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ABSTRACT

High-speci�c-impulse electric propulsion technology is promising for future space robotic debris removal in
sun-synchronous orbits. Such a prospect involves solving a class of challenging problems of low-thrust orbital
rendezvous between an active spacecra� and a free-�ying debris. This study focuses on computing optimal low-
thrust minimum-time many-revolution trajectories, considering the e�ects of the Earth oblateness perturbations
and null thrust in Earth shadow. Firstly, a set of mean-element orbital dynamic equations of a chaser (spacecra�)
and a target (debris) are derived by using the orbital averaging technique, and speci�cally a slow-changing state
of the mean longitude di�erence is proposed to accommodate to the rendezvous problem. Subsequently, the
corresponding optimal control problem is formulated based on the mean elements and their associated costate
variables in terms of Pontryagin’s maximum principle, and a practical optimization procedure is adopted to �nd
the speci�c initial costate variables, wherein the necessary conditions of the optimal solutions are all satis�ed.
A�erwards, the optimal control pro�le obtained in mean elements is then mapped into the counterpart that is
employed by the osculating orbital dynamics. A simple correction strategy about the initialization of the mean
elements, speci�cally the di�erential mean true longitude, is suggested, which is capable of minimizing the terminal
orbital rendezvous errors for propagating orbital dynamics expressed by both mean and osculating elements.
Finally, numerical examples are presented, and speci�cally, the terminal orbital rendezvous accuracy is veri�ed by
solving hundreds of rendezvous problems, demonstrating the e�ectiveness of the optimization method proposed
in this article.
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1 Introduction

It is evidenced that the number of trackable in-orbit space debris has reached 14,790 among
the total 20,475 space objects [1]. Approximately 90% of the space debris are distributed in low
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Earth orbits (LEOs), and majority of them reside in sun-synchronous orbits (SSOs). The increase
in the number of the debris may lead to mutual collisions known as the Kessler’s syndrome [2],
which would result in the continuous increase of the debris population. Active debris removal
seems to be the only effective means for cleaning orbital environment. Much attention on debris
removal has been paid not only to debris manipulating approaches and proximity operations [3–6],
but also to spacecraft far range rendezvous problems, such as those proposed by the 9th Global
Trajectory Optimization Competition and the 8th Chinese Trajectory Optimization Competition.
For the debris removal mission, the spacecraft is anticipated to be capable of rendezvousing with
as many debris as possible using its limited propellant. High speci�c impulse of electric propulsion
appears to be the most promising engine option, which can greatly decrease the propellent mass
fraction of the spacecraft compared with chemical propulsion. As we know, electric propulsion
only generates low thrust. Therefore, research on orbital rendezvous using low thrust between
debris in SSOs is of great necessity.

Although extensive studies [7–15] have been devoted to low-thrust many-revolution orbital
transfer problems (a spacecraft is steered to a given target orbit but the terminal phase angle on
the target orbit is not constrained), few studies have addressed the low-thrust orbital rendezvous
problems (LORPs) speci�cally in SSOs considering the practical use of solar electric propulsion
(SEP). In LORPs, a chaser using solar electric propulsion would rendezvous with a free-�ying
target with least time of �ight given a speci�c time epoch. The dif�culties of solving such LORPs
in LEOs or LLOs mainly lie in the following three aspects: (1) Both of the chaser and the target
signi�cantly experience Earth or lunar oblateness perturbations, and the �nal orbital positions
at rendezvous may not be known in advance for minimum-time missions. (2) The practical SEP
spacecraft only has low thrust-to-weight ratio, usually on the order of 10−5, resulting in the case
that low-thrust orbital maneuvers take several days with a large number of orbital revolutions
(e.g., more than a hundred). (3) Low thrust must be turned off when the spacecraft encounters
Earth or moon’s shadow (or solar eclipse) or actively saves fuel consumption, thus the disconti-
nuity in thrust, compared to the purely continuous thrust, leads to different and complex optimal
control pro�le that is much harder to model and optimize. This study aims to propose practical
optimization techniques that resolve all above-mentioned dif�culties.

In literature, LORPs are modeled as orbital phasing problems or station-change problems,
and the representative research documents are given as follows. Edelbaum [16] studied the time-
optimal phasing maneuver in the same circular orbit without considering any perturbation. The
results suggest that the thrust directs tangentially in the �rst half of the transfer and then reverses
to the opposite direction. Titus [17] transformed the problem into a maximum-phasing-change
problem under �xed time of �ight. Hall et al. [18] solved the time-optimal coplanar LORP
using indirect optimization method. Shang et al. [19] extended the phasing problem on circular
orbits to that on general elliptical orbits using the direct optimization method. Zhao et al. [20]
proposed an analytical costate approximate method for the minimum-time station-change problem
in GEOs. Wang et al. [21] studied a minimum-time coplanar LORP based on sequential convex
programming, which was veri�ed through an Earth-to-Mars rendezvous example with up to 50
orbital revolutions, with the terminal transfer angle set either π or 0.

More realistic work of LORPs considers the J2 perturbations that signi�cantly affect orbital
evolutions in Earth orbits. Zhao et al. [22] solved the fuel-optimal inclined LORP between space
debris in SSOs by using indirect optimization method, where the J2 perturbation was consid-
ered. A similar scenario was also considered by Olympio et al. [23] and Li et al. [24], wherein
multiple shooting methods and homotopic approach were employed to improve the convergence
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of numerical iteration. To avoid the dif�culty of solving the TPBVP resulting from the optimal
control theory, the direct method [25] is introduced to convert the primary problem into a nonlin-
ear programming problem through parameterization. However, the computation workload rapidly
increases when dealing with the many-revolution orbital transfers because a large number of nodes
are required for numerical iteration. Zhang et al. [26] studied the time-optimal inclined LORP
between geosynchronous satellites with �xed initial and terminal states based on the analytical
orbit propagation. However, it is merely valid by imposing stringent constraints, i.e., a constant
yaw steering pro�le, J2 perturbations only, and nearly zero eccentricity.

