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ABSTRACT

In this paper, the impact of additional food and two discrete delays on the dynamics of a prey-predator model is
investigated. The interaction between prey and predator is considered as Holling Type-II functional response. The
additional food is provided to the predator to reduce its dependency on the prey. One delay is the gestation delay in
predatorwhile the other delay is the delay in supplying the additional food to predators. The positivity, boundedness
and persistence of the solutions of the system are studied to show the system as biologically well-behaved. The
existence of steady states, their local and global asymptotic behavior for the non-delayed system are investigated.
It is shown that (i) predator’s dependency factor on additional food induces a periodic solution in the system, and
(ii) the two delays considered in the system are capable to change the status of the stability behavior of the system.
The existence of periodic solutions via Hopf-bifurcation is shown with respect to both the delays. Our analysis
shows that both delay parameters play an important role in governing the dynamics of the system. The direction
and stability of Hopf-bifurcation are also investigated through the normal form theory and the center manifold
theorem. Numerical experiments are also conducted to validate the theoretical results.
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1 Introduction

Living organisms on the surface of the earth adopt only the way that boosts their survival
possibilities so that they can pass their genes to the next generation. There are several fundamental
instincts in ecological communities and, predation is one of them that constitutes the building
blocks for multispecies food webs. Initially, Lotka [1] and Volterra [2] studied the model for prey-
predator interaction and observed the uniform fluctuations in the time series of the system. On
later the fluctuations were removed from the system by taking logistic growth of prey popula-
tion [3,4]. Many researchers have widely studied prey-predator interactions for the last century
[5–12]. They have considered several essential concepts over time that play a vital role in the
dynamics of the system like functional response, time delay, harvesting and conservation policies
of species, stage structure, fear induced by predators, etc. The idea of functional response was
proposed by Holling [5]. It is defined as the consumption rate of prey by predators. Holling
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considered it nonlinear function of prey species that saturates at a level. Further, it was considered
a function of prey and predator both by several authors [6,10,13,14].

In last few decades, many authors have studied the qualitative dynamics of prey-predator
systems in the presence of additional food resources for predators [15–20]. Additional food is an
important component for predators like coccinellid which shapes the life history of many predator
species [17]. Ghosh et al. [20] investigated the impact of additional food for predator on the
dynamics of prey-predator model with prey refuge and they observed that predator extinction
possibility in high prey refuge may be removed by providing additional food to predators. Again,
to study the role of additional food in an eco-epidemiological system, a model was proposed
and studied by Sahoo [21]. The author found that the system becomes disease free in presence
of suitable additional food provided to predator. Recently, a prey-predator model with harvesting
and additional food is analyzed by Rani et al. [22] and they have shown some local and global
bifurcation with respect to different parameters. To incorporate the additional food into the model,
they modified the Holling type II functional response.

Delayed models exhibit much more realistic dynamics than non delayed models [4,23]. In prey-
predator system, the impact of consumed prey individuals into predator population does not
appear immediately after the predation, there is some time lag that is gestation delay [24]. We
incorporate the effect of time delay into the model with delay differential equations. A delay
differential equation demonstrates much more complex character than ordinary differential equa-
tion. On the other hand predators do not consume the additional food as soon as it is provided.
They take some time to consume and digest the food. Delayed models are widely studied by
researchers [10,14,25–33]. A delayed prey and predator density dependent system is investigated
by Li et al. [10]. The authors analyzed stability, Hopf-bifurcation and its qualititative properties
by using Poincare normal form and the formulae given in Hassard et al. [34]. Sahoo et al. [35]
examined prey-predator model with effects of supplying additional food to predators in a gestation
delay induced prey-predator system and habitat complexity. They have pointed out that Hopf-
bifurcation occurs in the system when delay crosses a threshold value that strongly depends on
quality and quantity of supplied additional food. The effect of additional food along with fear
induced by predators and gestation delay is discussed by Mondal et al. [36]. There are several stud-
ies carried out with multiple delays [37–40]. Li et al. [37] have done stability and Hopf-bifurcation
analysis of a prey-predator model with two maturation delays. Gakkhar et al. [30] explored the
complex dynamics of a prey-predator system with multiple delays. They established the presence
of periodic orbits via Hopf-bifurcation with respect to both delays. Recently, Kundu et al. [40]
have discussed about the dynamics of two prey and one predator system with cooperation among
preys against predators incorporating three discrete delays. The authors have found that all delays
are capable to destabilize the system.

To the best of our knowledge, an ecological model including (i) Effect of additional food
supplies to predators, (ii) Dependency factor of supplied additional food, (iii) Holling Type II
functional response, (iv) Gestation delay in predator have not been considered. Inspired by this,
we establish three dimensional non delayed and delayed models in Section 2. We analyze the
dynamics of non delayed model and validate it via some numerical simulations in Section 3.
In Section 4, we analyze the dynamics of delayed model through Hopf-bifurcation. Direction and
stability of Hopf-bifurcation are carried out in Section 5. Section 6 is devoted to the numerical
simulations for delayed model. Conclusions and significance of this work are discussed briefly
in Section 7.
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2 Proposed Mathematical Model

We consider a habitat where two biological populations, prey population and predator pop-
ulation are surviving and interacting with each other. It is assumed that prey population grows
logistically and the interaction between prey and predator follows Holling Type II functional
response. We assume that the density of the additional food supplied to the predators is directly
proportional to the density of predators present in the habitat. Keeping these in view, the
dynamics of the system can be governed by the following system of differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= rx
(
1− x

K

)
− α(1−A0)xy

1+ ax
,

dA
dt

= λA0y−βA−φAy,
dy
dt

= c1α(1−A0)xy
1+ ax

+ c2φAy− dy− ey2,

x(0)≥ 0, A(0)≥ 0, y(0)≥ 0.

(1)

In the above model x(t), y(t) are number of prey and predator individuals at time t and A
is quantity of additional food provided to predators. A0 is dependency factor of predators on
provided additional food resources. If A0 = 1, then predators depend completely on additional
food and prey population grows logistically. If A0 = 0, then predators depend only on the prey
population and in such a case additional food is not required. λ is maximum supply rate of
additional food resources.

In real situations, each organism needs an amount of time to reproduce their progeny. Due
to this fact the increment in predators does not appear immediately after consuming prey. It is
assumed that a predator individual takes τ1 time for gestation. Therefore, it seems reasonable
to incorporate a gestation delay in the system. Thus, the delay τ1 is considered in the numeric
response only. Again it is assumed that the additional food is provided to predators with another
delay τ2. The generalized model involving these two discrete delays takes the following form⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt

= rx
(
1− x

K

)
− α(1−A0)xy

1+ ax
,

dA
dt

= λA0y−βA−φAy,
dy
dt

= c1α(1−A0)x(t− τ1)y(t− τ1)
1+ ax(t− τ1)

+ c2φA(t− τ2)y(t− τ2)− dy− ey2,

(2)

subject to the non negative conditions x(s) = φ1(s) ≥ 0, A(s) = φ2(s) ≥ 0, y(s) = φ3(s) ≥ 0, s ∈
[−τ , 0], where τ =max{τ1, τ2} and φi(s) ∈C([−τ , 0]→R+), (i= 1, 2, 3).

The biological meaning of all parameters and variables in above models is provided in Tab. 1.
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Table 1: Variables and parameters used in Models (1) & (2)

Variables/
parameters

Biological meaning Unit

x Density of prey population Number per unit area (tons)
A Quantity of additional food Number per unit area (tons)
y Density of predator population Number per unit area (tons)
r Intrinsic growth rate of prey Per day
K Carrying capacity of the prey population Number per unit area (tons)
α Attack rate of predator on prey Per day
A0 Dependency factor of predators on

provided additional food
Constant & 0≤A0 ≤ 1

a Handling time Days
λ Maximum supply rate of additional food Per day
β Natural depletion rate of additional food Per day
φ Consumption rate of additional food by

predators
Per day

c1 Conversion efficiency of y on x Constant & 0≤ c1 ≤ 1
c2 Conversion efficiency of y on A Constant & 0≤ c2 ≤ 1
d Mortality rate of predators Per day
e Intra-specific interference among predators Per day
τ1 Gestation delay of predators Days
τ2 Delay in supply of the additional food Days

3 Dynamics of Non-delayed Model

First of all, we examine the boundedness and persistence of the system (1).

3.1 Boundedness and Persistence of the Solution
Theorem 3.1. The set

�=
{
(x,A,y) : 0≤ x≤K, 0≤ c1x+ c2A+ y≤ 1

δ

[
2c1rK + c22λ

2A2
0

4e

]}

is a positive invariant set for all the solutions of model (1), initiating in the interior of the positive
octant, where δ =min{r,β,d}.

Proof The model system (1) can be written in the matrix form

Ẋ =G(X),

where X = (x1, x2, x3)T = (x,A,y)T ∈R3, and G(X) is given by

G(X)=

⎡
⎢⎣
G1(X)

G2(X)

G3(X)

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣
rx
(
1− x

K

)
− α(1−A0)xy

1+ ax
λA0y−βA−φAy
c1α(1−A0)xy

1+ ax
+ c2φAy− dy− ey2

⎤
⎥⎥⎥⎥⎥⎦
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Since G : R3 →R3+ is locally Lipschitz-continuous in � and X(0)=X0 ∈R3+, the fundamental
theorem of ordinary differential equation guarantees the local existence and uniqueness of the
solution. Since [Gi(X)]xi(t)=0,X∈R3+

≥ 0, it follows that X(t)≥ 0 for all t≥ 0. In fact, from the first

equation of model (1), it can easily be seen that ẋ|x=0 ≥ 0, ẏ|y=0 ≥ 0 and hence x(t)≥ 0, y(t)≥ 0

for all t≥ 0. Secondly, Ȧ|A=0 = λA0y≥ 0 for all t≥ 0 (as y(t)≥ 0 for all t≥ 0.) and hence A(t)≥ 0
for all t≥ 0.

From the first equation of model (1), we can write

dx
dt

≤ rx
(
1− x

K

)
,

which yields

limsup
t→∞

x(t)≤K.

Now, suppose

W(t)= c1x(t)+ c2A(t)+ y(t),

then we have

dW(t)
dt

= c1
dx
dt

+ c2
dA
dt

+ dy
dt

≤ 2c1rK − c1rx− dy+ c2λA0y− c2βA− ey2

≤ 2c1rK + c22λ
2A2

0

4e
−
(√

ey− c2λA0

2
√
e

)2

− δW ,

where δ=min{r,β,d}.
Hence, it follows that

limsup
t→∞

W(t)≤ 1
δ

(
2c1rK + c22λ

2A2
0

4e

)
=: ys.

We also note that if x(t) ≥ K and W(t) ≥ 1
δ

(
2c1rK + c22λ

2A2
0

4e

)
, then

dx(t)
dt

≤ 0,
dW(t)
dt

≤ 0.

This shows that all solutions of system (1) are bounded and remains in � for all t > 0 if
(x(0),A(0),y(0))∈�.

Theorem 3.2. Let the following inequalities are satisfied:

r>α(1−A0)ys,
c1α(1−A0)xa

1+ axa
> d.

Then model system (1) is uniformly persistence, where, xa is defined in the proof.

