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ABSTRACT

Stress-based topology optimization is one of the most concerns of structural optimization and receives much
attention in a wide range of engineering designs. To solve the inherent issues of stress-based topology optimization,
many schemes are added to the conventional bi-directional evolutionary structural optimization (BESO) method
in the previous studies. However, these schemes degrade the generality of BESO and increase the computational
cost. This study proposes an improved topology optimization method for the continuum structures considering
stress minimization in the framework of the conventional BESO method. A global stress measure constructed
by p-norm function is treated as the objective function. To stabilize the optimization process, both qp-relaxation
and sensitivity weight scheme are introduced. Design variables are updated by the conventional BESO method.
Several 2D and 3D examples are used to demonstrate the validity of the proposed method. The results show that
the optimization process can be stabilized by qp-relaxation. The value of q and p are crucial to reasonable solutions.
The proposed sensitivity weight scheme further stabilizes the optimization process and evenly distributes the stress
field. The computational efficiency of the proposed method is higher than the previous methods because it keeps
the generality of BESO and does not need additional schemes.
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1 Introduction

Topology optimization is a tool to find the optimal material distribution in a specified design
domain. Topology optimization has been generally used in structural conceptual design stage
since Bendsoe and Kikuchi [1] first proposed the homogenization method. Since then, different
topology optimization methods have been developed, e.g., the density-based method [2–4], the
level set method (LSM) [5–7], the evolutionary structural optimization (ESO) [8,9] and the moving
morphable components (MMC) approach [10,11].
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Notably, the well-established researches [12–14] on maximizing the stiffness or minimizing the
compliance of the structure cannot ensure higher strength and durability if the stress criterion is
not taken into account [15,16]. Thus, stress-based topology optimization is more important for
practical engineering designs [17–19].

However, stress-based topology optimization has some challenging issues. First, stress is
extremely sensitive to the material redistribution due to its highly nonlinear behavior, and hence,
the stress-based topology optimization is difficult to converge. The stress concentrations appear
at the reentrant corners and zig-zag edges make it even worse [17,20]. In addition, stress is a
local measure. Ideally, stress in each material point is expected to be well-controlled. In most
academic researches, though the number of elements in the design domain is finite, the optimiza-
tion process is still computationally intensive [17,19,20]. Thus stress-based topology optimization
methods were difficult to solve practical engineering problems involved more finite elements.
For decades, the Kresselmeier–Steinhauser (K–S) or p-norm aggregation functions have been
used to lump many stress values into a global stress measure to reduce the computational
cost [17,21–23]. However, it fails to control the local stress behavior effectively due to the
approximation error of the aggregation function [17,22]. This poor local control upon the stress
distribution may result in poor convergence. The ‘block aggregation’ technique [17,24] uses mul-
tiple global stress measures to tackle this issue, but the number of the global stress measures
is critical to a reliable solution. The last issue is the well-known stress singularity which mainly
arises in the topology optimization using density-based method. Stress relaxation methods have
been proposed to avoid this issue [25,26], especially the widely used qp-relaxation which makes the
stress-based topology optimization problem more tractable by further penalizing the intermediate
density elements [17].

In the framework of BESO, stress-based topology optimization was first considered by Xia
et al. [23] to obtain minimum stress topology solutions. Stress singularity is avoided by using
discrete design variables. LSM also has no stress singularity, however this method depends on
the initial guess design [20,27]. Due to the highly nonlinear stress behavior mentioned above,
the conventional BESO framework [28] is not appropriate for stress-based topology optimization.
Thus Xia et al. [23] neglect the raw elemental sensitivity numbers of void elements and the
nodal sensitivity calculation. Both the sensitivity filtering method and density filtering method are
adopted. Moreover, they average the current sensitivity numbers with those of the previous two
iterations and update finite element (FE) model according to the processed elemental densities.
Liu et al. [20] used fixed grid mesh technique to carry out FE analysis and avoid the inaccuracy
stress assessment at the zig-zag edges. The densities of the fine grid points distributed over the
whole design domain are treated as the design variables. The sensitivity numbers of pure solid and
void elements have explicit formulations while those of the intermediate elements are estimated
according to solid and void volume fractions of themselves. The raw elemental sensitivity numbers
are filtered to be nodal sensitivity numbers and then averaged with that of the previous iteration.
The updated elemental sensitivity numbers are linearly interpolated from the processed nodal
sensitivity numbers.

However, these additional schemes, e.g., density filtering method and the surrogate design
variables [20,23] increase the computational cost. Moreover, these schemes for stress-based
topology optimization are redundant to multi-constrained problems or multi-objective problems
involving other criteria, e.g., displacement, frequency, which can be solved by the conventional
BESO method [29–31]. To make the stress-based optimization method applicable for the multi-
constrained problems or multi-objective problems in the future, it is necessary to develop a
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stress-based topology optimization in the conventional BESO framework. This paper is organized
as follows. The proposed method is explained in Section 2. Four 2D and 3D numerical examples
are illustrated in Section 3 to validate the proposed method. Section 4 gives a conclusion of
this study.