This work aims to develop a practical optimization method for solving the minimum-time
many-revolution LORPs in SSOs, considering the practical use of SEP. To guarantee rendezvous,
a phasing difference is introduced as an independent state into the dynamic equations, which
contributes to the optimization process. The original problem is formulated as an optimal control
problem by using the orbital averaging technique, which makes trajectory propagation easier
to include the effects of perturbations and Earth shadow in which the thrust is off. The cor-
responding optimal control problem is then solved such that the necessary conditions derived
from Pontryagin’s maximum principle are all satis�ed. By employing an osculating-mean elements
transformation, the resulting optimal control derived from the mean orbital dynamics and the
corresponding costate variables is mapped to the control law that is used in osculating orbital
dynamics. A simple correction strategy about the initialization of the mean elements is introduced
to minimize the terminal rendezvous orbital errors. All the numerical iterations involved in tra-
jectory optimization are based on the averaged orbital dynamics, greatly simplifying the orbital
propagation complexity. The proposed method in this paper is capable to solving the minimum-
time many-revolution LORPs in which the number of passive coast arcs in Earth shadow may be
over one or two hundred.

The remainder of the paper is organized as follows: Section 2 states the minimum-time
LORPs. Section 3 presents the optimal control problem formulation based on the mean-element
dynamic equations. Section 4 and Section 5 describe the methods of solving the trajectory
optimization problem and transforming the optimal control pro�le into the control law for
propagating osculating elements. Section 6 shows representative numerical examples. Section 7
summarizes the conclusions.

2 Problem Statement

2.1 Assumptions
In this study, the following three assumptions are made:

Assumption 1: The chaser is assumed to be a SEP spacecraft, whereas the target is a free-
�ying debris. Supposing the chaser or the debris is moving in a circular SSO with an altitude
of approximately 800 km. The zonal harmonics perturbations up to 20 orders is considered only,
because they are much signi�cant than the other perturbations as shown in Tab. 1.

Assumption 2: The low thrust produced by electric propulsion is supposed to be directed to
any direction without the change of thrust magnitude, which means that the maximum thrust
available may keep constant during the entire transfer phase when the spacecraft is not in Earth
shadow. This assumption is reasonable if the spacecraft’s solar panel may rotate at least in one-
degree-of-freedom.

Assumption 3: Initial orbital states of the chaser and the target are supposed to be not widely
spaced, wherein the semi-major axis, eccentricity, and inclination are constrained by the concept
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of the near-circular SSOs. The right ascension of ascending nodes (RAAN) are supposed to be
similar whereas the phase angle difference between the chaser and the target can be arbitrary.

Table 1: Orders of the perturbing accelerations in a typical SSO

J2, m/s2 J3∼J4, m/s2 J5∼J20, m/s2 Lunisolar perturbation,
m/s2

Solar pressure perturbation,
m/s2

∼ 10−2
∼ 10−5

∼ 10−6
∼ 10−10

∼ 10−9

Assumption 4: The navigation error and the control error are not considered currently.

The third assumption implies that the chaser may rendezvous with the target in its neighbor-
ing orbit only. For a widely RAAN spaced rendezvous case, the reasonable strategy is to divide the
entire �ight into two phases: Minimizing orbital plane difference and orbital rendezvous, as shown
in Fig. 1. The RAAN difference between the chaser and the target can be zeroed by adjusting
the chaser’s orbital altitude, which leads to differential RAAN procession rate. Once the chaser
reaches a target’s neighboring orbit, the phase for orbital rendezvous starts.

Figure 1: Illustration of two phases (left: widely spaced RAAN; middle: minimizing orbital plane
difference; right: orbital rendezvous in this study)

2.2 Dynamic Equations

A set of non-singular modi�ed equinoctial elements [27] (MEEs) x=
[
p f g h k L

]> is utilized
to describe the states of the chaser and the target:

p= a
(
1− e2

)
f = e cos (Ω+ω)

g= e sin (Ω+ω)

h= tan (i/2) cosΩ

k= tan (i/2) sinΩ

L=Ω+ω+ θ

(1)
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where a is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the RAAN, ω is the
argument of periapsis, and θ is the true anomaly.

Let u denotes the acceleration resulting from the natural perturbations and the active control,
the perturbed Keplerian motion governed by Gauss’ variational equations can be written as

ẋ=Mu+D (2)

M =
1
w

√
p
µ



0 2p 0
w sinL (w+ 1) cosL+ f − (h sinL− k cosL)g

−w cosL (w+ 1) sinL+ g (h sinL− k cosL) f

0 0
(
s2/2

)
cosL

0 0
(
s2/2

)
sinL

0 0 (h sinL− k cosL)


(3)

u=
[
uR uT uN

]> (4)

D=
[

0 0 0 0 0
√
µp
(
w
p

)2]>
(5)

where µ is the gravitational parameter of the Earth, uR, uT , uN are the components of u in the
radial-transverse-normal (RTN) reference frame centered in the spacecraft, and w= 1+ f cosL+
g sinL, s2 = 1+ h2

+ k2.

The acceleration u in Eq. (2) consists of two parts: The perturbing acceleration up from the
natural perturbations and the active control acceleration uc

u= up+ uc (6)

Based on Assumption 1 (Section 2.1), the perturbations considered in this study include
zonal harmonics perturbations only. Because they are conservative force, Lagrange planetary
equation [27] is adopted to compute the zonal harmonics perturbations f p instead of M · up,
that is

ẋ=Muc+ f p+D (7)

In addition, the thrust amplitude of the chaser, T (xc), satis�es{
0≤T (xc)≤Tmax,L1 ≤Lc ≤L2,L2 ∈ (L1,L1+ 2π ]

T (xc)= 0, otherwise
(8)

where Tmax is the maximum thrust amplitude available, L1 and L2 denote the exit and entry angles
across the Earth shadow in each orbital revolution, respectively. Both L1 and L2 can be solved
from the cylindrical Earth shadow model presented by [28]. Meanwhile, the unit direction vector
of the thrust force α satis�es

α>α = 1 (9)
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In this manner, the active control acceleration can be expressed as

uc =
T
m

α (10)

where m is the spacecraft mass. The mass �ow rate is expressed as

ṁ=−
T

geIsp
(11)

where Isp is the speci�c impulse and ge(= 9.80665m/s2) is the gravitational acceleration at the
sea level.