Proof: System (1) is said to be permanence or uniform persistence if there are positive
constants M1 and M2 such that each positive solution X(t)= (x(t),A(t),y(t)) of the system with
positive initial conditions satisfies

M1 ≤ lim inf
t→∞ X(t)≤ lim sup

t→∞
X(t)≤M2.
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Keeping the above in view, if we define

M2 =max
{
K,

ys
c2
,ys

}
,

then from Theorem 3.1, it follows that

limsup
t→∞

X(t)≤M2.

This also shows that for any sufficiently small ε > 0, there exists a T > 0 such that for all
t≥T , the following holds:

x(t) <K + ε, A(t) <
ys
c2

+ ε, y(t) < ys+ ε.

Now from the first equation of model system (1), for all t≥T , we can write

dx
dt

≥ rx
(
1− x

K

)
−α(1−A0)(ys+ ε)x

= [r−α(1−A0)(ys+ ε)]x− rx2

K
.

Hence, it follows that

lim inf
t→∞ x(t)≥ K

r
[r−α(1−A0)(ys+ ε)],

which is true for every ε > 0, thus

lim inf
t→∞ x(t)≥ K

r
[r−α(1−A0)ys]=: xa,

where r>α(1−A0)ys.

Now from the third equation of model system (1), we obtain

dy
dt

≥ c1α(1−A0)(xa+ ε)y
1+ a(xa+ ε) − dy− ey2,

which implies

lim inf
t→∞ y(t)≥ 1

e

[
c1α(1−A0)(xa+ ε)

1+ a(xa+ ε) − d
]
,

which is true for every ε > 0, thus

lim inf
t→∞ y(t)≥ 1

e

[
c1α(1−A0)xa

1+ axa
− d

]
=: ya,

for persistence, we must have
c1α(1−A0)xa

1+ axa
> d.
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Second equation of model system (1) yields

dA
dt

≥ λA0(ya+ ε)−βA−φ(ys+ ε)A.

Hence

lim inf
t→∞ A(t)≥ λA0ya

β +φys =:Aa.

Taking M1 =min{xa,Aa,ya}, the theorem follows.

Remark. Theorem 3.2 shows that threshold values for the persistence of the system are
dependent on the parameter A0.

3.2 Equilibrium Points and Their Stability Behavior
System (1) has four equilibrium points, trivial equilibrium E0(0, 0, 0), axial equilibrium

E1(K, 0, 0), prey free equilibrium E2(0, Ã, ỹ) and interior equilibrium E∗(x∗,A∗,y∗). E0 and E1
always exist.

• Existence of E2(0, Ã, ỹ): The prey free equilibrium E2 is positive solution of the following
system:

λA0y−βA−φAy= 0,

c2φA− d− ey= 0.
(3)

From the second equation of above system, we have

A= d+ ey
c2φ

.

Putting the value of A in the first equation of system (3), we get

φey2+ (φd+βe− c2φλA0)y+βd = 0. (4)

Above equation has two positive roots if

c2φλA0>φd+βe, (c2φλA0−φd−βe)2 > 4φdβe. (5)

System (1) has two prey free equilibrium under conditions given in (5): Ẽ2(0, Ã, ỹ) and
Ê2(0, Â, ŷ). Again, If c2φλA0 < φd + βe, then Eq. (4) does not have any positive root.
Therefore, E2 does not exist in this case.

• Existence of interior equilibrium E∗(x∗,A∗,y∗): It may be seen that x∗,A∗ and y∗ are the
positive solution of the following system of algebraic equations:

r
(
1− x

K

)
− α(1−A0)y

1+ ax
= 0,

λA0y−βA−φAy= 0, (6)

c1α(1−A0)x
1+ ax

+ c2φA− d− ey= 0.
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From the second equation of system (6), we have

A= λA0y
β +φy .

Putting this into the first and third equation of system (6), we obtain the
following system:

y= r
α(1−A0)

(
1− x

K

)
(1+ ax), (7)

c1α(1−A0)x
1+ ax

+ c2φλA0y
β +φy − d− ey= 0 (8)

We note the following points from Eq. (7):

1. When y= 0, then x=−1
a
< 0 or x=K > 0.

2. When x= 0 then y= r
α(1−A0)

> 0.

3.

dy
dx

= r
α(1−A0)

[
a− 1

K
− 2ax

K

]
.

It also can be noted that
dy
dx

> 0 if −1
a
< x <

1
2

(
K − 1

a

)
and

dy
dx

< 0 if

x>
1
2

(
K − 1

a

)
.

4. ymax = 1
4

(
1+ 1

ak

)
(1+ ak) at x= 1

2

(
K − 1

a

)
.

Similarly, from Eq. (8), we note the following:

1. When y= 0, then x= d
c1α(1−A0)− ad

.

2.

dy
dx

=
c1α(1−A0)

(1+ ax)2

e− βc2φλA0

(β +φy)2
.

It can be noted that
dy
dx
> 0 if

e(β +φya)2 >βc2φλA0. (9)
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From above analysis we can conclude that system (6) has a unique positive solution
(x∗,A∗,y∗) if, in addition to condition (9), the following holds:

0<
d

c1α(1−A0)− ad
<K. (10)

Hence, we can state the following theorem.

Theorem 3.3. The system (1) has a unique positive equilibrium E∗(x∗,A∗,y∗) if (9)
and (10) hold.

Remark. The number of positive equilibrium for the system (1) depends on values of
parameters, which we have chosen. Several possibilities are depicted in Fig. 1.

The local behavior of a system in the vicinity of any existing equilibrium is very close to the
behavior of its Jacobian system. So, we compute the Jacobian matrix to see the local behavior of
the system around its equilibrium and we observe that

• The trivial equilibrium E0(0, 0, 0) is always a saddle point having stable manifold along the
A and y-axes and unstable manifold along the x-axis.

• The axial equilibrium E1(K, 0, 0) is locally asymptotically stable if
c1α(1−A0)K

1+ aK
< d. If

c1α(1−A0)K
1+ aK

> d, then E1 is a saddle point having stable manifold along the x and A-axes

and unstable manifold along the y-axis.
• The Jacobian matrix evaluated at prey free equilibrium E2(0, Ã, ỹ) is given by

J|E2 =

⎡
⎢⎢⎢⎢⎣
r−α(1−A0)ỹ 0 0

0 −λA0ỹ

Ã
λA0−φÃ

c1α(1−A0)ỹ c2φỹ −eỹ

⎤
⎥⎥⎥⎥⎦

Characteristic equation is given by

(ζ − (r−α(1−A0)))

[
ζ 2+ (λA0ỹ+ eỹ)ζ + (eλA0ỹ

2− c2φỹ(λA0−φÃ))
]
= 0. (11)

The roots of Eq. (11) have negative real part if

r<α(1−A0)ỹ, λA0<φÃ. (12)

Hence Ẽ2(0, Ã, ỹ) is asymptotically stable under condition (12).

Eq. (11) have at least one positive and one negative root if

eλA0ỹ< c2φ(λA0−φÃ) (13)

Therefore, Ẽ2(0, Ã, ỹ) is a saddle point under condition (13).

Remark. By replacing Ã by Â and ỹ by ŷ, similar analysis holds good for the stability behavior
of Ê2(0, Â, ŷ).
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Figure 1: Four possibilities of the prey and predator zero growth isoclines. (a) Interior equilibrium
does not exist for the parametric values a= 0.08, d = 0.01, (b) interior equilibrium exists uniquely
for the values of parameters a = 0.1, d = 0.235, (c) two interior equilibria for parameter values
a= 0.1, d = 0.137, (d) three interior equilibria for parameter values a= 0.105, d = 0.1. Rest of the
parameters are same as that in (25)

• In order to analyze the local stability of unique interior equilibrium E∗(x∗,A∗,y∗), we
evaluate the Jacobian matrix at E∗ and it is given by

J|E∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−rx∗

K
+ α(1−A0)ax∗y∗

(1+ ax∗)2
0 −α(1−A0)x∗

1+ ax∗

0 −λA0y∗

A∗ λA0−φA∗

c1α(1−A0)y∗

(1+ ax∗)2
c2φy∗ −ey∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Characteristic equation corresponding to above matrix is given by

�3+A1�
2+A2�+A3 = 0, (14)

where

A1 = rx∗

K
− α(1−A0)ax∗y∗

(1+ ax∗)2
+ λA0y∗

A∗ + ey∗,

A2 = λA0ey∗2

A∗ − c2φ(λA0−φA∗)y∗ +
(
rx∗

K
− α(1−A0)ax∗y∗

(1+ ax∗)2

)
(ey∗)

+ c1α2(1−A0)
2x∗y∗

(1+ ax∗)3
+
(
rx∗

K
− α(1−A0)ax∗y∗

(1+ ax∗)2

)(
λA0y∗

A∗

)
,

A3 =−
(
−rx∗

K
+ α(1−A0)ax∗y∗

(1+ ax∗)2

)[
λA0ey∗2

A∗ − c2φ(λA0−φA∗)y∗
]

+ α(1−A0)x∗

1+ ax∗

[
λA0y∗

A∗
c1α(1−A0)y∗

(1+ ax∗)2

]
.

Now using the Routh–Hurwitz criterion, all eigenvalues of J|E∗ have negative real part iff

A1> 0, A3> 0, A1A2>A3. (15)

Thus we can state the following theorem.

Theorem 3.4 The system (1) is stable in the neighborhood of its positive equilibrium iff
inequalities in (15) hold.

It is also noted that inequalities in (15) hold if

r
K
>
α(1−A0)ay∗

(1+ ax∗)2
, λA0<φA

∗. (16)

Infect, the above two conditions imply that A1> 0 and A3> 0. The third condition A1A2 >A3 is
also satisfied.

Remark. The system (1) is stable around its positive equilibrium E∗ if inequalities in (16) hold.

In the following theorem we give a criterion for global asymptotic stability of interior
equilibrium E∗(x∗,A∗,y∗) of the system (1).

Theorem 3.5. The interior equilibrium E∗(x∗,A∗,y∗) of the system (1) is globally asymptoti-
cally stable under the following conditions:

r
K
>
α(1−A0)ay∗

1+ ax∗
, c2λ

2A2
0 < 4βeA∗. (17)

Proof. We Choose a suitable Lyapunov function about E∗ as

V(x,A,y)=
(
x−x∗ −x∗ln

x
x∗
)
+ γ1

2
(A−A∗)2+ γ2

(
y− y∗ − y∗ln

y
y∗

)
,
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where γ1 and γ2 are positive constants, to be specified later. Now, differentiating V with respect
to t along the solutions of system (1), we get

dV
dt

=
(
x−x∗
x

)
dx
dt

+γ1(A−A∗)
dA
dt

+γ2
(
y−y∗
y

)
dy
dt

.

=−
[
r
K
− α(1−A0)ay∗

(1+ax)(1+ax∗)
]
(x−x∗)2−γ1(β+φy)(A−A∗)2−γ2e(y−y∗)2

+(γ1λA0−γ1φA∗+γ2c2φ)(A−A∗)(y−y∗)+
[
−α(1−A0)

1+ax + γ2c1α(1−A0)

(1+ax)(1+ax∗)
]
(x−x∗)(y−y∗).