2 Improved BESOMethod

2.1 Review on Conventional BESOMethod
ESO and its variants BESO are among the most popular topology optimization methods. ESO

deletes inefficient elements iteratively and the structure evolves to the optimum. BESO enables the
previously deleted elements to be recovered [28,32]. Both ESO and BESO are easily interfaced
with commercial FE codes and can resolve problems from many disciplines, e.g., civil, mechanical
and aerospace [33]. The typical statement of problem using BESO is stated as:

min: f (x)

s.t. V∗ =
NEL∑
i=1

xivi (1)

xi ∈ {0, 1} , i= 1, 2, . . . ,NEL

where f (x) is a global response, in most cases, it is structural compliance. x= [x1, x2, . . . , xNEL]T

represents vector of design variables. Each element is assigned with a design variable xi which
equals to zero or one. xi = 1 represents ith element is assigned with the solid material and xi = 0
represents ith element is assigned with the void material. V∗ and vi denote the prescribed volume
fraction and volume fraction of ith element, respectively. NEL denotes the number of elements in
the design domain.

Huang and Xie [28] proposed a convergent and mesh-independent BESO method, for sim-
plicity, this method is called the conventional BESO method in the current context. After then, a
majority of researches [29–31] about BESO adopt that framework. The flowchart of the conven-
tional BESO method (black words only) and the improved BESO method (includes red words) is
illustrated in Fig. 1.

The optimization procedure of the conventional BESO method can be summarized
as follows:

1. Define the design domain, establish the FE model and assign each element a design variable
(0 or 1) to state its mechanical property. Set optimization parameters, e.g., sensitivity filter
radius rmin, the evolutionary volume ratio ER and the maximum admission volume ratio
ARmax. ER represents the ratio of solid materials to be removed from the previous design.
ARmax is a value used to control the number of void elements to be recovered in a
single iteration.

2. Carry out FE analysis.
3. Calculate raw elemental sensitivity numbers and physical meaningless nodal

sensitivity numbers.
4. Filter the nodal sensitivity numbers and convert them to elemental sensitivity numbers αi.
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5. Average the current elemental sensitivity number with that of the previous iteration and

save the resulting sensitivity number for next iteration, i.e., α̂
(k)
i =

(
α

(k)
i +α

(k−1)
i

)
/2 where

k denotes the iteration number and α̂
(k)
i denotes the resulting elemental sensitivity number.

6. Update the design variables and FE model according to the processed elemental sensitivity
numbers. Solid elements (xi = 1) less than a certain threshold are removed and void
elements (xi = 0) greater than a certain threshold are recovered, to achieve the volume
fraction of next iteration.

7. Repeat Steps 2–6 until the convergence criterion is satisfied.

It is noted that to make the BESO can be applied to the stress-based topology optimization,
Xia et al. [23] modified Steps 3–6 and Liu et al. [20] modified Steps 1–5, respectively.

Start

Define the design domain, establish FE model 
(qp-relaxation) and set BESO parameters

Carry out FE analysis

Calculate elemental sensitivity (Sensitivity 
weight) and nodal sensitivity numbers

Sensitivity filter scheme

Average the current sensitivity numbers 
with that of the previous iteration

Update design variables and FE model

Convergence criterion

End

Yes

No

Figure 1: Flowchart of the conventional BESO method (black words only) and the improved
BESO method (includes red words)

2.2 Problem Statement
2.2.1 Global Stress Measure

Aggregation functions can aggregate large amounts of stress values to a global stress measure
which approximates the maximum stress value [17,23]. This global stress measure has adequate
smoothness so that the optimization algorithm could perform well [17]. p-norm function is used
in this study

σpn=
(
NEL∑
i=1

σ
pn
vm, i

)1/pn

, (2)

where σpn denotes the global stress measure and σvm, i denotes the von Mises stress at the centroid
of the ith element. pn denotes the stress norm parameter. σpn approaches to the average stress
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value when pn tends to one and approaches to the maximum stress value when pn tends to infinity.
An appropriate stress norm parameter can balance the smoothness of the p-norm function and
the approximation for the maximum stress value in the structure [17,23]. The determination of pn
will be discussed in Section 3.

The von Mises stress can be expressed as follows:

σvm, i =
(
σT
i Tσ i

)0.5
, (3)

where σ i denotes the stress vector of centroid of ith element. T is the stress coefficient matrix.

For plane stress case, σ i =
[
σx, σy, σxy

]T.
T=

⎡
⎢⎣
1 −0.5 0

−0.5 1 0

0 0 3

⎤
⎥⎦ .