In Eq. (2), D represents the two-body Keplerian motion, which leads the sixth element L to be
a fast-changing variable. By contrast, the �rst �ve MEEs, p, f ,g,h,k, are slow-changing variables
de�ned as the following slow-changing vector

x̃=
[
p f g h k

]> (12)

Then, the slow-changing vector is separated from the fast-changing variable to obtain x =[̃
x>,L

]>
. Considering that no active control is imposed on the target, the osculating orbital

dynamics of the chaser and the target can be readily obtained as

˙̃xc = M̃ (̃xc,Lc)
T (̃xc,Lc)

mc
α+ f̃ p (̃xc,Lc)

L̇c = q (̃xc,Lc)
T (̃xc,Lc)

mc
α+ gp (̃xc,Lc)+

√
µpc

(
wc
pc

)2

ṁc =−
T (̃xc,Lc)
geIsp

˙̃xd = f̃ p (̃xd ,Ld)

L̇d = gp (̃xd ,Ld)+
√
µpd

(
wd
pd

)2

(13)

where the subscripts (c,d) represent the chaser and the target respectively, and[
M̃5×3
q1×3

]
=M,

[̃
f p
gp

]
= f p (14)

2.3 The LORP in SSOs
Assuming at the initial time t0, the state vectors of the chaser and the target are given by

xc0 =
[
pc0 fc0 gc0 hc0 kc0 Lc0

]>
xd0 =

[
pd0 fd0 gd0 hd0 kd0 Ld0

]> (15)

The LORP discussed in this study aims to provide an optimal control pro�le for the chaser,
so that at a future time tf

(
tf > t0

)
, the chaser reaches the target, i.e., satisfying

xc
(
tf
)
− xd

(
tf
)
= 0 (16)
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whereas the time of �ight ∆t= tf − t0 is minimized simultaneously. The motion of the chaser and
the target are governed by the osculating orbital dynamics expressed in Eq. (13). For convenience,
this LORP described in osculating elements is stated as Problem 1.

The description in Problem 1 is quite straightforward, but the problem is dif�cult to solve in
reality because of the following two reasons. First, the practical thrust-to-weight ratio of the SEP
spacecraft is generally small, which leads to a large number of orbital revolutions. As a result,
direct numerical integration of Eq. (13) consumes an unacceptable amount of time during the
numerical iteration for optimization. Second, the discontinuous thrust caused by Earth shadow is
hard to formulate in an optimization problem using the osculating orbital dynamics Eq. (13). To
avoid these dif�culties, the orbital averaging technique is introduced in the following sections.

3 Optimal Control Problem Formulation Based on Orbital Averaging

3.1 Orbital Averaging
Referring to [9], by using the orbital averaging technique on Eq. (13), the averaged orbital

dynamic equations can be obtained as:

˙x̃c =
1
Pc

∫ L2

L1

M̃
(̃
xc,Lc

) T
mc

α
dt

dLc
dLc+

1
Pc

∫ 2π

0
f̃ p
(̃
xc,Lc

) dt
dLc

dLc

˙x̃d =
1
Pd

∫ 2π

0
f̃ p
(̃
xd ,Ld

) dt
dLd

dLd

ṁc =−
1
Pc

∫ L2

L1

T
geIsp

dt
dLc

dLc

(17)

where a symbol x denotes the averaged value of variable x and x̃i is the mean of the �rst
�ve MEEs,

x̃i =
[
pi f i gi hi ki

]>
, i ∈ {c,d} (18)

and

Pi =
2π√
µ/a3

i

=
2π
√
µ

 pi(
1− f

2
i − g

2
i

)
 3

2

, i ∈ {c,d} (19)

dt
dLi
≈

√µpi
(

1+ f i cosLi+ gi sinLi
pi

)2
−1

, i ∈ {c,d} (20)

Similarly, as to the sixth element L, the mean longitude rate can be computed by
˙Lc =

2π
Pc
+

1
Pc

∫ L2

L1

q
(̃
xc,Lc

) T
mc

α
dt

dLc
dLc+

1
Pc

∫ 2π

0
gp
(̃
xc,Lc

) dt
dLc

dLc

˙Ld =
2π
Pd
+

1
Pd

∫ 2π

0
gp
(̃
xd ,Ld

) dt
dLd

dLd

(21)

De�ning ∆L as

∆L=Lc−Ld (22)
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which represents the mean longitude difference between the chaser and the target. Thus, the full
averaged orbital dynamics of the LORP can be formulated as

˙x̃c =
1

2π

(
1− f

2
c − g

2
c

) 3
2
(Gc1+Gc2)

˙x̃cd =
1

2π

(
1− f

2
d − g

2
d

) 3
2
Gd1

ṁc =−
1

2π

(
1− f

2
c − g

2
c

) 3
2
Gc0

∆ ˙L= ˙Lc−
˙Ld =
√
µ

(1− f
2
c − g

2
c

pc

) 3
2

−

1− f
2
d − g

2
d

pd

 3
2


+
1

2π

(
1− f

2
c − g

2
c

) 3
2
(Gc3+Gc4)−

1
2π

(
1− f

2
d − g

2
d

) 3
2
Gd2

(23)

where

Gc0=
T

geIsp

∫ L2

L1

1(
1+f ccosL+gcsinL

)2 dL,Gc1=
∫ L2

L1

M̃
(̃
xc,L

) 1(
1+f ccosL+gcsinL

)2

T
mc

αdL

Gc2=
∫ 2π

0 f̃ p
(̃
xc,L

) 1(
1+f ccosL+gcsinL

)2 dL,Gc3=
∫ L2

L1

q
(̃
xc,L

) 1(
1+f ccosL+gcsinL

)2

T
mc

αdL

Gc4=
∫ 2π

0 gp
(̃
xc,L

) 1(
1+f ccosL+gcsinL

)2 dL,Gd1=

∫ 2π

0
f̃ p
(̃
xd ,L

) 1(
1+f d cosL+gd sinL

)2 dL

Gd2=
∫ 2π

0 gp
(̃
xd ,L

) 1(
1+f d cosL+gd sinL

)2 dL

(24)

In this article, the averaged dynamic equations Eq. (23) are adopted to solve the optimal
control problem for convenience. By using the orbital averaging technique, the discontinuous thrust
caused by Earth shadow is easily handled by the de�nite integrals, which can be approximately
computed by the numerical integration methods such as Gauss–Legendre quadrature. Moreover,
all the mean elements on the left side of Eq. (23) change slowly and smoothly and the classical
fourth-order Runge-Kutta method can be used for trajectory propagation.