Choosing γ2 = 1+ ax∗

c1
and γ1 = γ2c2

A∗ , we get

dV
dt

=−
[
r
K

− α(1−A0)ay∗

(1+ ax)(1+ ax∗)

]
(x−x∗)2− (1+ ax∗)c2

c1A∗ (β +φy)(A−A∗)2

− 1+ ax∗

c1
e(y− y∗)2+ (1+ ax∗)c2

c1A∗ λA0(A−A∗)(y− y∗).

Applying Sylvester criterion,
dV
dt

is negative definite if conditions in (17) hold. Hence E∗ is

globally stable under conditions in (17).

3.3 Hopf-Bifurcation and Its Properties
Hopf-bifurcation is a local phenomenon where a system’s stability switches and a periodic

solution arises around its equilibrium point by varying a parameter. In system (1), the param-
eter A0 seems crucial, therefore we analyze the Hopf-bifurcation by taking A0 as bifurcation
parameter, then we have some A0 = A∗

0. The necessary and sufficient conditions for occurrence
Hopf-bifurcation at A0 =A∗

0 are

(a) A1|A∗
0
> 0, A3|A∗

0
> 0,

(b) f (A∗
0)≡ (A1A2−A3)|A∗

0
= 0,

(c) Re
[
d�i

dA0

]
A0=A∗

0

is either positive or negative, where �i, i= 1, 2, 3 are roots of Eq. (14).

From A1A2 −A3 = 0, we get an equation in A0 and assume that it has at least one positive
root A∗

0. Then for some ε > 0, there is an interval containing A∗
0, (A

∗
0−ε,A∗

0+ε) such that A∗
0−ε >

0 and A2 > 0 for A0 ∈ (A∗
0 − ε,A∗

0 + ε). Thus, Eq. (14) cannot have any real positive root for
A0 ∈ (A∗

0 − ε,A∗
0 + ε).

Therefore, at A0 =A∗
0, Eq. (14) becomes

(�+A1)(�
2+A2)= 0,

this gives us three roots

�1,2 =±iρ, �3 =μ,
where ρ =√

A2 and μ=−A1.
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For A0 ∈ (A∗
0 − ε,A∗

0 + ε), roots can be taken as

�1,2 = k1(A0)± ik2(A0), �3 =−A1(A0).

Now, we have to verify the transversality condition. Differentiating Eq. (14) with respect to
the bifurcation parameter A0, we obtain

[
d�
dA0

]
A0=A∗

0

=−
[
Ȧ1�

2+ Ȧ2�+ Ȧ3

3�2+ 2A1�+A2

]
�=i√A2

=−
dR
dA0

2(A2
1+A2)

+ i

[√
A2Ȧ2

2A2
−

A1
√
A2

dR
dA0

2A2(A2
1+A2)

]
,

where R=A1A2−A3 and Ȧi, i= 1, 2, 3 denote the derivative of Ai with respect to time. Thus

Re
[
d�i

dA0

]
A0=A∗

0

=−
dR
dA0

2(A2
1+A2)

.

Thus, we can state the following theorem.

Theorem 3.6. The system undergoes Hopf-bifurcation near interior equilibrium E∗(x∗,A∗,y∗)
under the necessary and sufficient conditions (a), (b) and (c). Critical value of bifurcation
parameter A0 is given by the equation f (A∗

0)= 0.

In order to see the stability and direction of Hopf-bifurcation, we use center manifold
theorem [34] and some concepts used in [41]. Now, consider the following transformation

x1 = x−x∗, x2 =A−A∗, x3 = y− y∗.

Using this transformation, system (1) takes the following form

Ẋ =M∗X +G(X), (18)

where X = (x1,x2,x3)T ,

M∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−rx∗

K
+ α(1−A0)ax∗y∗

(1+ ax∗)2
0 −α(1−A0)x∗

1+ ax∗

0 −λA0y∗

A∗ λA0−φA∗

c1α(1−A0)y∗

(1+ ax∗)2
c2φy∗ −ey∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

G=

⎡
⎢⎣
m1

m2

m3

⎤
⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

−rx21
K

− α(1−A0)x1x3
1+ ax1

−φx2x3
c1α(1−A0)x1x3

1+ ax1
+ c2φx2x3− ex23

⎤
⎥⎥⎥⎥⎥⎥⎦
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Let v1 and v2 be the eigenvectors corresponding to eigenvalues iρ and μ of E∗ at A0 = A∗
0.

Then v1 and v2 are given by

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ2+ i
(
λA0y∗

A∗ + ey∗
)
ρ+ λA0y∗2e

A∗ − c2φy
∗(λA0−φA∗)

c1α(1−A0)y∗

(1+ ax∗)2
(λA0−φA∗)

c1α(1−A0)y∗

(1+ ax∗)2

(
λA0y∗

A∗ − iρ
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2+ i
(
λA0y∗

A∗ + ey∗
)
μ+ λA0y∗2e

A∗ − c2φy∗(λA0−φA∗)

c1α(1−A0)y∗

(1+ ax∗)2
(λA0−φA∗)

c1α(1−A0)y∗

(1+ ax∗)2

(
λA0y∗

A∗ −μ
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎣
p13

p23

p33

⎤
⎥⎦ (say).

Let

H = (Im(v1),Re(v1), v2)=

⎡
⎢⎣
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎤
⎥⎦

where

p11 =
(
λA0y∗

A∗ + ey∗
)
ρ, p12 =−ρ2+ λA0y∗2e

A∗ − c2φy
∗(λA0−φA∗), p21 = 0,

p22 = c1α(1−A0)y∗

(1+ ax∗)2
(λA0−φA∗), p31 =−c1α(1−A0)y∗ρ

(1+ ax∗)2
, p32 = c1α(1−A0)y∗

(1+ ax∗)2
λA0y∗

A∗ .

Then H−1 = 1
�

⎡
⎢⎣
q11 q12 q13
q21 q22 q23
q31 q32 q33

⎤
⎥⎦ , where

�= p11(p22p33− p23p32)+ p12(p23p31− p21p33)+ p13(p21p32− p22p31) 
= 0,

q11 = p22p33− p23p32, q12 = p21p33− p23p31, q13 = p21p32− p22p31,

q21 = p12p33− p13p32, q22 = p11p33− p13p31, q23 = p11p32− p31p12,

q31 = p12p23− p13p22, q32 = p11p23− p13p21, q33 = p11p22− p12p21.
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Now let X = HY or Y = H−1X , where Y = (y2,y2,y3)T . Using this transformation, sys-
tem (18) can be written as

Ẏ = (H−1M∗H)Y +F(Y ), (19)

where

F(Y )=H−1G(HY )=

⎡
⎢⎣
f 1

f 2

f 3

⎤
⎥⎦= 1

�

⎡
⎢⎣
q11m1 + q12m2 + q13m3

q21m1 + q22m2 + q23m3

q31m1 + q32m2 + q33m3

⎤
⎥⎦ , H−1M∗H =

⎡
⎣0 −ρ 0
ρ 0 0
0 0 μ

⎤
⎦ .

So, we can write system (19) as⎡
⎣ẏ1ẏ2
ẏ3

⎤
⎦=

⎡
⎢⎣
0 −ρ 0

ρ 0 0

0 0 μ

⎤
⎥⎦
⎡
⎢⎣
y1
y2
y3

⎤
⎥⎦+

⎡
⎢⎣
f 1

f 2

f 3

⎤
⎥⎦ (20)

Thus, system (20) takes the following form

U̇ =BU + f (U ,V),
V̇ =CU + g(U ,V),

(21)

where U = (y1,y2)T , V = (y3), B=
[
0 −ρ
ρ 0

]
, C = (μ), f = (f 1, f 2) and g= (f 3). The eigenvalues

of B and C may have zero real part and negative real parts, respectively. f ,g vanish along with
their first partial derivative at the origin.

Since the center manifold is tangent to WC(y= 0) we can represent it as a graph

WC = {(U ,V) :V = h(U)} : h(0)= h′(0)= 0,

where h : U →R2 is defined on some vicinity U ⊂R2 of the origin [42,43].

We consider the projection of vector field on V = h(U) onto WC :

U̇ =BU + f (U ,V)=BU + f (U ,h(U)). (22)

Now we state the following theorem to approximate the center manifold.

Theorem 3.7. Let � be a C1 mapping of a neighborhood of the origin in R2 into R with
�(0)= 0 and �′(0) = 0. If for some q > 1, (N�)(U) = o(|U|q) as U → 0, then h(U) =�(U)+
o(|U|q) as U → 0, where

(N�)(U)=�′(U)[BU + f (U ,�(U))]−C�(U)− g(U ,�(U)).

In order to approximate h(U), we consider

y3 = h(y1,y2)= 1
2
(b11y

2
1+ 2b12y1y2+ b22y

2
2)+h.o.t., (23)
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where h.o.t. stands for high order terms. Using (23), we get from (22)

ẏ3 = ∂h
∂y1

dy1
dt

+ ∂h
∂y2

dy2
dt

=μy3+ f 3.

After simplification, we get

(
ρb12−μ2 b11

)
y21+

(
−ρb12−μ2 b22

)
y22+{ρ(−b11+b22)−μb12}y1y2=Q1y

2
1+Q2y1y2+Q3y

2
2+h.o.t.,

(24)

where

Q1= 1
�

[
q31
(
− r
K
p211−α(1−A0)p11p13

)
+q32(−φp21p31)+q33(c1α(1−A0)p11p31+c2φp21p31−ep231)

]
,

Q2 = 1
�

[
q31

(
−2r
K
p11p12−α(1−A0)(p11p32+ p12p31

)
+ q32 (−φ(p21p32+ p31p22))

+q33(c1α(1−A0)(p11p32+ p12p31)+ c2φ(p21p32+ p22p31)− ep31p32)] ,

Q3= 1
�

[
q31
(
− r
K
p212−α(1−A0)p12p32

)
+q32(−φp32p22)+q33(c1α(1−A0)p12p32+c2φp22p32−ep232)

]
.

Equating both the sides of Eq. (24), we get

ρb12− μ

2
b11 =Q1,

ρ(−b11+ b22)−μb12 =Q2,

−ρb12− μ

2
b22 =Q3.

Using Crammer’s rule,

b11 =−ρ
2(Q1+Q3)+ μ

2 (ρQ2 +μQ1)

μ3

4 +μρ2
,

b12 =−
μ2

4 Q2+ ρμ
2 (Q3 −Q1)

μ3

4 +μρ2
,

b22 =−
μ2

2 Q3− μ
2 ρQ2 +ρ2(Q1+Q3)

μ3

4 +μρ2
.

We can find the behavior of the solution of system (21) from the following theorem.