2.2.2 Optimization Formulation
With the global stress measure defined above and the common used volume constraint in

BESO, the optimization formulation is stated as follows:

find: x= [x1,x2, . . . ,xNEL]
T (4)

min: σpn

s.t. V =V∗ =
NEL∑
i=1

xivi

xi = xmin or 1

where V denotes the volume fraction of the optimal design. To avoid the singularity of the global
stiffness matrix and re-meshing, xmin = 0.001 in this study.

2.3 qp-Relaxation
Numerical experiments show that the smoothness of the global stress measure is not enough

to obtain a reliable solution in the conventional BESO framework. To add more smoothness to
the objective function, this study adopts the qp-relaxation [17] rather than Ersatz material model
used in [23]:

Di = xpi D0 (5)

σ i = xqi σ i,0 = xqiD0B0ui (6)

where Di and D0 denote the constitutive matrix of material for ith element and solid material,
respectively. σ i, 0 denotes the stress vector of centroid of ith element assigned with solid material.
B0 is the strain-displacement matrix. ui is the nodal displacement vector of ith element. p, q are
constants, unless noted, p= 3, q= 0.5 in this study.

The material interpolation is used to avoid re-meshing and singularity of the stiffness matrix
in this study. Stress interpolation in density-based methods is usually used to further penalize
the intermediate densities with a q < 1 [17,21]. In the framework of BESO, stress interpolation
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was originally unnecessary because this method uses discrete design variables [20,23]. It serves
to stabilize the optimization process in this study. The effect of different p and q on topology
optimization will be discussed in Section 3.2.

2.4 Sensitivity Analysis
The derivative of σpn with respect to xj can be expressed as Eq. (7) based on Eq. (2):

x
∂σpn

∂xj
= σ

1−pn
pn

(
NEL∑
i=1

σ
pn−1
vm, i

∂σvm, i

∂xj

)
j= 1, 2, . . . ,NEL. (7)

Based on the framework in [23], the detailed sensitivity analysis with introduced qp-relaxation
is given in Appendix A. Finally, the derivative of σpn with respect to xj can be expressed as

∂σpn

∂xj
= σ

1−pn
pn

(
σ
pn
vm, j

q
xj

− pxp−1
j λTCT

j kj,(0)Cju
)
= σ

1−pn
pn

(
σ
pn
vm, j

q
xj

− pxp−1
j λT

j kj,(0)uj

)
(8)

where λ and λj denote a global adjoint vector and the adjoint vector of jth element, respectively.
kj,(0) denotes the stiffness matrix of jth element with solid material. u and uj denote the global
nodal displacement vector and the nodal displacement vector of jth element, respectively. The
matrix Cj relates u and uj, i.e., uj =Cju.

If there is no stress interpolation, Eq. (8) can be expressed as

∂σpn

∂xj
= σ

1−pn
pn

(
σ
pn
vm, j

p
xj

− pxp−1
j λT

j kj,(0)uj

)
.

The effect of qp-relaxation on stress-based topology optimization will be discussed in Sec-
tion 3.

2.5 Sensitivity Weight
BESO uses pure 0/1 design variables to obtain a black-and-white design which may result in

large spatial stress gradient in the vicinity of the zig-zag edges. Thus, the sensitivity field has a
large spatial gradient which deteriorates the convergence of the BESO method in stress-related
topology optimization [17]. To overcome this issue, a sensitivity weight is added to the sensitivity
formulation and this weight is defined as

ωαi =
ni
ni, 0

, (9)

where ni and ni, 0 denote the number of solid elements that ith element connected with in the
current iteration and that of ith element connected with in the initial design.

This scheme can be illustrated in Fig. 2a. The number of solid elements that ith element
connected with is four in the current iteration, and that of the ith element in the initial design is
five. Based on Eq. (9), the sensitivity weight of ith element is 0.8. While the sensitivity weight of
kth, mth, nth element is 0.875. Once this weight is introduced to the sensitivity formulation, the
sensitivity numbers of elements located at the edges of the structure can be artificially reduced.
They have a higher probability to be removed. The fewer solid elements an element is connected
with, the lower sensitivity weight it has. For a prominent element, it has either big stress value
(e.g., elements located in the vicinity of stress concentration area, ith and jth element shown
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in Fig. 2a) or small stress value (e.g., elements away from the load paths, ith element shown
in Fig. 2b). The former is harmful and the latter is inefficient, thus the prominent element
should be removed. This can be achieved by the proposed sensitivity weight scheme. Numerical
experiment shows that sensitivity weight calculation can be done in an instant. Thus the additional
computational cost can be neglected compared with the total optimization process.

i j

k m n

Void element Solid element

i
)b()a(

Figure 2: Illustration for sensitivity weight: (a) Prominent element in the stress concentration case.
(b) Prominent element in the inefficient case

2.6 Sensitivity Numbers
In the framework of the BESO method, the statuses of elements are determined by the

sensitivity numbers. Solid elements with lower sensitivity numbers are removed and void elements
with higher sensitivity numbers are recovered. Elemental sensitivity number in this study is stated
as product of the derivative of σpn with respect to the design variable and the corresponding
sensitivity weight, i.e.,

α0
j =−ωαj

∂σpn

∂xj
=ωαjσ

1−pn
pn

(
pxp−1

j λT
j kj,(0)uj− σ

pn
vm,j

q
xj

)
. (10)

2.7 Numerical Implementation
As shown in Fig. 1, qp-relaxation and the proposed sensitivity weight scheme are embedded

in the existing FE modelling and sensitivity calculation, respectively. These schemes are supple-
ments to the conventional BESO framework rather than modifications. The implementation of
BESO in this study is the same as that in [28] which has been summarized in Section 2.1. The
implementation won’t be repeated here.