3.2 Time Optimal Control Problem Formulation
Considering a time-optimal orbital rendezvous problem, the performance function is expressed

as

J=
∫ tf

t0
1dt=∆t (25)
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Let λc=
[
λpc λf c

λgc λhc
λkc

]>
, λm, λ∆L be the costate variables (or Lagrange multipli-

ers) associated with the state variables x̃c, mc, and ∆L, respectively. Based on the averaged orbital
dynamic equation Eq. (23), the Hamiltonian function is de�ned as

H=λc
> ˙x̃c+λmṁc+λ∆L∆ ˙L+1 (26)

The corresponding governing differential equations of costate variables can be written as

˙λc=−∂H/∂x̃c

=
−1
2π

λc
>

∂
(

1−f
2
c−g

2
c

) 3
2

∂x̃c
(Gc1+Gc2)+

(
1−f

2
c−g

2
c

) 3
2
(
∂Gc1
∂x̃c
+
∂Gc2
∂x̃c

)

+
1

2π
λm

∂
(

1−f
2
c−g

2
c

) 3
2

∂x̃c
Gc0+

(
1−f

2
c−g

2
c

) 3
2 ∂Gc0
∂x̃c

−λ∆L
√
µ

∂

(
1−f

2
c−g

2
c

pc

) 3
2

∂x̃c

−
1

2π
λ∆L

∂
(

1−f
2
c−g

2
c

) 3
2

∂x̃c
(Gc3+Gc4)+

(
1−f

2
c−g

2
c

) 3
2
(
∂Gc3
∂x̃c
+
∂Gc4
∂x̃c

) (27)

˙λm=−∂H/∂mc=−
1

2π

(
1−f

2
c−g

2
c

) 3
2
[
λ∆L

∂Gc3
∂mc
+λc

> ∂Gc1
∂mc

]
(28)

˙λ∆L=−∂H/∂∆L=0 (29)

where the derivatives of Gc0,Gc1,Gc2,Gc3,Gc4 are expressed as

∂Gc0
∂x̃c
=

T
geIsp


∫ L2

L1

 −2(
1+f ccosL+gcsinL

)3

∂
(

1+f ccosL+gcsinL
)

∂x̃c

dL

+
∂L2

∂x̃c

1(
1+f ccosL2+gcsinL2

)2 −
∂L1

∂x̃c

1(
1+f ccosL1+gcsinL1

)2

 (30)



626 CMES, 2021, vol.126, no.2

∂Gc1
∂x̃c
=

∫ L2

L1


−2M̃

(̃
xc,L

) 1(
1+f ccosL+gcsinL

)3

∂
(

1+f ccosL+gcsinL
)

∂x̃c

T
mc

α

+
∂M̃

(̃
xc,L

)
∂x̃c

1(
1+f ccosL+gcsinL

)2

T
mc

α


dL

+
∂L2

∂x̃c

M̃
(̃
xc,L2

)(
1+f ccosL2+gcsinL2

)2

T
mc

α−
∂L1

∂x̃c

M̃
(̃
xc,L1

)(
1+f ccosL1+gcsinL1

)2

T
mc

α (31)

∂Gc1
∂m
=−

∫ L2

L1

M̃
(̃
xc,L

) 1(
1+f ccosL+gcsinL

)2

T
m2
c
αdL (32)

∂Gc2
∂x̃c
=

∫ 2π

0


−2̃f p

(̃
xc,Lc

) 1(
1+f ccosL+gcsinL

)3

∂
(

1+f ccosL+gcsinL
)

∂x̃c

+
∂ f̃ p

(̃
xc,Lc

)
∂x̃c

1(
1+f ccosL+gcsinL

)2


dL (33)

∂Gc3
∂x̃c
=

∫ L2

L1


−2q

(̃
xc,L

) 1(
1+f ccosL+gcsinL

)3

∂
(

1+f ccosL+gcsinL
)

∂x̃c

T
mc

α

+
∂q
(̃
xc,L

)
∂x̃c

1(
1+f ccosL+gcsinL

)2

T
mc

α


dL

+
∂L2

∂x̃c

q
(̃
xc,L

)(
1+f ccosL2+gcsinL2

)2

T
mc

α−
∂L1

∂x̃c

q
(̃
xc,L

)(
1+f ccosL1+gcsinL1

)2

T
mc

α (34)

∂Gc3
∂m
=−

∫ L2

L1

q
(̃
xc,L

) 1(
1+f ccosL+gcsinL

)2

T
m2
c
αdL (35)

∂Gc4
∂x̃c
=

∫ 2π

0


−2g

(̃
xc,L

) 1(
1+f ccosL+gcsinL

)3

∂
(

1+f ccosL+gcsinL
)

∂x̃c

+
∂g
(̃
xc,L

)
∂x̃c

1(
1+f ccosL+gcsinL

)2


dL (36)
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According to Pontryagin’s maximum principle [29], the optimal control u∗c (=T∗α∗) is obtained
if the Hamiltonian function takes the minimum, that is

H
(
u∗c
)
=min

u∈U
H (uc) (37)

where the admissible control domain is

U=
{

uc=Tα|αTα=1, 0≤T≤Tmax

}
(38)

Thus, the optimal thrust direction α∗ satis�es

α∗=−
M̃>

(̃
xc,L

)
λc+λ∆Lq>

(̃
xc,L

)∥∥∥M̃>
(̃
xc,L

)
λc+λ∆Lq>

(̃
xc,L

)∥∥∥ (39)

while the optimal thrust amplitude should be maximum all the time, i.e.,

T∗(xc)=Tmax (40)

The speci�c solution of u∗ is attached in Appendix A. Consequently, if at the initial time
t0, the initial conditions x̃c0,mc0,x̃d0,∆L0 are known, the time-optimal orbital rendezvous problem
can be transformed into a two-point boundary-value problem, de�ned as Problem 2 as follows:

Finding the speci�c value of the initial costate variables λc0, λ∆L0, λm0 as well as the �nal
time tf , such that the �nal states obtained by propagating the Eqs. (23) and (27)–(29) from t0 to
tf can meet the necessary conditions, namely the terminal conditions

x̃c
(
tf
)
= x̃d

(
tf
)
, ∆L

(
tf
)
=0 (41)

and the transversality conditions

λm
(
tf
)
=0,H

(
tf
)
=0 (42)

3.3 Initialization of the Mean Elements
The initial conditions of the chaser and the target are generally given in osculating MEEs

by the navigation system, however, the averaged dynamic equation requires the mean elements
x̃c0,m0,x̃d0,∆L0, which should be transformed from the osculating elements x̃c0,Lc0,m0,x̃d0,Ld0.
The transformation is based on the singular value decomposition (SVD) algorithm used by
Li [30], where the algorithm is applied to �nd the mean elements for station-keeping of
GEO satellites.