Theorem 3.8. If the zero solution of (22) is stable (asymptotically stable/unstable), then the
zero solution of (21) is also stable (asymptotically stable/unstable).
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Now from Eq. (22), we have[
ẏ1
ẏ2

]
=
[
0 −ρ
ρ 0

][
y1
y2

]
+
[
f 1

f 2

]

where

f 1 = 1
�
(q11m1+ q12m2+ q13m3), f 2 = 1

�
(q21m1+ q22m2+ q23m3),

m1 =
[
− r
K
p211−α(1−A0)p11p31

]
y21+

[
− r
K
p212−α(1−A0)p12p31

]
y22

+
[
−2r
K
p11p12−α(1−A0)(p11p32+ p12p31)

]
y1y2+h.o.t. ,

m2 =−φp21p31y21−φp22p32y22−φ(p21p32+ p22p31)y1y2+h.o.t.,

m3 =
[
c1α(1−A0)p11p31+ c2φp21p31− ep231

]
y21+

[
c1α(1−A0)p12p32+ c2φp22p32− ep232

]
y22

+ [c1α(1−A0)(p11p32+ p12p31)+ c2φ(p21p32+ p22p31)− 2ep31p32]y1y2+h.o.t.

Let f kij =
[
∂f k

∂yi∂yj

]
(0,0)

and f kijl =
[

∂f k

∂yi∂yj∂yl

]
(0,0)

. Therefore,

f 111=
2
�

[
q11
[
− r
K
p211−α(1−A0)p11p31

]
+q12[−φp21p31]+q13

[
c1α(1−A0)p11p31+c2φp21p31−ep231

]]
,

f 211=
2
�

[
q21
[
− r
K
p211−α(1−A0)p11p31

]
+q22[−φp21p31]+q23

[
c1α(1−A0)p11p31+c2φp21p31−ep231

]]
,

f 122=
2
�

[
q11
[
− r
K
p212−α(1−A0)p12p31

]
+q12[−φp22p32]+q13

[
c1α(1−A0)p12p32+c2φp22p32−ep232

]]
,

f 222=
2
�

[
q21
[
− r
K
p212−α(1−A0)p12p31

]
+q22[−φp22p32]+q23

[
c1α(1−A0)p12p32+c2φp22p32−ep232

]]
,

f 112 =
1
�

[
q11

[
−2r
K
p11p12−α(1−A0)(p11p32+ p12p31)

]
+ q12[−φ(p21p32+ p22p31)]

+ q13 [c1α(1−A0)(p11p32+ p12p31)+ c2φ(p21p32+ p22p31)− 2ep31p32]
]
,

f 212 =
1
�

[
q21

[
−2r
K
p11p12−α(1−A0)(p11p32+ p12p31)

]
+ q22[−φ(p21p32+ p22p31)]

+ q23 [c1α(1−A0)(p11p32+ p12p31)+ c2φ(p21p32+ p22p31)− 2ep31p32]
]
,
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f 1111 =
6
�

[
q11

(
− r
K
p11p13b11−α(1−A0)+

(
−ap211p31+

p11p33b11+ p13p31b11
2

))

+ q12

(
−φ
2
(p21p33b11+ p23p31b11)

)
+ q13

(
c1α(1−A0)

(
−ap211p31+

p11p33b11+ p31p31b11
2

)

+c2φ
2
(p21p33b11+ p31p23b11− ep31p33b11)

)]
,

f 2222 =
6
�

[
q21

(
− r
K
p12p13b22−α(1−A0)+

(
−ap212p32+

p12p33b22+ p13p32b22
2

))

+ q22

(
−φ
2
(p22p33b22+ p23p32b22)

)
+ q23

(
c1α(1−A0)

(
−ap212p32+

p12p33b22+ p32p13b22
2

)

+c2φ
2
(p22p33b22+ p32p23b22− ep32p33b22)

)]
,

f 1122=
1
�

[
q11
(
− r
K
(2p11p13b22+4p12p13b12)−α(1−A0)

(
−4ap11p32b12−2ap212p31+p11p33b22+2p12p33b12

+p31p13b22+2p32p13b12))+q12(−φ(p21p33b22+2p22p33b12+p31p23b22+2p32p23b12))

+q13
(
c1α(1−A0)

(
−4ap11p32b12−2ap212p31+p11p33b22+2p12p33b12+p31p13b22+2p32p13b12

)
+c2φ(p21p33b22+2p22p33b12+p31p23b22+2p32p23b12)−e(2p31p33b22+4p32p33b12))],

f 2112=
1
�

[
q21
(
− r
K
(2p12p13b11+4p11p13b12)−α(1−A0)

(
−4ap11p31b12−2ap211p32+p12p33b11+2p11p33b12

+p32p13b11+2p31p13b12))+q22(−φ(p22p33b11+2p21p33b12+p32p23b12+2p31p23b12))

+q23
(
c1α(1−A0)

(
−4ap11p31b12−2ap211p32+p11p33b12+2p12p33b11+p32p13b11+2p31p13b12

)
+c2φ(p22p33b11+2p21p33b12+p32p23b11+2p31p23b12)−e(2p32p33b11+4p31p33b12))].

We determine the direction and stability of bifurcation periodic orbit of the system (21) by
the following formula [44]

ν

[
dK
dA0

]
A0=A∗

0

= 1
ρ

[
f 112
(
f 111+ f 122

)
− f 212

(
f 211+ f 222

)
− f 111f

2
11+ f 122f

2
22−

(
f 1111+ f 2112 + f 1122+ f 2222

)]
.

In above expression, if ν > 0(< 0), then the Hopf-bifurcation is supercritical (subcritical)
and bifurcation periodic solution exists for A0 = A∗

0. The bifurcating periodic solution is stable
(unstable) if

ν

[
dK
dA0

]
A0=A∗

0

> 0(< 0).

The bifurcating direction of periodic solution of the system (1) is same as the system (21).
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3.4 Numerical Simulation
To validate our theoretical findings of model (1), we perform some numerical simulations

using MATLAB R2018b. We have chosen the following dataset

r= 3, K = 70, α = 0.3, a= 0.07, A0 = 0.5, λ= 2,
β = 0.32, φ = 0.7, c1 = 0.4, c2 = 0.5, d = 0.3, e= 0.02.

(25)

For the above set of parameters, condition for existence of prey free equilibrium (5) and
conditions for existence and uniqueness of interior equilibrium (9) and (10) are satisfied. Therefore,
the system (1) has five equilibrium points. The behavior of these equilibrium points are given in
Tab. 2.

Table 2: Existing equilibria and their stability nature

Equilibrium point Eigenvalues Stability nature

E0(0, 0, 0) 3, −0.32, −0.3 Saddle point
E1(70, 0, 0) −3, −0.32, 0.4113 Saddle point
Ẽ2(0, 0.9019, 0.7828) 0.0898, −0.9734, 2.8826 Saddle point
Ê2(0, 1.3577, 8.7601) −0.1511, −6.4762, 1.6860 Saddle point
E∗(18.0971, 1.4094, 33.6153) −0.0990± 0.3860i, −23.7585 Locally asymptotically stable

The eigenvalues of the Jacobian matrix at E0 and E1 are (3,−0.32,−0.3) and
(−3,−0.32, 0.4113), respectively. Therefore E0 and E1 both are saddle points. Similarly Ẽ2 and Ê2
are also saddle points. Again all the inequalities in (15) are satisfied. So according to Theorem
3.4, the interior equilibrium E∗ is locally asymptotically stable. The stability of system in the
vicinity of the positive equilibrium E∗ is illustrated by Fig. 2. In Fig. 2a, time evolution of species
is shown and it is noted that they converge to their equilibrium levels after some oscillations.
In Fig. 2b, phase diagram is drawn in xAy-space which shows the asymptotic stability behavior
of positive equilibrium E∗.

In this study, we found that predators dependency factor A0 on additional food plays an
important role in the dynamics of the system. If it is less than a threshold value then it can be
the cause of destabilizing the system. The threshold value can be calculated by solving f (A∗

0)= 0
(Theorem 3.6). By our computer simulation we obtain it as A∗

0 = 0.482. All the conditions of
Theorem 3.6 are satisfied, so the system undergoes a Hopf-bifurcation at A∗

0 = 0.482. If we keep
the value of parameter A0 below its threshold value, then the system (1) always remains unstable.
The instable behavior of solutions and presence of stable limit cycle at A0 = 0.45 < A∗

0 = 0.482
is shown in Fig. 3. In Fig. 4, we draw the bifurcation diagram with respect to parameter A0 for
both prey and predator species. From the figure, it is noted that the periodic solution present in
the system when A0 ∈ [0,A∗

0] and oscillations can be removed from the system by increasing the
parameter A0 beyond A∗

0.

In the model (1), consumption rate of additional food φ is also a vital parameter. We have
noted that if system is stable for parameter A0 (A0 ∈ [0.482, 1]) then it is stable for all range of
parameter φ. But if A0 ∈ [0.2361, 0.482) then system undergoes a Hopf-bifurcation with respect
to parameter φ. In Fig. 5, we have shown the bifurcation diagram when A0 = 0.4 and other
parameters are same as given in (25). The Hopf-bifurcation point is φ∗ = 0.02847.
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Figure 2: Time series evolution (a) and phase portrait (b) of species for the set of parameters
chosen in (25). Positive equilibrium E∗ is locally asympeoeically stable

As the system (1) shows Hopf-bifurcation with respect to parameters A0 and φ, and direction
of Hopf-bifurcation is opposite for both the parameters. Therefore, we can divide the A0φ-plane
into two regions

Region of stability (green) S1 = {(A0,φ) : system (1) is locally asymptotically stable},
Region of instability (white) S2 = {(A0,φ) : system (1) is unstable}.
Both the regions are drawn in Fig. 6. The curve which separates both the regions is called

Hopf-bifurcation curve.

The number of interior equilibrium points depend on the values of parameters. In the
table below, we have shown dependence of total number of interior equilibrium on parame-
ters a and d and the nature of their stability. It is observed that when a = 0.105 and d =
0.1 (other parameters are as in (25)), then three interior equilibrium exist for the system (1),
E∗
1(0.5099, 1.398, 20.9174), E

∗
2 (8.2355, 1.409, 32.9068) and E∗

3(42.309, 1.4136, 43.0591). E
∗
1 and E∗

3
are locally asymptotically stable and E∗

2 is unstable. Since there are two locally asymptotically
stable equilibrium in the system, so it shows bistability. Bistability is a phenomenon where a
system converges to two different equilibrium points for the same parametric values based on the
variation of the initial conditions. In Fig. 7, we initiated two trajectories from two nearby points
and they converse to different interior equilibria. The black dotted curve is separatrix, which
divides the xy-plane into two regions in such a way that if a solution is initiated from the left of
the separatrix, it converses to E∗

1 and if a solution is initiated from the right of the separatrix,
it converses to E∗

3 . In other words, left region is region of attraction for E∗
1 and right region is

region of attraction for E∗
3 .

Remark. For the best representation of bistability phenomenon and separatrix curve, the
Fig. 7 is drawn in the xy-plane. But initial conditions and interior equilibrium points are written
as they are.
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Figure 3: Instable behavior of solutions and existence of stable limit cycle for A0 = 0.45(< A∗
0).

Rest of the parameters are same as (25)

4 Analysis of Delayed Model

In this section, we discuss the local stability and Hopf-bifurcation phenomenon for the delayed
system (2). The introduction of time delay does not affects the equilibria of the system. So, all the
equilibria remain same as the non-delayed system (1). To see the effect of delay on the dynamical
behavior of the interior equilibrium E∗, we rewrite the delayed system (2) as

dU(t)
dt

= F(U(t),U(t− τ1),U(t− τ2)), (26)

where

U(t)= [x(t),A(t),y(t)]T , U(t− τ1)= [x(t− τ1),A(t− τ1),y(t− τ1)]T ,
U(t− τ2)= [x(t− τ2),A(t− τ2),y(t− τ2)]T .