3 Numerical Examples

Three classical numerical examples and a practical engineering example are used to validate
the proposed method. The Young’s modulus and the Poisson’s ratio are taken as 1.0 MPa and
0.3, respectively. The evolutionary volume ratio is 0.02 and the maximum admission volume ratio
is 0.005. Due to the highly nonlinear stress behavior, the maximum stress value still fluctuates in a
limited range when the specified volume fraction is achieved. Hence the conventional convergence
criterion in [28] is inappropriate for stress minimization topology optimization. This study adopts
the criterion proposed in [23], i.e., design with the lowest stress concentration is chosen after the
specified volume fraction is achieved.
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3.1 MBB Beam with a Notch
Firstly, a MBB beam with a pre-existing notch is analyzed. The dimension and boundary

conditions are illustrated in Fig. 3. The thickness is 1.0 mm. Unless noted, all dimensions and
stress value given in this paper are in mm and MPa, respectively. The design domain is meshed
with 10,230 four-node plane stress elements. The average length of elements is about 1.0 mm and
the filter radius rmin is 3.0 mm. A vertical force F = 10 N is applied to the middle of the top edge.
To avoid stress concentration, this force is distributed symmetrically over eleven adjacent nodes.
The specified volume fraction V∗ is 0.4. The maximum von Mises stress in the structure appears
at the notch of the beam and its value is σvm,max = 2.49 MPa.

75 30 75

60

15

F

Figure 3: Problem definition for MBB beam

To illustrate the effect of qp-relaxation on stress-based topology optimization, this example
was solved with and without qp-relaxation using stress norm parameter pn= 2, 4, 6, respectively.
The evolution histories of σpn of designs are shown in Fig. 4. It is noted that the curves of σpn in
designs using qp-relaxation (blue line, denoted by σpn relaxed) are more continuous than those of
designs without qp-relaxation (red line, denoted by σpn) as shown in Figs. 4a, 4c and 4e. Without
qp-relaxation, not only the designs of MBB example (as shown in Figs. 4b, 4d and 4f), but also
all the examples employed in this study lose their integrities. Thus, this case will not be discussed
in the rest of this study. In addition, as pn increases, relaxed σpn approaches the maximum stress
value in the structure.

The optimal designs obtained by the proposed method along with the stress distributions
are shown in Fig. 5. To facilitate the comparison of stresses among different designs, unless
noted, all stress distributions in this study use the same color scale. The scale has six equal
range levels and ranges from blue (minimum stress) to red (maximum stress) as shown in Fig. 5f.
Elements with stress values greater than 3.0 MPa are still marked in red. Fig. 5a is the compliance
minimization design obtained by the conventional BESO method. Figs. 5b–5d are the optimal
designs obtained with qp-relaxation and without sensitivity weight, the stress norm parameter
pn = 2, 4, 6, respectively. It is noted that the compliance minimization design is similar to the
stress-based design with pn= 2 as shown in Fig. 5b. However, the maximum stress in Fig. 5a is
8.9 MPa which is much higher than that in Fig. 5b. Moreover, due to the mesh distortion in the
vicinity of the constraint regions, the compliance value of compliance minimization design is also
the largest among all of the optimal designs. It is clear from Figs. 5b–5d, with the increase of
stress norm parameter pn, the lower edge is getting rounded, and hence, the stress concentration
is reduced. Meanwhile, the compliance value increases. The optimal design with pn= 6 is similar
to the result in [23] though the density filtering method was not used in this study.
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Figure 4: Comparison of evolution histories of σpn of designs with and without qp-relaxation
and designs obtained without qp-relaxation using pn= 2, 4, 6, respectively. (a) pn= 2. (b) Design
without qp-relaxation and pn = 2. (c) pn = 4. (d) Design without qp-relaxation and pn = 4.
(e) pn= 6. (f) Design without qp-relaxation and pn= 6

As stated earlier, a large pn makes the global stress measure tends to the maximum stress
value in the design domain, i.e., the objective function of this study degenerates to the maximum
stress function and loses smoothness [17]. This issue deteriorates the convergence of the BESO
method. Thus, pn should be kept in an appropriate range. In this study, when pn equals to 8, the
optimization process oscillates and designs in certain intermediate iterations lose their integrities.
Thereby, pn is set to 6, when both qp-relaxation and sensitivity weight are employed. And the
optimal design is shown in Fig. 5e. The boundary is smoother and the central part is wider than
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that of Fig. 5d, which helps to prevent the deflection of the structure. Therefore, the stress field is
smoother and the compliance is lower than that in Fig. 5d. Moreover, the topology optimization
process of the case in Fig. 5e converged at the ninetieth iteration while the case in Fig. 5d took
ninety-seven iterations.

