiabatic boundary condition is imposed on the symmetry faces, as shown
in Fig. 1b.

r 1

r3

r 2

Concrete

Foamed concrete

T 3

T
1

20 oC

0 oC

qn = 0 W/m2

q n
=

0
W

/m
2

(a)

(b)

x

y

Figure 1: Problem definition for a bi-material ring

The exact temperatures in the bi-material ring are expressed as [45]:

T2 = T3−T1
1

2πk1
ln r2

r1
+ 1

2πk2
ln r3

r2

(r= r2) (24a)

T =T1+ T2−T1

ln r2
r1

ln
r
r1

(r1< r< r2) (24b)
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T =T2+ T3−T2

ln r3
r2

ln
r
r2

(r2 < r< r3) (24c)

in which r is the radius.

Fig. 2 shows the uniform mesh and the corresponding control points labeled with circles for
the original analysis. The orders of LR NURBS basis functions along the circumferential and
radial directions are 2 and 1, respectively. It is noted that the computational mesh is independent
of the material interface labeled in red line.

Figure 2: Original computational mesh and control points

Fig. 3 shows the four subsequent meshes in terms of the adaptive procedure. The local
refinement first occurs around the material interface, then near the outer surface of the ring,
finally around the inner surface of the ring and the material interface. These refined regions are
as expected.

Figs. 4–6 show the distribution contours of the temperature and the temperature gradients
obtained from the present method and the exact solution after four refinement steps, and the
absolute errors are also plotted. From Figs. 4–6, it is found that the adaptive XIGA offers highly
accurate results.

The temperatures along the radial direction are plotted in Fig. 7. The results obtained by the
adaptive XIGA match well with the exact solution, which again verifies the excellent accuracy of
the proposed method.

Fig. 8 presents the convergence curves of the L2 error norm in the heat dissipation for both
refinement schemes. It is obvious that the convergence speed of the adaptive local refinement
(ALR) is faster than that of the uniform global refinement (UGR), and the same conclusion was
obtain in the steady-state heat transfer problems in homogeneous media [40].
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(a) (b)

(c) (d)

Figure 3: Locally refined meshes based on the error estimator at the Step 1(a), Step 2(b), Step 3(c)
and Step 4(d)

(a) (b) (c)

310

14

10

6

2

20

16

12

8

4

0

20

16

12

8

4

0 -2

Figure 4: Temperature contours for the adaptive XIGA solution (a), the exact solution (b) and
the absolute error (c)
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Figure 5: Temperature gradient contours in x-direction for the adaptive XIGA solution (a), the
exact solution (b) and the absolute error (c)
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Figure 6: Temperature gradient contours in y-direction for the adaptive XIGA solution (a), the
exact solution (b) and the absolute error (c)
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4.2 A Square Plate with One Circular Inclusion
The second example considers a square plate with one circular inclusion with a radius of

2 m, as shown in Fig. 9. The upper and lower surfaces are assumed to be adiabatic. Prescribed
temperature on the left boundary is 400◦C. The ambient temperature on the right side is 85◦C, and
the convective heat transfer coefficient equals 160 W/(m2·◦C). The thermal conductivity coefficients
of materials B and A are 100 W/(m·◦C) and 200 W/(m·◦C), respectively.

40
0

o C

5 m5 m

5
m

5
m

X

Y

h = 0

h = 0

h = 160 W/m2oC

Tw = 85 oC

Material B

Material A

Figure 9: Problem definition for a square plate with one circular inclusion

Fig. 10 presents the initial mesh and the corresponding control points.
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Figure 10: Original computational mesh and control points

Fig. 11 shows the three subsequent meshes in terms of the adaptive procedure. From Fig. 11,
it is found that the local refinement takes place around the material interface, and the refined zone
gradually approaches to the material interface with increasing the number of refinements. This
shows that big error exits around the inclusion interface, as expected.

)c()b()a(

Figure 11: Locally refined meshes based on the error estimator at the Step 1(a), Step 2(b) and
Step 3(c)

The distribution contours of the temperature and the temperature gradients in x and y
directions after three refinement steps are shown in Figs. 12 and 13. The existing inclusion changes
the local distribution of the temperature, and the extreme values of the temperature gradients take
place around the inclusion interface.
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Figure 13: Temperature gradient contours in x-direction (a) and in y-direction (b)

Fig. 14 shows the variation of the relative error in heat dissipation norm with increasing the
degrees of freedom (i.e., increasing the refinement step number) obtained with the adaptive XIGA
with different basis orders. For p= q= 1, the present method becomes the standard extended finite
element method. It is found that the convergence rate of the quadratic basis function is faster
than that of the linear basis function with increasing the refinement step number.

4.3 A Square Plate with Four Circular Inclusions
In order to demonstrate the effectiveness of the present method for simulating the steady-state

heat transfer in complex heterogeneous media, a square plate with four identical circular inclusions
with a radius of 1.2m is taken into account, as shown in Fig. 15. The upper and lower boundaries
are assumed to be adiabatic, and the prescribed temperatures on the left and right boundaries



CMES, 2021, vol.126, no.3 1327

are 400◦C and 100◦C, respectively. In addition, the thermal conductivity coefficient of matrix is
100 KJ/(mh◦C), while the thermal conductivity coefficient of inclusions is 1000 KJ/(mh◦C).
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Figure 14: The variation of the relative error with the refinement step number
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Figure 15: Problem definition for a square plate with four circular inclusions

The computation is first conducted on the uniform starting mesh, as shown in Fig. 16. The
three subsequent meshes in Fig. 17 are generated according to the adaptive procedure. The refined
regions are the same as those in the previous example, i.e., the local refinement takes place around
the material interface, and the refined zone gradually approaches to the material interface with
increasing the refinement steps.
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Figure 16: Original computational mesh and control points

)c()b()a(

Figure 17: Locally refined meshes based on the error estimator at the Step 1(a), Step 2(b) and
Step 3(c)

In addition, we plot the temperature contours in Fig. 18 and the temperature gradient con-
tours in Fig. 19 on the final mesh. From Figs. 18 and 19, it is found that the existing inclusions
change the local distributions of the temperature, the extreme values of the temperature gradients
take place around the inclusion interfaces, and the distributions of the temperature gradients are
almost the same around each inclusion.
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Figure 18: Temperature contours
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Figure 19: Temperature gradient contours in x-direction (a) and in y-direction (b)

5 Conclusions

An adaptive LR NURBS based XIGA for steady-state heat transfer problems in heteroge-
neous media is proposed. Because of the adaptable and diversified local refinement scheme and the
exact description of complex geometry, the LR NURBS are adopted in the XIGA. The mesh is
not related to the material interfaces by introducing special enrichment functions into the approx-
imation of temperature field. A temperature gradient recovery technique for heterogeneous media
is proposed, and the local refinement is automatically conducted based on the error estimator,
which is constructed with the recovered temperature gradient field. Numerical results verify the
excellent performance of the developed method.
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The present approach owns some desirable features and its further developments include
unsteady-state heat transfer and thermoelastic problems in heterogeneous media. In addition, the
computation cost of the present method will be compared with that of conventional method by
solving the large scale heterogeneous media.
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