526 CMES, 2021, vol.126, no.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A0

0

5

10

15

20

25

30

35

40

45

y
(a) (b)
A0

Figure 4: Bifurcation diagram of the prey and predator population with respect to parameter A0

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5

10

15

20

25

30

35

40

45

50

x

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
16

18

20

22

24

26

28

30

32

34

36

y

φφ

(a) (b)

Figure 5: Bifurcation diagram of the prey and predator population with respect to parameter φ

Now we linearize the system (26) by using the following transformations:

x(t)= x̄(t)+x∗, A(t)= Ā(t)+A∗, y(t)= ȳ(t)+ y∗,

where x̄, Ā and ȳ are small perturbations around x∗, A∗ and y∗, respectively. Then the linearized
system of (26) about the interior equilibrium E∗ is given by

dZ
dt

=PZ(t)+Q1Z(t− τ1)+Q2Z(t− τ2),
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Table 3: Dependence of total number of interior equilibria and their stability on parameters a
and d. Rest of the parameters are same as in (25)

Parametric
values

No. of interior
equilibrium
points

Equilibrium
points

Nature of
equilibrium
points

a= 0.08, d = 0.01 0 – –
a= 0.1, d = 0.235 1 (46.7827, 1.4114, 37.6669) Stable
a= 0.1, d = 0.137 2 (4.4407, 1.4048, 27.0479) Unstable

(41.3432, 1.4132, 42.038) Stable
a= 0.105, d = 0.1 3 (0.5099, 1.398, 20.9174) Stable

(8.2355,1.409,32.9068) Unstable
(42.309,1.4136,43.0591) Stable

where

P=
[
∂F
∂U(t)

]
E∗

, Q1 =
[

∂F
∂U(t− τ1)

]
E∗

, Q2 =
[

∂F
∂U(t− τ2)

]
E∗

, Z= [x̄(t), Ā(t), ȳ(t)]T .

Thus, the Jacobian matrix of the system (2) at E∗ is given by⎡
⎢⎣
a1 0 −a2
0 a3 a4

c1a5e−ξτ1 c2φy∗e−ξτ2 a6+ c1a2e−ξτ1 + c2φA∗e−ξτ2

⎤
⎥⎦
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where

a1 = r− 2rx∗

K
− α(1−A0)y∗

(1+ ax∗)2
, a2 = α(1−A0)x∗

1+ ax∗
, a3 =−β −φy∗, a4 = λA0−φA∗,

a5 = α(1−A0)y∗

(1+ ax∗)2
, a6 =−d− 2ey∗.

The characteristic equation corresponding to the above Jacobian matrix is

ξ3+ b1ξ2+ b2ξ + b3+ (b4ξ2+ b5ξ + b6)e−ξτ1 + (b7ξ2+ b8ξ + b9)e−ξτ2 = 0, (27)

where

b1 =−(a1+ a3+ a6), b2 = a3a6+ a1a6+ a1a3, b3 =−a1a3a6, b4 =−c1a2,
b5 = c1a2(a1+ a3+ a5), b6 =−c1a2a3(a1+ a2), b7 =−c2φA∗, b8 = c2φ(a1A∗ + a3A∗ − a4y∗),
b9 = c2a1φ(−a3A∗ + a4y

∗).

Remark. When τ1 = τ2 = 0, then the characteristic Eq. (27) is same as the characteristic
Eq. (14) for non-delayed system.

Case (1): τ1 > 0, τ2 = 0. Then Eq. (27) becomes

ξ3+ d1ξ2+ d2ξ + d3+ (b4ξ2+ b5ξ + b6)e−ξτ1 = 0, (28)

where

d1 = b1+ b7, d2 = b2+ b8, d3 = b3+ b9.

For the delayed system (2), the positive equilibrium is locally asymptotically stable if and only
if all the roots of the Eq. (28) have negative real parts. For switching of the stability, the root of
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the Eq. (28) must cross the imaginary axis. Therefore let iω(ω> 0) be a root of Eq. (28), then it
follows that

(−b4ω2+ b6) cos(ωτ1)+ b5ω sin(ωτ1)= d1ω2− d3,
b5ω cos(ωτ1)− (−b4ω2+ b6) sin(ωτ1)=ω3− d2ω.

(29)

From the above set of equations, we can obtain

ω6+ h1ω4+ h2ω2+ h3 = 0, (30)

where

h1 = d21 − b24− 2d2, h2 = d22 − b25− 2d1d3+ 2b4b6, h3 = d23 − b26.

If we put ω2 = z, then Eq. (30) becomes

g(z)= z3+ h1z
2+ h2z+ h3 = 0. (31)

Theorem 4.1. If Eq. (31) has no positive root, then there is no change in the stability behavior
of E∗ for all τ1 ≥ 0.

Corollary. If inequalities in (15) hold and Eq. (31) has no positive root, then E∗ is locally
asymptotically stable for all τ1 ≥ 0.

Corollary. If inequalities in (15) do not hold and Eq. (31) has no positive root, then E∗ is
unstable for all τ1 ≥ 0.

Now let inequalities in (15) hold and Eq. (31) has at least one positive root, say z1 = ω2
1.

Substituting ω1 into Eq. (29), we obtain

τ1i =
1
ω1

cos−1

[
(d1ω2

1 − d3)(−b4ω2
1 + b6)+ (ω3

1 − d2ω1)ω1b5

(−b4ω2
1 + b6)2 +ω2

1b5
2

]
+ 2iπ
ω1

, i= 0, 1, 2, . . . . (32)

(H1) : g′(ω2
1) > 0.

Let ξ(τ1i)=±iω1 be the root of Eq. (28), a little calculation yields

Re
[
dξ
dτ1

]−1

ξ=iω1, τ1=τ1i
= g′(ω2

1)

(−b4ω2
1 + b6)2+ω2

1b
2
5

> 0.

But sign of
[
d
dτ1

Re(ξ)
]
ξ=iω1, τ1=τ1i

is same as the sign of
[
Re
(
dξ
dτ1

)]
ξ=iω1, τ1=τ1i

.

Hence, the transversality condition can be obtained under (H1)[
d
dτ1

(Re(ξ))
]
τ1=τ1i

> 0,

Thus, we can state the following theorem.
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Theorem 4.2. For system (2), with τ2 = 0 and assuming that (H1) holds, there exists a positive
number τ10 such that the equilibrium E∗ is locally asymptotically stable when τ1< τ10 and unstable
when τ1> τ10. Furthermore system (2) undergoes a Hopf-bifurcation at E∗ when τ1 = τ10.

Case (2): τ1 = 0, τ2> 0. Then Eq. (27) becomes

ξ3+ e1ξ
2+ e2ξ + e3+ (b7ξ2+ b8ξ + b9)e

−ξτ2 = 0, (33)

where

e1 = b1+ b4, e2 = b2+ b5, e3 = b3+ b6.

Under an analysis similar to Case (1), one can easily deduce the following theorem.

Theorem 4.3. For τ1 = 0, the interior equilibrium point is locally asymptotically stable for
τ2< τ20, unstable for τ2 > τ20, and it undergoes Hopf-bifurcation at τ2 = τ20 given by

τ20 =
1
ω2

cos−1

[
(e1ω2

2 − e3)(−b7ω2
2 + b9)+ (ω3

2 − e2ω2)ω2b8

(−d7ω2
2 + b9)2+ω2

2b8
2

]
,

where iω2 is root of characteristic Eq. (33).

Case (3): τ1 is fixed in the interval (0, τ10) and assuming τ2 as a variable parameter.

We consider Eq. (27) with τ1 as fixed in its stable interval (0, τ10) and τ2 as a variable.
Let iω (ω > 0) be a root of characteristic Eq. (27). Then separating real and imaginary parts,
we obtain

− b1ω
2+ b3+ (−b4ω2+ b6) cos(ωτ1)+ b5ω sin(ωτ1)=−(−b7ω2+ b9) cos(ωτ2)− b8ω sin(ωτ2), (34)

−ω3+ b2ω− (−b4ω2+ b6) sin(ωτ1)+ b5ω cos(ωτ1)= (−b7ω2+ b9) sin(ωτ2)− b8ω cos(ωτ2). (35)

Squaring and then adding (34) and (35) to eliminate τ2, we obtain

(−b1ω2+ b3)
2+ (−ω3 + b2ω)

2+ (−b4ω2+ b6)
2 + b25ω

2

+ 2[(−b1ω2+ b3)(−b4ω2+ b6)+ (−ω3 + b2ω)b5ω] cos(ωτ1)

+ 2[−(−ω3+ b2ω)(−b4ω2+ b6)+ (−b1ω2+ b3)b5ω] sin(ωτ1)= (−b7ω2+ b9)
2+ b28ω

2. (36)

Eq. (36) is a transcendental equation in complex form. So, it is not easy to predict the nature
of roots. Without going detailed analysis with (36), it is assumed that there exist at least one
positive root ω0. Eqs. (34) and (35) can be re-written as

− (−b7ω2
0 + b9) cos(ω0τ2)− b8ω0 sin(ω0τ2)=D1 (37)

(−b7ω2
0 + b9) sin(ω0τ2)− b8ω0 cos(ω0τ2)=D2 (38)

where

D1 =−b1ω2
0 + b3+ (−b4ω2

0 + b6) cos(ω0τ1)+ b5ω0 sin(ω0τ1),

D2 =−ω3
0 + b2ω0− (−b4ω2

0 + b6) sin(ω0τ1)+ b5ω0 cos(ω0τ1).



CMES, 2021, vol.126, no.2 531

Eqs. (37) and (38) lead to

τ ′2n =
1
ω0

cos−1

[
−(−b7ω2

0 + b9)D1− b8ω0D2

(−b7ω2
0 + b9)2+ b28ω

2
0

]
+ 2nπ
ω0

, n= 0, 1, 2, . . . . (39)

Now, to verify the transversality condition of Hopf-bifurcation, differentiating equation (34)
and (35) with respect to τ2 and substitute τ2 = τ ′20, we obtain

P
[
d(Re ξ)
dτ2

]
τ2=τ∗2

+Q
[
dω0

dτ2

]
τ2=τ∗2

=R,

−Q
[
d(Re ξ)
dτ2

]
τ2=τ∗2

+P
[
dω0

dτ2

]
τ2=τ∗2

= S,
(40)

where

P=−3ω2
0 + b2+ b5 cos(ω0τ1)− (−b4ω2

0 + b6)τ1 cos(ω0τ1)+ 2b4ω0 sin(ω0τ1)− b5ω0τ1 sin(ω0τ1)

− (−b7ω2
0 + b9)τ2 cos(ω0τ2)+ b8 cos(ω0τ2)− b8ω0τ2 sin(ω0τ2)+ 2b7ω0 sin(ω0τ2),

Q=−2b1ω0− 2b4ω0 cos(ω0τ1)− (−b4ω2
0 + b6)τ1 sin(ω0τ1)+ b5 sin(ω0τ1)+ b5ω0 cos(ω0τ1)

− 2b7ω0 cos(ω0τ2)− (−b7ω2
0 + b9)τ2 sin(ω0τ2)− b8ω0τ2 cos(ω0τ2)+ b8 sin(ω0τ2),

R= (−b7ω2
0 + b9)ω0 sin(ω0τ2)− b8ω

2
0 cos(ω0τ2),

S= (−b7ω2
0 + b9)ω0 cos(ω0τ2)+ b8ω

2
0 sin(ω0τ2).