Figure 5: Material and stress distributions of designs: (a) is compliance minimization design.
(b–d) are stress-based designs with qp-relaxation and without sensitivity weight. (e) is stress-based
design with qp-relaxation and sensitivity weight. (a) σvm,max = 8.9 MPa, C = 1.39 J, (b) pn = 2,
σvm,max = 2.72 MPa, C = 0.91 J, (c) pn = 4, σvm,max = 2.09 MPa, C = 0.97 J, (d) pn = 6,
σvm,max = 1.67 MPa, C = 1.2 J, (e) pn = 6, σvm,max = 1.66 MPa, C = 1.14 J, (f) the stress
color scale

The evolution history of optimal design in Fig. 5e is shown in Fig. 6. In the early iterations,
elements in the vicinity of the notch are removed and the lower edge is getting rounded which
reduces the stress concentration. The topology and maximum stress value vary little between the
fortieth iteration and the sixtieth iteration. The maximum von Mises stress is reduced by 33.4%.
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Figure 6: Evolution history of topology together with stress field for the case of Fig. 5e

Figure 7: MBB beam designs from different topology optimization methods and their typical
number of iterations until convergence. (a) Le et al. [17] (density-based method, 275), (b) Picelli
et al. [22] (LSM, ∼unknown), (c) Xia et al. [23] (extended BESO, ∼50) (d) the present work
(conventional BESO, ∼50)

The computational efficiency in terms of design iterations of the proposed method is com-
pared with the previous researches. The comparison is illustrated in Fig. 7. Though they differ
in dimensions, they belong to the same kind of problem. Reference [17] reports that it takes 275
iterations using density-based method. Reference [22] does not report the number of iterations,
based on the information given in the literature, it may take hundreds of iterations too. Both
Xia’s method and the proposed method converge at about fiftieth iteration. These four studies
all use adjoint method to carry out sensitivity computation. However, Le et al. [17] and Xia
et al. [23] use sensitivity filtering method and density filtering method. Reference [22] has to
calculate the sensitivities of Gauss points in each element. Therefore, in the same condition (i.e.,
the configuration of computer, mesh, FE solver, etc.), the efficiency of the proposed method is
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higher than that of the previous researches because this study uses sensitivity filtering method
only.

3.2 L-Bracket Design
The second numerical example is the well-known L-bracket. The dimensions and boundary

conditions are shown in Fig. 8. The thickness is 1.0 mm. The design domain is meshed with
25,600 four-node plane stress elements. The element length is 1.0 mm and rmin is 3.0 mm. The top
edge is well-fixed. A vertical force F = 4 N is distributed over eight nodes at the right edge of the
L-bracket to avoid the stress concentration. The specified volume fraction is 0.4. The maximum
stress value appears at the reentrant corner and its value is 1.87 MPa.

200

200

80

80

F

Figure 8: Problem definition for L-bracket

The optimal design obtained by compliance minimization is shown in Fig. 9a. The stress
concentration area still exists in the structure. But compliance minimization design has the lowest
compliance value. Figs. 9b–9d are the optimal designs obtained with qp-relaxation and with-
out sensitivity weight, the stress norm parameter pn = 2, 4, 6, respectively. The optimal designs
obtained with lower pn are quite similar to the compliance minimization design. When pn equals
to 6, the stress concentration is totally removed. The reentrant corner is replaced by a round
corner. Moreover, similar with that in MBB example, when pn increases, the maximal stress value
decreases and the compliance increases. Again, when pn takes a higher value than 8, it results in
poor convergence due to the severe numerical oscillations.

Then, pn is set to 6 and both qp-relaxation and sensitivity weight scheme are employed. The
optimal design is shown in Fig. 9e. The edges and stress distribution of the optimal design with
sensitivity weight are a bit smoother than those without sensitivity weight shown in Fig. 9d. The
proposed sensitivity weight scheme allows the thin members to be removed from the structure and
strengthens the main members in the structure, leading to an evenly distributed stress field.