First of all, according to the osculating dynamic equation Eq. (13), ṁ is a piece-wise constant,
which means that no short-term oscillation occurs for m. Thus,

mc0=mc0 (43)

Considering that the thrust-to-weight ratio of the chaser is much smaller than the zonal
harmonics perturbations f p in SSOs, the effect of the active control can be reasonably neglected
in a short time duration, for example only one orbital period. Thus, the elements’ transformations
of the chaser are the same as that of the target. Let L be the transformation, the details of L
are reported in Algorithm 1.
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Algorithm 1: Initialization of the mean elements L
Input: x0=

[̃
x>0 L0

]>
Output: x0=

[̃
x0
>

L0

]>
.

Step 1. Calculate the orbital period from the osculating initial element x0;

P=
2π
√
µ

[
p0(

1−f 2
0 −g

2
0

)] 3
2

(44)

Step 2. Propagate the osculating orbital dynamic Eq. (7) on the time interval [t0,t0+P], where the
initial conditions are the osculating x0 and the active control acceleration uc is set to be 0. Thus,
a trajectory of the osculating elements without active control, S1, is obtained, which is expressed
as

S1 : x(t;x0),t∈ [t0,t0+P] (45)

Step 3. Solve the averaged trajectory of S1, denoted by S1, by using the SVD algorithm used by
Li [30]. As the time duration of S1 is only one orbital period, we only considered the secular
terms in the SVD algorithm, which means that the S1 is a straight line, as shown in Fig. 2.
Step 4. Calculate the middle-value of S1 at the time t= t0+P/2, which is denoted by x1(P/2).
Step 5. Propagate the averaged orbital dynamic equations Eq. (17) on the same time interval
[t0,t0+P], where the initial conditions are given by x0=x0 and no thrust is included. Thus, a
trajectory of the mean elements without active control, S0, is obtained, which is expressed as

S0 : x(t;x0),t∈ [t0,t0+P] (46)

Step 6. Calculate the middle-value of S0 at time t= t0+P/2, which is denoted by x0(P/2).
Step 7. Calculate the initial mean elements as

x0=x0+∆x=x0+x1(P/2)−x0(P/2) (47)

Figure 2: Initialization of mean elements using osculating elements
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Until now, the initial mean x̃c0, mc0, and x̃d0 have been obtained. Finally, the initial mean
∆L0 is calculated from

∆L0=

Lc0−Ld0 or Lc0−Ld0−2π , if Lc0−Ld0≥0

Lc0−Ld0 or Lc0−Ld0+2π , if Lc0−Ld0<0
(48)

In general, if ∆L0 is set positive, the chaser is leading the target initially, and if
∆L0 is set negative, the chaser is trailing the target initially. Therefore, a single rendezvous

problem corresponds to two cases (leading or trailing) with ∆L
(1)
0 >0 or ∆L

(2)
0 <0 wherein

∆L
(1)
0 −∆L

(2)
0 =2π .

4 Trajectory Optimization with the Averaged Orbital Dynamics

Problem 2 stated as a two-point boundary-value problem is still dif�cult to be solved
directly using the shooting method because of the sensitivity of the initial costate variables.
Thus, Problem 2 is transformed into the parameter optimization problem that is solved by
taking advantages of mathematical programming solvers already developed and a series of
practical techniques.

It is observed that the state equations Eq. (17), the costate equations Eq. (23), as well as
the optimal control law in Eqs. (39) and (40) are all homogeneous with respect to the costate

variables (or Lagrange multipliers) λ=
[
λc,λ∆L,λm

]>
, except for the Hamiltonian function Eq. (26).

Multiplying or dividing these multipliers λ by an arbitrary positive real number does not change
the terminal states of the chaser and the target. Thus, if there are a set of Lagrange multipliers,

whose initial value is λ
0
, that satis�es Eq. (39) and

λm
(
tf
)
=0, H

(
tf
)
<1 (49)

The necessary conditions left in Problem 2 H
(
tf
)
=0 can be easily achieved by multiplying a

speci�c positive scaling factor, k(k>0), that is

k=
1

1−C
(50)

where C is the corresponding terminal value of the Hamiltonian function with respect to λ
0
. The

new Lagrange multipliers

λ
∗
=k×λ

0
(51)

are then the speci�c solutions of Problem 2, where all the necessary conditions involved
are satis�ed.

As a result, the approach for solving Problem 2 can be divided into two steps. First, the
TPBVP is converted into a nonlinear programming problem (NLP), de�ned as Problem 3, where
one of the transversality conditions, the equality constraint H

(
tf
)
=0, is changed to an inequality



630 CMES, 2021, vol.126, no.2

constraint H
(
tf
)
<1. Second, the speci�c scaling factor of the Lagrange multipliers is selected to

satisfy the constraint H
(
tf
)
=0. Problem 3 is totally equivalent to Problem 2, but the convergence

domain is enlarged. Details of Problem 3 are summarized in Tab. 2.