Solving Eq. (40) for
[
d(Re ξ)
dτ2

]
τ2=τ ′20

, it is obtained

[
d(Re ξ)
dτ2

]
τ2=τ ′20 , ξ=ıω0

= PR−QS
P2+Q2 .

(H2) : PR−QS 
= 0.

Theorem 4.4. For system (2), with τ1 ∈ (0, τ10) and assuming that (H2) holds, there exists a
positive number τ ′20 such that E∗ is locally asymptotically stable when τ2< τ ′20 and unstable when

τ2> τ
′
20
. Furthermore, system (2) undergoes a Hopf-bifurcation at E∗ where τ2 = τ ′20.

Case (4): τ2 is fixed in the interval (0, τ20) and assuming τ1 as a variable parameter Under an
analysis similar to Case (3), one can easily prove the following theorem.

Theorem 4.5. For τ2 ∈ (0, τ20), the interior equilibrium point is locally asymptotically stable for
τ1< τ

′
10

and it undergoes Hopf-bifurcation at τ1 = τ ′10, given by

τ ′10 =
1
ω∗

cos−1

[
−(−b4ω2∗ + b6)D3 − b5ω∗D4

(−b4ω2∗ + b6)2+ b25ω
2∗

]
,
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where

D3 =−b1ω2
∗ + b3+ (−b7ω2

∗ + b9) cos(ω∗τ2)+ b8ω∗ sin(ω∗τ2),

D4 =−ω3
∗ + b2ω∗ − (−b7ω2

∗ + b9) sin(ω∗τ2)+ b8ω∗ cos(ω∗τ2),

and iω∗ is characteristic root of Eq. (27).

5 Direction and Stability of Hopf-Bifurcation

Now with the help of center manifold theory and normal form concept (see [34] for details),
we shall study direction and stability of the bifurcated periodic solutions at τ1 = τ ′10.

Without loss of generality, we assume that τ ∗2 < τ
′
10
, where τ ∗2 ∈ (0, τ20). Let

x1(t)= x(t)−x∗, A1(t)=A(t)−A∗, y1(t)= y(t)− y∗,

and still denote x1(t), A1(t), y1(t) by x(t), A(t), y(t). Let τ1 = τ ′10 + μ, μ ∈ R so that Hopf-

bifurcation occurs at μ= 0. We normalize the delay with scaling t 
→ (
t
τ1
), then system (2) can be

re-written as

U̇(t)= τ1
(
PU(t)+Q1U(t− 1)+Q2U

(
t− τ ∗2

τ1

)
+ f (x,A,y)

)
, (41)

where U(t)= (x(t),A(t),y(t))T ,

P=

⎡
⎢⎣
a1 0 −a2
0 a3 a4

0 0 a6

⎤
⎥⎦ , Q1 =

⎡
⎢⎣
0 0 0

0 0 0

c1a5 0 c1a2

⎤
⎥⎦ , Q2 =

⎡
⎢⎣
0 0 0

0 0 0

0 c2φy∗ c2φA∗

⎤
⎥⎦ , f (x,A,y)=

⎡
⎢⎣
f1

f2

f3

⎤
⎥⎦

The nonlinear term f1, f2 and f2 are given by

f1 =
(
−2r
K

+ 2aα(1−A0)y∗

(1+ ax∗)3

)
x2(t)− α(1−A0)

(1+ ax∗)2
x(t)y(t)+h.o.t.,

f2 =−φA(t)y(t)+h.o.t.,

f3 =− 2ey2(t)− 2c1α(1−A0)y∗

(1+ ax∗)3
x2(t− 1)+ c1α(1−A0)

(1+ ax∗)2
x(t− 1)y(t− 1)

+ c2φA

(
t− τ ∗2

τ ′10

)
y

(
t− τ ∗2

τ ′10

)
+h.o.t.,

The linearization of Eq. (41) around the origin is given by

U̇(t)= τ1 (PU(t)+Q1U(t− 1))+Q2U
(
t− τ ∗2

τ1

)
.
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For χ = (χ1, χ2, χ3)T ∈C([−1, 0],R3), define

Lμ(χ)= (τ1+μ) (Pχ(0)+Q1χ(−1))+Q2χ

(
−τ

∗
2

τ1

))
.

By the Riesz representation theorem, there exists a 3× 3 matrix η(θ ,μ), (−1≤ θ ≤ 0) whose
element are of bounded variation function such that

Lμ(χ)=
∫ 0

−1
dη(θ ,μ)χ(θ) for χ ∈C([−1, 0],R3). (42)

In fact, we can obtain

η(θ ,μ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(τ ′10 +μ)(P+Q1 +Q2), if θ = 0

(τ ′10 +μ)(Q1 +Q2), if θ ∈
[
−τ

∗
2

τ1
, 0
)

(τ ′10 +μ)Q2, if θ ∈
(
−1,−τ

∗
2

τ1

)
0, if θ =−1.

Then Eq. (42) is satisfied.

For χ ∈C1([−1, 0], R3), define the operator H(μ) as

H(μ)χ(θ)=
⎧⎨
⎩
dχ(θ)
dθ

, if θ ∈ [−1, 0)∫ 0
−1[dη(ξ ,μ)]χ(ξ), if θ = 0,

and

R(μ)χ(θ)=
{
0, if θ ∈ [−1, 0)

h(μ,χ), ifθ = 0,

where

h(μ,χ)= (τ ′10 +μ)

⎡
⎢⎣
h1
h2
h3

⎤
⎥⎦ , χ = (χ1,χ2,χ3)T ∈C([−1, 0],R3),

h1 =
(
−2r
K

+ 2aα(1−A0)y∗

(1+ ax∗)3

)
x2(0)− α(1−A0)

(1+ ax∗)2
x(0)y(0)+h.o.t.,

h2 =−φA(0)y(0)+h.o.t.,

h3 =−2ey2(0)− 2c1α(1−A0)y∗

(1+ ax∗)3
x2(−1)+ c1α(1−A0)

(1+ ax∗)2
x(−1)y(−1)+c2φA

(
− τ

∗
2

τ ′10

)
y

(
− τ

∗
2

τ ′10

)
+h.o.t.,

Then system (2) is equivalent to the following operator equation

U̇t =H(μ)Ut+R(μ)Ut,

where Ut =U(t+ θ) for θ ∈ [−1, 0].



534 CMES, 2021, vol.126, no.2

For ψ ∈C1([0, 1], (R3)∗), define

H∗ψ(s)=

⎧⎪⎪⎨
⎪⎪⎩
−dψ(s)

ds
, if s ∈ (0, 1]∫ 0

−1
ψ(−ξ)dη(ξ , 0), if s= 0,

and a bilinear form

〈ψ(s),χ(θ)〉 =ψ(0)χ(0)−
∫ 0

−1

∫ θ

ξ=0
ψ(ξ − θ)dη(θ)χ(ξ)dξ ,

where η(θ) = η(θ , 0), H = H(0) and H∗ are adjoint operators. From the discussion in previous
section, we know that ±iω0τ

′
10

are the eigenvalues of H(0) and therefore they are also eigenvalues

of H∗. It is not difficult to verify that the vectors q(θ)= (1,α1,β1)Teiω0τ
′
10
θ
(θ ∈ [−1, 0]) and q∗(s)=

1
D(1,α

∗
1,β

∗
1 )e

iω0τ ′10 s (s ∈ [0, 1]) are the eigenvectors of H(0) and H∗ corresponding to the eigenvalue
iω0τ

′
10

and −iω0τ
′
10

respectively, where

〈q∗(s),q(θ)〉 = 1, 〈q∗(s),q(θ)〉 = 1,

β1 = c1a5e
−iω0τ ′10

iω0− a6− c1a2e
−iω0τ ′10 − c2φA∗e

−iω0
τ∗2
τ ′10

, α1 = a4β1
iω0− a3

,

β∗1 =− iω0+ a1

c1a5e
−iω0τ ′10

, α∗1 =
a2−

⎡
⎣iω0+ a6+ c1a2e

−iω0τ ′10 + c2φA∗e
−iω0

τ∗2
τ ′10

⎤
⎦β∗1

a4
,

D=
⎡
⎣1+α1α∗1 +β1β∗1 + τ ′10

(
β∗1c1a5+β1β∗1c1a2

)
e
−iω0τ ′10 + τ ∗2

(
α1β

∗
1c2φy

∗ +β1β∗1c2φA∗
)
e
−iω0

τ∗2
τ ′10

⎤
⎦ .

Following the algorithms explained in Hassard et al. [34] and using a computation process
similar to that in Song et al. [26], which is used to obtain the properties of Hopf-bifurcation,
we obtain

g20=−
2τ ′10
D

[ r
K
+β1α(1−A0)+α∗1φα1β1+β∗1eβ21−β∗1c1α(1−A0)β1e

−2iω0τ ′10 −β∗1c2φα1β1e−2iω0τ∗2
]
,

g11 =−
τ ′10
D

[
2
r
K

+α(1−A0)(β1+β1)+α∗1φ(α1β1+α1β1)+ 2β∗1 eβ1β1−β∗1c1α(1−A0)(β1+β1)

+β∗1c2φ(α1β1+α1β1)
]
,

g02 =−
2τ ′10
D

[ r
K

+β1α(1−A0)+α∗1φα1β1+β∗1 eβ1
2−β∗1 c1α(1−A0)β1e

2iω0τ ′10 −β∗1 c2φα1β1e2iω0τ
∗
2

]
,
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Figure 8: Time series evolution and phase portrait of species for the set of parameters in (25) and
τ1 = 0.2 < τ10 = 0.2889 when τ2 = 0. System is locally asymptotically stable around the positive
equilibrium E∗
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Figure 9: System (2) is unstable when τ1 = 0.35> τ10 = 0.2889 and τ2 = 0. Hopf-bifurcation occurs
and stable limit cycle arises in the system

E1 = (E(1)1 , E(2)1 , E(3)1 )T ∈ R3 and E2 = (E(1)2 , E(2)2 , E(3)2 )T ∈ R3 are constant vectors,
computed as:

E1 = 2
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Figure 10: Bifurcation diagram of the prey and predator population with respect to delay param-
eter τ1 when τ2 = 0
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Figure 11: Stable time series solutions and phase diagram of system (2) for τ2 = 0.7< τ20 = 0.9618
and τ1 = 0. Other parameters are same as in (25)
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Figure 12: Instable behavior and existence of periodic solutions of system (2) around the positive
equilibrium E∗ at τ2 = 1.2> τ20 = 0.9618 and τ1 = 0
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Figure 14: E∗ is locally asymptotically stable when τ1 = 0.12 is fixed in its stable range (0, τ10) and
τ2 = 0.4< τ ′20 = 0.4731
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Consequently, gij can be expressed by the parameters and delays τ ′10 and τ ∗2 . Thus, these

standard results can be computed as:

c1(0)= i
2ω0τ

′
10

(
g20g11− 2|g11|2− |g02|2

3

)
+ g21

2
, μ2 =− Re(c1(0))

Re(λ′(τ ′10))
,

β2 = 2Re(c1(0)), T2 =−
Im(c1(0))+μ2Im(λ′(τ ′10))

ω0τ
′
10

.