Based on the results mentioned above, it can be inferred that pn= 6 is an appropriate value
to obtain a desirable solution. Thus, with pn= 6, the effect of different q and p on stress-based
topology optimization has been discussed. The optimal designs with different p and q are shown in
Fig. 10. It is clear that the optimal designs shown in Figs. 10a–10c are failed to obtain a reliable
solution. Only the design shown in Fig. 10d with p = 3 and q = 0 is acceptable. Configuration
in Fig. 10d is similar to that shown in Fig. 9d with p = 3 and q = 0.5 except for the thinner
members. This indicates that the penalization factors for material interpolation scheme are crucial
to a reliable solution in the framework of the conventional BESO method. When q= 0, Eq. (10)
degenerates to a similar form with that in [23]. However, the raw elemental sensitivity numbers
of void elements are set to zero in [23]. Though Xia et al. [23] used the so-called soft-kill BESO
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method [33], the stress values of void elements were not taken into account. Thus, it is deduced
that these two factors are responsible for the poor convergence of the method proposed in [23]
in the framework of the conventional BESO method. These numerical errors lead to the need for
the density filtering method and other modifications to the conventional BESO method.

Figure 9: Material and stress distributions of designs: (a) is compliance minimization design.
(b–d) are stress-based designs with qp-relaxation and without sensitivity weight. (e) is stress-
based design with qp-relaxation and sensitivity weight. (a) σvm,max = 2.35 MPa, C = 1.606 J, (b)
pn= 2, σvm,max = 2.6 MPa, C = 1.608 J, (c) pn= 4, σvm,max = 1.99 MPa, C = 1.65 J, (d) pn= 6,
σvm,max = 1.69 MPa, C = 1.95 J, (e) pn= 6, σvm,max = 1.56 MPa, C = 1.88 J

Figure 10: Optimal designs with different combinations of p and q. (a) p and q used in [23].
(b) p and q used in [17]. (c) p and q used in present work. (d) p and q used in present work

The evolution history of the optimal design in Fig. 9e is shown in Fig. 11. At the early
stage of the optimization, the stress concentration region is removed and the maximum stress
in the structure decreases to 1.36 MPa. In the twentieth iteration, the optimized structure has a
minimal stress value 1.17 MPa, the lowest during the optimization. As the optimization process
proceeds, the maximum stress increases slowly since the volume fraction continues to decrease. The
volume fraction holds constant after the fortieth iteration. The maximum stress value fluctuates
between 1.4 and 1.6 MPa because of the highly nonlinear stress behavior though the material
distribution is almost unchanged. Finally, the maximum stress value in eighty-second iteration is
1.56 MPa which is reduced by 16.58% compared to that of the initial design. The case without
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sensitivity weight scheme in Fig. 9d took ninety iterations. The proposed method with sensitivity
weight scheme exhibits a higher computational efficiency compared to that without sensitivity
weight scheme.

Figure 11: The evolutionary history of topology together with stress field for the case of Fig. 9e

The optimal design obtained by the proposed method is similar to those in [17,22,23] as
shown in Fig. 12. Compared with the density-based method or LSM, optimization in this study
ends in fifty iterations instead of hundreds of iterations. Compared with the design in [23], density
filtering method is not necessary for the proposed method. Therefore, under the same conditions
(i.e., configuration of computer, FE solver, mesh, etc.), the proposed method is more efficient than
the method in [23], the density-based method and the LSM.

Figure 12: L-bracket designs from different topology optimization methods and their typical num-
ber of iterations until convergence. (a) Le et al. [17] (density-based method, ∼70), (b) Picelli
et al. [22] (LSM, ∼200–900), (c) Xia et al. [23] (extended BESO, ∼50) (d) the present work
(conventional BESO, ∼50)
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3.3 3D L-Bracket Design
To demonstrate the validity of the proposed method for 3D problem setting, 3D L-bracket is

used and is obtained by extruding the aforementioned 2D L-bracket 100 mm. The dimension and
boundary conditions are shown in Fig. 13. The top face of the L-bracket is totally constrained.
The design domain is discretized by 40000 uniform cubic elements whose size is 4 mm. A vertical
force F = 700 N is distributed over four rows of elements to avoid the stress concentration. The
specified volume fraction is 0.3. rmin is set to 8 mm. The maximum stress value appears at the
reentrant corner and its value is 1.73 MPa.

 

F

F

Figure 13: Problem definition for 3D L-bracket

The optimal design obtained by compliance minimization optimization is shown in Fig. 14a.
Compliance minimization design has the lowest compliance value and the largest maximum stress
value, they are 600.7 J and 3.25 MPa, respectively. Figs. 14b–14d are the optimal designs obtained
with qp-relaxation and without sensitivity weight, the stress norm parameter pn= 6, 7, 8, respec-
tively. When pn increases, the stress concentration is gradually reduced. The maximum stress values
of designs in Figs. 14b–14d are 2.94, 2.46 and 2.3 MPa, respectively. The compliance increases
from 621.7 to 655.5 J when pn increases from six to seven. But, the compliance decreases when
pn increases from seven to eight. Moreover, it is noted that the profile of the optimal design
in Fig. 14d is similar to the 2D case shown in Fig. 9d. The inner boundary is rounded too.
However, it indicates that, to obtain a desirable design, the values of stress norm parameter pn
are different for 2D and 3D problem settings. And in the 3D space, it exhibits a special topology
which demonstrates that topology optimization could create innovative design.