Table 2: Nonlinear optimization model of Problem 3

Optimization variables λc0, λ∆L0, λm0, tf
Initial conditions x̃c0,m0,x̃d0,∆L0=L( xc0,m0,xd0 )

Objective function J=min
(
tf
)

Dynamic equations of states and costates Eqs. (23) and (27)–(29)
Optimal steering law Eqs. (39) and (40)
Equality and inequality constraints Eqs. (41) and (49)

The NLP is solved by sequential quadratic programming (SQP), which is a gradient based
algorithm, and can be readily employed in many software tools. To improve the NLP convergence
properties, the intelligent optimization algorithm, for example, the differential evolution (DE) [31]
is employed to search good initial guesses. By using the normalization of the initial costate
vector [32], the upper and lower bounds of the costate variables can be normalized to be [−1,1].
As to the terminal time variable tf , the upper and lower bound can be estimated from the
analytical phasing maneuver time ∆t1 [19] and the plane change time ∆t2 [24], and is obtained as
follows:

tf ∈ t0+
[

max(∆t1,∆t2)
σ

∆t1+∆t2
σ

]
(52)

where σ is the weighting function considering the Earth shadow, which represents the percentage
of time the spacecraft is thrusting during one revolution:

σ =
L2−L1

2π
(53)

Solving Problem 3 by both the DE and the SQP requires evolutions or iterations of optimiza-
tion variables, and meanwhile propagating the state and costate equations. Owing to the use of
orbital averaging, the computation complexity of such propagation is greatly simpli�ed.

It is noted that DE usually costs much computational time to locate good initial guesses,
while SQP obtains the converged solution much quickly if good initial guesses are available.

5 Trajectory Correction with the Osculating Orbital Dynamics

5.1 Control Law in Osculating Orbital Dynamic Equations
The optimal solution of orbital rendezvous is obtained in the solution space of mean ele-

ments. In the real mission, the osculating elements are obtained by the navigation system and
considered to be the input to the control system. As a result, the optimal control pro�le expressed
by mean elements needs to be transformed into the control law that steers the chaser using
osculating elements.
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First, the thrust amplitude, T (xc), satis�es

T (xc)=

{
Tmax, L1≤Lc≤L2, L2∈(L1,L1+2π ]

0, otherwise
(54)

That is to say, the thrust keeps a maximum amplitude when the chaser is out of Earth shadow.
The judgement of whether the chaser is in the shadow (the comparison between Lc and L1, L2)
is tested continuously during the propagation.

As to the thrust direction, the most straightforward way is to take the optimal control pro�le
in mean elements as the control law in osculating elements, with the phase angle L is replaced, i.e.,:

α∗=−
M̃>

(̃
xc,L

)
λc+λ∆Lq>

(̃
xc,L

)∥∥∥M̃>
(̃
xc,L

)
λc+λ∆Lq>

(̃
xc,L

)∥∥∥ (55)

where L is the osculating phase angle and the mean costate variables λc, λ∆L and the mean states
x̃c involved are computed by the interpolation of λc(t), λ∆L(t) and x̃c(t) that are optimization
results from Problem 3. The thrust direction is only related to the osculating phase angle L, while
x̃c, λc and λ∆L are pre-stored quantities.

An alternative approach is that the control law of the chaser is governed by all the osculating
elements. As indicated in Reference [33], the in�uence of thrust on the mean elements is approxi-
mated as that acting on the corresponding osculating elements. It is reasonable that the osculating
elements x̃c and the mean elements x̃c are deemed the same to form the control law. Thus, the
thrust direction pro�le in osculating elements is simply obtained by substituting x̃c into Eq. (39)
for x̃c:

α∗(t)=−
M̃> (̃xc,L)λc+λ∆Lq> (̃xc,L)∥∥∥M̃> (̃xc,L)λc+λ∆Lq> (̃xc,L)

∥∥∥ (56)

where the mean costate variables λc, λ∆L are computed by interpolation of λc(t), λ∆L(t). In this
case, the thrust direction is depending on the osculating elements x̃c and L, while λc and λ∆L are
pre-stored quantities that can be deemed the gains for the control law.

As a result, once the Problem 3 is solved, the osculating trajectory of the chaser can be
obtained by propagating the osculating orbital dynamic Eq. (13) from the initial time t0 to the
�nal time tf , where the initial conditions are xc0,m0 and the active control satis�es Eq. (54) and
Eq. (55) or Eq. (56). Based on our experiences of solving a large number of numerical examples,
the two strategies of the control law α∗(t) perform almost the same in precisely propagating the
osculating orbital dynamic equations with the same set of initial states. This fact implies that the
replacement of x̃c by x̃c is empirically acceptable, and the second strategy in Eq. (56) is more
closely linked to the osculating elements that are obtained by the navigation system. It is noted
that Zhong et al. [34] proposed an onboard mean-elements estimator, but it is not used in this
study and our experiences show that Eq. (56) makes the control law effective and simpler.
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5.2 Accuracy Veri�cation and Error Correction Strategy
When we numerically propagated the orbital dynamic equations expressed by osculating ele-

ments with the control laws in Eqs. (54) and (56) obtained by solving Problem 3, we found that
the terminal orbital rendezvous errors exist, namely the terminal states of the chaser may not
precisely meet those of the target. These errors stem from a series of approximations, as listed
in Tab. 3.

Table 3: List of approximations

Strategies Approximations

Orbital averaging Incremental of
slow-changing elements
are small.

The differential mean
longitude as a
slowly-changing state

The thrust amplitude is
small and the chaser’s
orbit and the target’s
orbit are close.

Initialization of the
mean elements

The thrust amplitude is
small and the orbital
period is short.

Generating the control
law with osculating
elements

The osculating elements
x̃c and the mean
elements x̃c are deemed
the same.

It is found that the most signi�cant rendezvous error is the difference in the true longitude
between the chaser and the target at the terminal time. Considering the true longitude L is a
fast-changing variable, a correction about the initial mean longitude difference ∆L0 can effectively
compensate for the rendezvous errors. Let η be the correction factor, which is a single scalar; and
δr=

∥∥rc(tf )−rd (tf )∥∥, δv=
∥∥vc(tf )−vd (tf )∥∥ be the terminal position and velocity errors between the

chaser and the target in osculating elements, the correction of the initial mean longitude difference
is expressed as

∆L0=(1+η)
(
Lc0−Ld0

)
(57)

As a result, the new problem is proposed, that is: �nding the optimal η∗ that contributes to
the minimum of objective function

J+=αδr+βδv (58)

where α and β are the weight coef�cients and are con�gured according to different emphasis on
the terminal position and velocity errors. The optimization interval of η is chosen as [−0.15,0.15]
empirically, which means a slight correction of ∆L0 plays an important role in eliminating
the terminal rendezvous errors. This univariate optimization problem is readily solved by many
mature numerical methods, such as the Golden section search and the Fibonacci search [35]. For
convenience, this strategy is termed η-correction in this work.
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During the process of η-correction, there are two layers of optimization iterations. The outer
iteration is the univariate optimization with respect to η, and the inner iteration is the NLP
optimization (solving Problem 3) with the initial conditions changed (related to η) , which can be
readily solved by SQP from the solution with the initial conditions be x0=L(x0), where η=0.
When J+ reaches its minimum, Problem 3 is solved to obtain the optimal control in the solution
space of mean elements and orbital accuracy of the control laws is also met with osculating
elements. In this study, the orbital rendezvous is deemed to be achieved if J+ is small enough.