These expressions give a description of the bifurcating periodic solution in the center
manifold of system (2) at critical values τ1 = τ10 which can be stated in the form of
following theorem:

Theorem 5.1

• μ2 determines the direction of Hopf-bifurcation. If μ2 > 0(< 0) then the Hopf-bifurcation
is supercritical (subcritical).
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Figure 15: E∗ is unstable when τ1 = 0.12 is fixed in its range of stability (0, τ10) and τ2 = 0.6>
τ ′20 = 0.4731. Time series solution of species and existence limit cycle

• β2 determines the stability of bifurcated periodic solution. If β2> 0(< 0) then the bifurcated
periodic solutions are unstable (stable).

• T2 determines the period of bifurcating periodic solution. The period increases (decreases)
if T2> 0(< 0).

Remark. When τ1 > 0 and τ2 = 0 or τ1 = 0 and τ2 > 0, then under an analysis similar to
Section 5, the corresponding values of μ2, β2 and T2 can be computed. Depending upon the sign
of μ2, β2 and T2, the corresponding results can also be deduced.

6 Numerical Simulation of Delayed Model

In order to validate our theoretical findings, obtained in previous sections, we perform some
simulations by taking the same values of parameters in (25). We consider all four cases on delay
parameters τ1 and τ2.
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Figure 16: Bifurcation diagram of the prey and predator species with respect to parameter τ2 when
τ1 = 0.12 is fixed in its range of stability (0, τ10)
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Figure 17: E∗ is locally asymptotically stable when τ2 = 0.42 is fixed in its stable range (0, τ ′20)
and τ1 = 0.1< τ10 = 0.1336

Case (I): When τ2 = 0 and τ1 > 0, then we see that condition (H1) holds. Since the transversal-
ity condition is satisfied, therefore Hopf-bifurcation occurs in the system. To evaluate the critical
value of delay parameter, taking i= 0 in Eqs. (31) and (32), we obtain

ω1 = 0.3688, τ10 = 0.2889.

Thus, the positive equilibrium is locally asymptotically stable for τ1 < τ10 = 0.2889, which is
shown in Fig. 8. When τ1 = τ10, system undergoes a Hopf-bifurcation and periodic solution occurs
around E∗. The time series analysis and periodic solution have been shown in Fig. 9. If we starts
a trajectory from an initial point then it approaches to the periodic solution (Fig. 9). This shows
that the periodic solution is stable. In Fig. 10, we made the bifurcation diagram for both the
populations. The blue (red) curve represents the maximum (minimum) values of population at
sufficiently large time. It is easy to see that Hopf-bifurcation occurs at τ1 = τ10 = 0.2889.
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Figure 18: E∗ is unstable when τ2 = 0.42 is fixed in its stable range (0, τ20) and τ1 = 0.2> τ ′10 =
0.1336. Time series solution of species and existence limit cycle

Case (II): When τ1 = 0 and τ2> 0. In this case, the transversality condition is satisfied, so the
system will show Hopf-bifurcation at a critical value of delay parameter τ2. By some computation,
we obtain

ω2 = 0.317, τ20 = 0.9618.

Therefore, according to our theoretical analysis, the system (2) is locally asymptotically stable
for τ2 < τ20. In Fig. 11, we draw the time series of both the species for τ2 = 0.7< τ20 = 0.9618.
From the figure, it can be seen that system is stable around the positive equilibrium E∗. At τ2 =
τ20, the system goes through a Hopf-bifurcation and for τ2 > τ20, system becomes unstable and
limit cycle produces. This behavior is depicted in Fig. 12. Again bifurcation diagram with respect
to delay τ2 for both the species is drawn in Fig. 13, which helps us to understand the Hopf-
bifurcation phenomenon in the system.
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Figure 19: Bifurcation diagram of the prey and predator species with respect to parameter τ1 when
τ2 = 0.42 is fixed in its stable range (0, τ20)
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Figure 20: Region of stability and instability for system (2) in τ1τ2-plane

Case (III): When τ1 = 0.12 (fixed in the interval (0, τ10)) and τ2 as a parameter, then we
observe that the condition (H2) holds true. Therefore according to Theorem 4.4 system (2)
undergoes a Hopf-bifurcation. Eqs. (36) and (39) give us the values of ω0 and τ ′20 as

ω0 = 0.445, τ ′20 = 0.4731.

Thus the equilibrium point E∗ is locally asymptotically stable for τ2 < τ ′20 = 0.4731 which is

shown in Fig. 14 and unstable for τ2 > τ ′20 (Fig. 15). When τ2 = τ ′20, system undergoes a Hopf-

bifurcation around E∗ and periodic solution arises in the system. Bifurcation diagram is also
presented in Fig. 16 with respect to τ2 for both the species when τ1 = 0.12 (fixed).
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Case (IV): When τ2 = 0.42 (fixed in the interval (0, τ20)) and τ1 as a parameter, then our
computer simulation yields

ω∗ = 0.4491, τ ′10 = 0.1336.

For τ1 = 0.1 ∈ (0, τ ′10), the system is locally asymptotically stable (Fig. 17). But for τ1 = 0.2>

τ ′10, the system becomes unstable (Fig. 18). Thus the model is stable for τ1 < τ ′10. As τ1 passes

through τ ′10, it loses the stability and a Hopf-bifurcation occurs in the system. Fig. 18 shows

the existence of periodic solution (closed trajectory). The trajectory started from an initial point,
approaches to the closed trajectory. This shows that the closed trajectory is stable. In Fig. 19, we
present the bifurcation diagram of both the species with respect to τ1 when τ2 = 0.42 (fixed).

As the system (2) shows Hopf-bifurcation with respect to both the delay parameters τ1 and τ2.
Therefore, we can bisect the τ1τ2—plane into two regions, which are separated by Hopf-bifurcation
curve.

Region of stability (sky blue)S3 = {(τ1, τ2) : system (2) is locally asymptotically stable},
Region of instability (white)S4 = {(τ1, τ2) : system (2) is unstable}.

Both the regions are drown in Fig. 20.

7 Conclusion

In this study, we have considered a habitat where two biological populations, prey population
x and predator population y are surviving and interacting with each other. It is assumed that prey
population follows logistic growth in the absence of predator and in the presence of predator,
the interaction between them follows Holling type II functional response. We have shown the
positivity, boundedness and persistence of the system, which implies that the proposed model
is ecologically wellposed. We have defined a parameter A0 (0 ≤ A0 ≤ 1) which denotes the
dependency of predators on supplied additional food. Our system has four kinds of equilibria,
trivial equilibrium E0(0, 0, 0), axial equilibrium E1(K, 0, 0), two prey free equilibria Ê2 and Ẽ2
under condition (5) and unique positive equilibrium E∗ under conditions (9) and (10). Local
and global stability of the positive equilibrium are shown under several conditions which are
dependent upon the parameter A0. The parameter A0 is crucial, so we have studied its effect via
Hopf-bifurcation analysis which is also condescend by the numerical illustration. For a chosen set
of parameters we calculated the threshold value of parameter A0, that is A0 = 0.482, where Hopf-
bifurcation occurs and system stabilizes. It is also observed that after stabilization of system if
predators are more dependent on additional food then prey population increase whereas predators
remain in their range. We also have studied the Hopf-bifurcation with respect to consumption
rate of additional food φ. Threshold value of φ is obtained as φ = 0.02847. In Tab. 3, we have
shown the different number of positive equilibrium points by varying the parametric values, when
a = 0.105 and d = 0.1 (other parameters are same as in (25)) then our system has two stable
equilibrium together, therefore system shows the phenomenon of bistability, which is depicted
in Fig. 7.

Models with delay show comparatively more realistic dynamics than non delayed models.
When a predator consumes a prey individual, then its effect does not come immediately, it takes
some time i.e., time lag for gestation. Again, predators also take some time to consume and digest
the supplied additional food to them. Therefore, to make our model ecologically more realistic,
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we incorporated two delays; one for gestation delay and other for consuming and digesting the
supplied additional food.

For the delayed model, we have analyzed Hopf-bifurcation via local stability taking delay as
a bifurcation parameter. We investigated the Hopf-bifurcation phenomenon for all combinations
of both delays. We obtained the sufficient conditions for the stability of the positive equilibrium
point and existence of Hopf-bifurcation for Case(1): τ1> 0, τ2 = 0, Case(2): τ1 = 0, τ2> 0, Case(3):
τ1 is fixed in the interval (0, τ10) and τ2 as a variable parameter, Case(4): τ2 is fixed in the interval
(0, τ20) and τ1 as a variable parameter. Our system undergoes Hopf-bifurcation in the vicinity of
the interior equilibrium point with respect to both the delay parameters when they cross their
critical values. The qualitative properties of Hopf-bifurcation are studied by using the Normal
form theory and the formulae given in Hassard et al. [34].

We have performed some numerical simulations to illustrate our theoretical results. For a
biologically feasible set of parameters, the system is stable initially, then we introduce delay and
system remains stable till its critical value. If we increase the delay parameter over the critical
value, then system goes through Hopf-bifurcation and becomes unstable. Bifurcation diagrams
(Figs. 10, 13, 16, 19) with respect to different delays depict the dynamical behavior of the system.

Our study is important to conserve the prey population through providing additional food
to predators and to establish their balance. Here we have also shown the significance of delay
parameters. We hope that this study will help to perceive the dynamics of an ecological system
with additional food and two discrete delays.

Acknowledgement: The author (Ankit Kumar) acknowledges the Junior Research Fellowship
received from University Grant Commission, New Delhi, India.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
1. Lotka, A. J. (1925). Elements of physical biology. Baltimore, New York: Williams and Wilkins.
2. Volterra, V. (1927). Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Venezia, C.

Ferrari.
3. Ma, Z., Wang, S. (2018). A delay-induced predator-prey model with Holling type functional response and

habitat complexity. Nonlinear Dynamics, 93(3), 1519–1544. DOI 10.1007/s11071-018-4274-2.
4. Dubey, B., Kumar, A., Maiti, A. P. (2019). Global stability and Hopf-bifurcation of prey–predator system

with two discrete delays including habitat complexity and prey refuge. Communications in Nonlinear Science
and Numerical Simulation, 67, 528–554. DOI 10.1016/j.cnsns.2018.07.019.

5. Holling, C. S. (1959). The components of predation as revealed by a study of small-mammal predation of
the European pine sawfly. The Canadian Entomologist, 91(5), 293–320. DOI 10.4039/Ent91293-5.

6. Crowley, P. H., Martin, E. K. (1989). Functional responses and interference within and between year
classes of a dragonfly population. Journal of the North American Benthological Society, 8(3), 211–221.
DOI 10.2307/1467324.