Then pn is set to 8 and both qp-relaxation and sensitivity weight scheme are used. The optimal
design is shown in Fig. 14e. It is noted that the stress field is evenly distributed though the
topology is similar to that shown in Fig. 14d. Compliance and maximum stress of the design
shown in Fig. 14e are a bit smaller than those in Fig. 14d.

The evolution history of the case in Fig. 14e is shown in Fig. 15. It is noted that the
maximum stress value increases a lot in the first iteration since elements located at the reen-
trant corner are removed which leads to sharper edges. Subsequently, the maximum stress value
decreases gradually. After the thirtieth iteration, it increases again. After the sixtieth iteration,
the volume fraction holds constant and the maximum stress value fluctuates in a limited range.
Finally, the optimization converges at the ninety-first iteration while the case in Fig. 14d takes
ninety-three iterations to converge. It is concluded that the proposed sensitivity weight scheme
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not only distributes the stress field evenly and smooths the boundary, but also improves the
computational efficiency.

Figure 14: Material and stress distributions of designs: (a) is compliance minimization design.
(b–d) are stress-based designs with qp-relaxation and without sensitivity weight. (e) is stress-based
design with qp-relaxation and sensitivity weight. (a) σvm,max = 3.25 MPa, C = 600.7 J, (b) pn= 6,
σvm,max = 2.94 MPa, C = 621.7 J, (c) pn = 7, σvm,max = 2.46 MPa, C = 655.5 J, (d) pn = 8,
σvm,max = 2.3 MPa, C = 650.6 J, (e) pn= 8, σvm,max = 2.28 MPa, C= 647 J

In this case, a refined mesh could more accurately evaluate the stress field, but the FE analysis
and sensitivity computation will be expensive. This study aims to propose an applicable stress
minimization topology optimization method and the results demonstrate that even a coarser mesh
can get a desirable solution.

3.4 Suspension of Off-Road Truck Cab
The last example is a suspension of an off-road truck cab. Two suspensions mounting on the

chassis support two frame rails under the floor of the cab and enable the cab tilts around the
y-axis shown in Fig. 16a. Therefore, strength of the suspension is important for structural safety.
Due to the symmetry of the loads and structure, a half model with 57 253 eight-node hexahedron
elements is used for topology optimization as shown in Fig. 16b, where the red area represents the
non-design domain and the blue area represents the design domain. The dimensions of the half
model are shown in Appendix B. (Fig. B.1). All of the elements have a length of about 2 mm.
This suspension is made out of steel. The Young’s modulus is 210 GPa, the Poisson’s ratio is 0.3.
All of the freedoms of centers of hole A and hole B are constrained. A vertical load F = 2000 N,
representing the weight the suspension should support, is applied to the center of hole C. To
the symmetry plane, the translational degrees of freedom in y-axis and the rotational degrees of
freedom in x- and z-axis are constrained. The specified volume fraction is 0.2 and rmin is 4.0 mm.
Based on the conclusion of the 3D L-bracket, pn is set to 8. The maximum stress value of the
initial design appears in the vicinity of hole A and its value is 31.1 MPa.



CMES, 2021, vol.126, no.2 731

Figure 15: The evolution history of topology together with stress field for the case of Fig. 14e

Suspension y

z

x

Frame rail

Symmetry plane

Cab tilting

Hole C

Hole B

Hole A

Symmetry plane

F

(a) (b)

Figure 16: Illustration and problem definition of suspension. (a) Illustration of suspension. (b)
Problem definition of suspension

This example also solved by commercial code, Altair Optistruct, and the problem was
formulated to minimize the compliance of the suspension and subject to the same volume con-
straint [34]. The result is shown in Fig. 17a. The optimal designs obtained by the proposed
method without and with sensitivity weight scheme are shown in Figs. 17b and 17c, respectively.
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Figure 17: Optimal designs and stress contours of suspension. (a) Altair Optistruct (elements
with density greater than 0.5 in the final iteration is saved and treated as solid elements). (b)
Material distribution and stress contour of design obtained without sensitivity weight. (c) Material
distribution and stress contour of design obtained with sensitivity weight

It is clear that boundaries of designs obtained by stress-based optimization are smoother than
that obtained by the compliance minimization optimization. The reentrant corners of the initial
design are replaced by arc shaped structures. The stress-based designs shown in Figs. 17b and 17c
evenly distribute the stress fields and the maximal stresses are 35.1 and 30.8 MPa, respectively,
which is lower than 58.15 MPa in Fig. 17a. Notably, the optimal design shown in Fig. 17c that
obtained with sensitivity weight scheme is totally different and its boundary is smoother than that
shown in Fig. 17b. Stress level shown in Fig. 17c is lower than that shown in Fig. 17b.