The η-correction perturbs the initial ∆L0 and leads to adjustment of the costate variables
or the gains of control law. This strategy can be applicable to other mean elements if necessary.
Although empirical, it is effective for solving concerning problems, which is validated by several
hundreds of examples shown in Section 6.

6 Numerical Example

In this section, two typical LORP examples in SSOs are provided in details, namely: (1) The
quasi phasing maneuver problem and (2) The general LORP. In example (1), the �rst �ve MEEs
of the chaser and the target are nearly the same initially, the chaser mainly implements the
phasing maneuvers; in Example (2), the chaser and the target differs in the semi-major axis
(100 km difference) and the phase location at the initial time. More examples are tested via
continuation of the chaser’s initial states, which generated several hundreds of examples to validate
the proposed method.

For simplicity, the initial time epoch is set at January 1, 2025, 00:00:00.000 UTCG for all
simulation examples. The target is chosen as a real free-�ying debris moving in an SSO, whose
DISCOS ID is 23753. It is a rocket mission related object and the size is larger than 5 m2 [36].
The orbital states of the target at the initial time epoch can be obtained via the SGP4 propagation
model. The chaser, a servicing SEP spacecraft, is supposed to be injected into a nearby orbit with
the initial mass and the thruster’s con�guration presented in Tab. 4. The low thrust produced by
electric propulsion is supposed to be directed to any direction and the maximum thrust available
keeps constant during the entire transfer phase. The initial states, in terms of the classic orbital
elements under the J2000 inertial frame, of the chaser and the target, are given in Tab. 5. The
perturbations include the zonal harmonics of the non-spherical Earth gravitational perturbations
up to 20 orders of the EGM96.

Table 4: Con�guration of the chaser

Initial mass, kg Maximum thrust, N Speci�c impulse, s

1000 0.15 3000

Table 5: Initial classical orbital elements of the chaser and the target α

α, km e i, deg �, deg ω, deg θ , deg

Chaser Example 1 7188.144531 0 98.64 83.713 0 20.785
Example 2 7288.144531 0.00021 99.24 83.113 10.358 10.785

Target 7187.300202 0.001085 99.11 83.737 130.619 53.076
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As mentioned before in the initialization of the mean elements (Section 3.3), there are two
cases for a rendezvous problem: leading and trailing, wherein ∆L0 is set positive and negative
separately. It is uncertain in advance that the transfer time of which case will be shorter, as a
result, in the following examples, both cases were solved. The integral interval for propagating
the averaged dynamic equations is set as 2∼3 revolutions, and the integral precision adopted
to calculate the terminal errors in osculating elements by propagating the osculating dynamic
equations is de�ned by a relative error tolerance of 1×10−10 and an absolute error tolerance of
1×10−10. The weight coef�cients α and β are both set to be 1 to just weight the terminal errors δr
and δv equally. Meanwhile, the stopping criteria of the univariate optimization for η-correction is
set to be 1×10−4. During the computation, all the unit of the range and velocity are normalized
by Earth’s radius Re and

√
µRe separately to get a better convergence.

6.1 Example 1: Quasi Phasing Maneuver Problem
In this example, the chaser and the target are supposed to be located in nearby SSOs with

the orbital altitudes of around 810 km. When Problem 3 is solved and the η-correction is made,
the solutions of the leading case and trailing case are summarized in Tab. 6.

Table 6: Solutions of Example 1

∆L0, deg ∆t∗, day η∗ ∆r, km ∆v, m/s ∆ton, day ∆m, kg

Leading case 196.7268 11.7601 0.00101 0.63 0.62 7.8060 3.4387
Trailing case −163.2732 8.8997 0.01304 0.43 0.11 5.8833 2.5917

where η∗ is the optimal correction factor, ∆t∗ is the minimum �ight time, ∆r and ∆v represent
the corresponding terminal differences of position and velocity after correction, respectively. In
addition, ∆ton and ∆m denote the working time of the thruster and the fuel consumption during
the maneuver. It shows that the trailing case results in a shorter �ight time, thus, the trailing case
is discussed further below.

The time history of the osculating and mean MEEs (p, f , g, h, k) and the longitude difference
∆L are shown in Fig. 3. These results show that the chaser gradually approaches the target.
In addition, the entire maneuver turns out to be a “catch-up” process, as the phase difference
increases from negative to 0 monotonically.



CMES, 2021, vol.126, no.2 635

Figure 3: Evolutions of p, f , g, h, k, ∆ L in Example 1

The time histories of the thrust direction α∗ under the RTN reference frame are presented in
Fig. 4. It shows that the thrust direction changes periodically along the transfer phase. At the �rst
half transfer, the T̂ component of the thrust is negative, thus, decreasing the semi-major axis to
catch up with the phase; while at the second half, it turns to positive to increase the semi-major
axis to the desired target value. The N̂ component of the thrust keeps a relative high value to
compensate for the orbital plane change throughout the �ight as the change of semi-major axis
leads to a continuous drift difference of RAAN between the chaser and the target. In addition,
the R̂ component of the thrust is imposed mainly at the middle part of the maneuver.
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Figure 4: History of the control direction α∗ under RTN reference frame in Example 1

Under the J2000 inertial frame, trajectories of the chaser and the target are shown in Fig. 5.
At the initial time, the chaser and the target are located at the points represented by the black
and green dots, respectively. At the �nal time, terminal positions of the chaser and the target
are denoted by the black triangle and green pentagon. The overlapping of the terminal positions
indicates that the chaser rendezvouses with the target. The chaser passes the Earth shadow in each
revolution, as the blue lines represent the chaser enters the shadow in which the thruster is off.
The total number of the complete revolutions for the chaser to rendezvous with the target is 127.