7. Wang, W., Chen, L. (1997). A predator–prey system with stage–structure for predator. Computers &
Mathematics with Applications, 33(8), 83–91. DOI 10.1016/S0898-1221(97)00056-4.

8. Faria, T. (2001). Stability and bifurcation for a delayed predator–prey model and the effect of diffusion.
Journal of Mathematical Analysis and Applications, 254(2), 433–463. DOI 10.1006/jmaa.2000.7182.

http://dx.doi.org/10.1007/s11071-018-4274-2
http://dx.doi.org/10.1016/j.cnsns.2018.07.019
http://dx.doi.org/10.4039/Ent91293-5
http://dx.doi.org/10.2307/1467324
http://dx.doi.org/10.1016/S0898-1221(97)00056-4
http://dx.doi.org/10.1006/jmaa.2000.7182


546 CMES, 2021, vol.126, no.2

9. Prasad, B. S. R. V., Banerjee, M., Srinivasu, P. D. N. (2013). Dynamics of additional food provided
predator–prey system with mutually interfering predators. Mathematical Biosciences, 246(1), 176–190.
DOI 10.1016/j.mbs.2013.08.013.

10. Li, H., Meng, G., She, Z. (2016). Stability and Hopf bifurcation of a delayed density–dependent predator–
prey system with Beddington–DeAngelis functional response. International Journal of Bifurcation and
Chaos, 26(10), 1650165. DOI 10.1142/S0218127416501650.

11. Wang, X., Zanette, L., Zou, X. (2016). Modelling the fear effect in predator–prey interactions. Journal of
Mathematical Biology, 73(5), 1179–1204. DOI 10.1007/s00285-016-0989-1.

12. Li, H. L., Zhang, L., Hu, C., Jiang, Y. L., Teng, Z. (2017). Dynamical analysis of a fractional-
order predator–prey model incorporating a prey refuge. Journal of Applied Mathematics and Computing,
54(1–2), 435–449. DOI 10.1007/s12190-016-1017-8.

13. Dong, Q., Ma, W., Sun, M. (2013). The asymptotic behavior of a chemostat model with Crowley–
Martin type functional response and time delays. Journal of Mathematical Chemistry, 51(5), 1231–1248.
DOI 10.1007/s10910-012-0138-z.

14. Maiti, A. P., Dubey, B., Tushar, J. (2017). A delayed prey–predator model with Crowley–Martin-type func-
tional response including prey refuge. Mathematical Methods in the Applied Sciences, 40(16), 5792–5809.
DOI 10.1002/mma.4429.

15. Srinivasu, P. D. N., Prasad, B. S. R. V., Venkatesulu, M. (2007). Biological control through provision of
additional food to predators: A theoretical study. Theoretical Population Biology, 72(1), 111–120.

16. Ddumba, H.,Mugisha, J. Y. T., Gonsalves, J.W., Kerley, G. I. H. (2013). Periodicity and limit cycle perturba-
tion analysis of a predator–prey model with interspecific species’ interference, predator additional food and
dispersal. Applied Mathematics and Computation, 219(15), 8338–8357. DOI 10.1016/j.amc.2012.11.063.

17. Sahoo, P., Poria, S. (2014). The chaos and control of a food chain model supplying additional food to
top-predator.Chaos, Solitons & Fractals, 58, 52–64.

18. Kumar, D., Chakrabarty, S. P. (2015). A comparative study of bioeconomic ratio-dependent predator—prey
model with and without additional food to predators. Nonlinear Dynamics, 80(1–2), 23–38.

19. Sen, M., Srinivasu, P. D. N., Banerjee, M. (2015). Global dynamics of an additional food provided
predator—prey system with constant harvest in predators. Applied Mathematics and Computation, 250,
193–211.

20. Ghosh, J., Sahoo, B., Poris, S. (2017). Prey-predator dynamics with prey refuge providing additional food
to predator. Chaos, Solitons & Fractals, 96, 110–119.

21. Sahoo, B. (2015). Role of additional food in eco-epidemiological system with disease in the prey. Applied
Mathematics and Computation, 259, 61–79. DOI 10.1016/j.amc.2015.02.038.

22. Rani, R., Gakkhar, S. (2019). The impact of provision of additional food to predator in predator–prey
model with combined harvesting in the presence of toxicity. Journal of AppliedMathematics and Computing,
60(1–2), 673–701. DOI 10.1007/s12190-018-01232-z.

23. Bairagi, N., Jana, D. (2011). On the stability and Hopf bifurcation of a delay-induced predator–
prey system with habitat complexity. Applied Mathematical Modelling, 35(7), 3255–3267. DOI
10.1016/j.apm.2011.01.025.

24. Tripathi, J. P., Abbas, S., Thakur, M. (2015). A density dependent delayed predator–prey model with
Beddington–DeAngelis type function response incorporating a prey refuge. Communications in Nonlinear
Science and Numerical Simulation, 22(1–3), 427–450. DOI 10.1016/j.cnsns.2014.08.018.

25. Gourley, S. A., Kuang,Y. (2004). A stage structured predator–preymodel and its dependence onmaturation
delay and death rate. Journal of Mathematical Biology, 49(2), 188–200. DOI 10.1007/s00285-004-0278-2.

26. Song, Y., Wei, J. (2004). Bifurcation analysis for Chen’s system with delayed feedback and its application to
control of chaos. Chaos, Solitons & Fractals, 22(1), 75–91. DOI 10.1016/j.chaos.2003.12.075.

27. Qu, Y., Wei, J. (2007). Bifurcation analysis in a time-delay model for prey–predator growth with stage–
structure. Nonlinear Dynamics, 49(1–2), 285–294. DOI 10.1007/s11071-006-9133-x.

28. Misra, A. K., Dubey, B. (2010). A ratio-dependent predator–prey model with delay and harvesting. Journal
of Biological Systems, 18(2), 437–453. DOI 10.1142/S021833901000341X.

http://dx.doi.org/10.1016/j.mbs.2013.08.013
http://dx.doi.org/10.1142/S0218127416501650
http://dx.doi.org/10.1007/s00285-016-0989-1
http://dx.doi.org/10.1007/s12190-016-1017-8
http://dx.doi.org/10.1007/s10910-012-0138-z
http://dx.doi.org/10.1002/mma.4429
http://dx.doi.org/10.1016/j.amc.2012.11.063
http://dx.doi.org/10.1016/j.amc.2015.02.038
http://dx.doi.org/10.1007/s12190-018-01232-z
http://dx.doi.org/10.1016/j.apm.2011.01.025
http://dx.doi.org/10.1016/j.cnsns.2014.08.018
http://dx.doi.org/10.1007/s00285-004-0278-2
http://dx.doi.org/10.1016/j.chaos.2003.12.075
http://dx.doi.org/10.1007/s11071-006-9133-x
http://dx.doi.org/10.1142/S021833901000341X


CMES, 2021, vol.126, no.2 547

29. Chakraborty, K., Jana, S., Kar, T. K. (2012). Effort dynamics of a delay-induced prey–predator system with
reserve. Nonlinear Dynamics, 70(3), 1805–1829.

30. Gakkhar, S., Singh, A. (2012). Complex dynamics in a prey predator system with multiple delays. Commu-
nications in Nonlinear Science and Numerical Simulation, 17(2), 914–929. DOI 10.1016/j.cnsns.2011.05.047.

31. Jana, S., Chakraborty, M., Chakraborty, K., Kar, T. K. (2012). Global stability and bifurcation of time
delayed prey–predator system incorporating prey refuge. Mathematics and Computers in Simulation, 85,
57–77. DOI 10.1016/j.matcom.2012.10.003.

32. Misra, A. K., Lata, K. (2013). Modeling the effect of time delay on the conservation of forestry biomass.
Chaos, Solitons & Fractals, 46, 1–11. DOI 10.1016/j.chaos.2012.10.002.

33. Liu, Y., Zhang, X., Zhou, T. (2014). Multiple periodic solutions of a delayed predator–prey model with
non-monotonic functional response and stage structure. Journal of Biological Dynamics, 8(1), 145–160.

34. Hassard, B. D., Kazarinoff, N. D., Wan, Y. H., Wan, Y. W. (1981), Theory and applications of Hopf
bifurcation. vol. 41. London, UK: CUP Archive.

35. Sahoo, B., Poria, S. (2015). Effects of additional food in a delayed predator–prey model. Mathematical
Biosciences, 261, 62–73. DOI 10.1016/j.mbs.2014.12.002.

36. Mondal, S., Maiti, A., Samanta, G. P. (2019). Effects of fear and additional food in a delayed predator–prey
model. Biophysical Reviews and Letters, 13(4), 157–177. DOI 10.1142/S1793048018500091.

37. Li, K., Wei, J. (2009). Stability and Hopf bifurcation analysis of a prey–predator system with two delays.
Chaos, Solitons & Fractals, 42(5), 2606–2613. DOI 10.1016/j.chaos.2009.04.001.

38. Xu, C., Tang, X., Liao, M., He, X. (2011). Bifurcation analysis in a delayed Lokta–Volterra predator–prey
model with two delays. Nonlinear Dynamics, 66(1–2), 169–183. DOI 10.1007/s11071-010-9919-8.

39. Xu, C., Li, P. (2012). Dynamical analysis in a delayed predator–prey model with two delays. Discrete
Dynamics in Nature and Society, 2012(1), 1–22. DOI 10.1155/2012/652947.

40. Kundu, S., Maitra, S. (2018). Dynamical behaviour of a delayed three species predator–prey model with
cooperation among the prey species.NonlinearDynamics, 92(2), 627–643.DOI 10.1007/s11071-018-4079-3.

41. Misra, A. K., Verma, M. (2013). A mathematical model to study the dynamics of carbon dioxide gas in the
atmosphere. Applied Mathematics and Computation, 219(16), 8595–8609. DOI 10.1016/j.amc.2013.02.058.

42. Carr, J. (2012).Applications of centre manifold theory, vol. 35. Berlin, Germany: Springer Science & Business
Media.

43. Kuznetsov, Y. A. (2013),Elements of applied bifurcation theory. vol. 112. Berlin, Germany: Springer Science
& Business Media.

44. Lin, Y., Zeng, X., Jing, Z. (1996). Dynamical behaviors for a three-dimensional differential equation in
chemical system. Acta Mathematicae Applicatae Sinica, 12(2), 144–154. DOI 10.1007/BF02007734.

http://dx.doi.org/10.1016/j.cnsns.2011.05.047
http://dx.doi.org/10.1016/j.matcom.2012.10.003
http://dx.doi.org/10.1016/j.chaos.2012.10.002
http://dx.doi.org/10.1016/j.mbs.2014.12.002
http://dx.doi.org/10.1142/S1793048018500091
http://dx.doi.org/10.1016/j.chaos.2009.04.001
http://dx.doi.org/10.1007/s11071-010-9919-8
http://dx.doi.org/10.1155/2012/652947
http://dx.doi.org/10.1007/s11071-018-4079-3
http://dx.doi.org/10.1016/j.amc.2013.02.058
http://dx.doi.org/10.1007/BF02007734