Figure 5: Trajectories of the chaser for the rendezvous in Example 1

6.2 Example 2: General LORP
In this example, the chaser and the target are supposed to be located in SSOs with the

altitude of 900 km and 810 km separately. When Problem 3 is solved and the η-correction is
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made, the solutions of the leading case and trailing case are summarized in Tab. 7. Different from
Example 1, the leading case in Example 2 takes a better result, which is discussed further below.

Table 7: Solutions of Example 2

∆L0, deg ∆t∗, day η∗ ∆r, km ∆v, m/s ∆ton, day ∆m, kg

Leading case 196.7268 16.4340 0.00128 0.20 1.02 10.9334 4.8164
Trailing case −163.2732 18.1195 0.00425 0.59 1.47 12.0136 5.2922

The time history of the osculating and mean MEEs (p, f , g, h, k) and the longitude difference
∆L are shown in Fig. 6. The entire maneuver turns out to be a process including both “waiting-
for” and “catch-up,” as the phase difference changes from positive to negative and eventually to 0.

Figure 6: Evolutions of p, f , g, h, k, ∆L in Example 2

The time histories of the thrust direction α∗ under the RTN reference frame are presented
in Fig. 7. The thrust direction during the rendezvous still displays a periodic change along the
transfer phase, but the whole evolution is quite different with that in Example 1. The sign of the
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T̂ component is not exactly changed at the half and the R̂ component is imposed mainly at the
end part. Moreover, the N̂ component is small at the beginning while in the later, the proportion
is large where the main plane change is conducted.

Figure 7: History of the control direction α∗ under RTN reference frame in Example 2

Under the J2000 inertial frame, trajectories of the chaser and target are shown in Fig. 8. The
total number of complete revolutions for the chaser to rendezvous with the target is 234.

Figure 8: Trajectories of the chaser for the rendezvous in Example 2
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6.3 Continuation of the Initial States of the Chaser
In this subsection, more examples are tested to verify the correction strategy numerically.

Considering it is time-consuming to do the Monto-Carlo simulation because of the DE involved in
solving Problem 3, the continuation method is adopted instead. The parameter of the continuation
is set to be the chaser’s initial orbital states, namely a, e, i, Ω and θ , whereas the target remains
unchanged. The starting point of the continuation is the same with the chaser’s initial states stated
in Example 1. Figs. 9 and 10 show the minimum rendezvous time obtained, and the intervals
between the discrete points (i.e., the continuation step) are set as ∆a=2 km, ∆e=2×10−5, ∆i=
0.02◦, ∆Ω=0.02◦, ∆θ=1◦ seperately.

Figure 9: Continuation on a

Figure 10: Continuation on e, i, Ω, θ
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Obviously, when the initial states of the chaser changed, the resulting difference of both
orbital plane and orbital size lead to a different minimum rendezvous time. The red dots represent
the leading case, whereas the blue represent the trailing case. The cross point between the blue
line and red line in Fig. 9 indicates that at this speci�c point the minimum rendezvous time
of both cases meet a same result, whereas the transfer orbits are totally different. In addition,
compared to other elements, the change of eccentricity (nearly zero) has little effect on the
minimum rendezvous time.

The continuation generates 750 examples. The �ight time correction and correction factors for
all these examples are summarized in Fig. 11, showing that the resulting changes of the �ight time
δt are less than 0.2 day, which is no more than 3 revolutions compared to the total revolutions
up to hundreds. Tab. 8 represents the statistics of η∗, demonstrating that the corrections made are
relatively slight. In addition, as shown in Fig. 12, the terminal orbital errors in position and veloc-
ity can be reduced to the order of 1 km and 1 m/s simultaneously, which are acceptable by the
relative navigation system. The η-correction strategy, which is empirical but simple, demonstrates
its effectiveness to generate the control laws that precisely steer the chaser to the target.

Figure 11: Flight time correction and correction factors during the continuation

Table 8: Statistics of correction factors η∗

Maximum Minimum Mean value Standard deviation

0.1162 −0.0408 0.0116 0.0164
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Figure 12: Terminal errors before and after correction

7 Conclusions

Considering the prospect of the solar electric propulsion spacecraft for debris removal mis-
sions, a practical optimization method is proposed to compute the optimal low-thrust minimum-
time many-revolution orbital rendezvous in sun-synchronous orbits, which usually consists of a
large number of ballistic orbital arcs in Earth shadow. Different from the existing works, the
prominent advantage of the proposed method are twofold: (1) The orbital averaging technique is
used with a new slowing-changing variable (the mean longitude difference) proposed to accom-
modate to the rendezvous problem, which makes it easily to model the perturbations and thrust
discontinuity in Earth shadow, and the computational complexity is greatly simpli�ed in the aspect
of numerical iterations for trajectory optimization. (2) By using a simple correction strategy, the
resulting optimal control derived from the mean orbital dynamics and the corresponding costate
variables is mapped to the control law that is used in osculating orbital dynamics to guarantee
the rendezvous describing in osculating elements. The effectiveness of the proposed optimization
method was successfully demonstrated by two typical low-thrust-orbit-rendezvous missions and
hundreds of running with the continuation of the initial states.
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Appendix A: Deduction of Optimal Control u∗ Substituting Eq. (23) into Eq. (26), the Hamiltonian
function can be rewritten as

H (uc)=Λ (uc)+ϒ

where Λ (uc) is the speci�c items related to the active control uc. The expressions of Λ (uc) and
ϒ are
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were
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It is observed that
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)2 > 0

Thus, to minimize H (uc), Γ should be minimized, resulting to that the optimal unit direction

vector α∗ is opposite to the vector M̃>
(̃
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)
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)
, i.e., satis�es
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Substituting the optimal thrust direction α∗ into Eq. (28), it is readily to obtain ˙λm ≤ 0.

Meanwhile, the terminal costate of the mass satis�es the transversality condition λm
(
tf
)
= 0. Thus,

λm is a non-negative real number during the entire transfer phase. In addition, substituting α∗

into Γ , the coef�cient before T is rewritten as−
∥∥∥M̃>

(̃
xc,L

)
λc+ λ∆Lq>

(̃
xc,L

)∥∥∥
m

−
λm

geIsp

≤ 0

which is a non-positive real number. As a result, the optimal thrust amplitude should be maximum
all the time, i.e.,:

T∗ (xc)=Tmax