The evolution histories of maximal stress value of cases in Figs. 17b and 17c are shown in
Fig. 18. Though, both curves fluctuate, they capture the trend of the maximum stress values. At
the beginning, the maximal stress value in the structure decreases. Then, the maximal stress value
increases gradually when the volume of the structure is less than a certain value. When the volume
achieves the specified volume, the maximal stress values stay in a limited range. It is clear that the
iteration process with sensitivity weight (red line, denoted by σvm,max,W) is more stable than that
without it (green line, denoted by σvm,max). Thus, in summary, the design in Fig. 17c is better.
The entire design for the case of Fig. 17c is shown in Fig. 19.
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Figure 18: Evolution history of maximal stress with and without sensitivity weight

Figure 19: Entire design for the case of Fig. 17c from different perspectives

4 Conclusions

This study proposes a stress minimization topology optimization method for continuum
structures based on the conventional BESO method. In the proposed method, qp-relaxation is
introduced to circumvent the poor convergence of the conventional BESO method on stress-
based topology optimization. A new sensitivity weight scheme is used to further stabilize the
optimization process. The improved BESO method is applied to four 2D and 3D numerical
examples. The optimal designs agree well with those reported in the literature. Moreover, the stress
norm parameter pn and the penalization factors p and q are crucial to reliable solutions. Finally,
the proposed method is more efficient than the previous BESO method, the density-based method
and the LSM under the same conditions. The proposed method is an efficient stress minimization
topology optimization method and could be generalized to multi-constrained or multi-objective
topology optimization involving other criteria, e.g., displacement and frequency.
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Appendix A. Sensitivity analysis

The derivative of σvm, i with respect to xj can be calculated by the chain rule and expressed
as follows

∂σvm, i

∂xj
= ∂σvm, i

∂σ i

∂σ i

∂xj
(A.1)

According to the definition in Eqs. (3) and (6), the derivative of σvm, i with respect to σ i can
be written as

∂σvm, i

∂σ i
= σ−1

vm, iσ
T
i T (A.2)

And the derivative of σ i with respect to xj can be expressed as follows:

∂σ i

∂xj
= qxq−1

i D0Biui
∂xi
∂xj

+xqi D0Bi
∂ui
∂xj

(A.3)

It is noted that if i �= j, the first term in the right side of Eq. (A.3) is zero.

In order to obtain the derivative of ui, a matrix Ci that relates ui and the global nodal
displacement vector u is introduced

ui =Ciu (A.4)

The equilibrium function of the structure subjected to a constant static load is

F=Ku (A.5)

Differentiating both sides of Eq. (A.5), the derivative of u with respect to xj equals

∂u
∂xj

=−K−1 ∂K
∂xj

u (A.6)

Substituting Eqs. (A.4) and (A.6) into the Eq. (A.3), the sensitivity of σ i can be further
expressed as:

∂σ i

∂xj
= qxq−1

i D0Biui
∂xi
∂xj

−xqi D0BiCiK−1 ∂K
∂xj

u (A.7)

Substituting Eqs. (A.2) and (A.7) into Eq. (A.1), the sensitivity of σvm, i with respect to xj
can be further written as:

∂σvm, i

∂xj
= σvm, i

q
xi

∂xi
∂xj

− σ−1
vm, ix

q
i σ

T
i TD0BiCiK−1 ∂K

∂xj
u (A.8)
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Substituting Eq. (A.8) into Eq. (7), one can obtain

∂σpn

∂xj
= σ

1−pn
pn

(
σ
pn
vm,j

q
xj

−
NEL∑
i=1

σ
pn−2
vm, i x

q
i σ

T
i TD0BiCiK−1 ∂K

∂xj
u

)
(A.9)

An adjoint vector λ is introduced to calculate the second term in the parentheses of Eq. (A.9)

Kλ=
NEL∑
i=1

σ
pn−2
vm, i x

q
i (D0BiCi)

TTσ i (A.10)

Thus Eq. (A.9) can be simplified as

∂σpn

∂xj
= σ

1−pn
pn

(
σ
pn
vm,j

q
xj

−λT ∂K
∂xj

u
)

(A.11)

The global stiffness matrix is assembled based on proper superposition of the individual
elemental stiffness matrix [35]. This process can be described as

K=
NEL∑
i=1

CT
i kiCi (A.12)

where ki denotes the stiffness matrix of ith element.

The stiffness matrix of jth element can be stated as:

kj =
∫∫∫

�j

BT
j DjBjd�j = xpj

∫∫∫
�j

BT
j D0Bjd�j = xpj kj,(0) (A.13)

where kj,(0) denotes the stiffness matrix of jth element with solid material. Ωj denotes the jth
element domain.

It is noted that kj is independent from any other design variables, hence the derivative of K
with respect to xj equals

∂K
∂xj

= pxp−1
j CT

j kj,(0)Cj (A.14)

Substituting Eq. (A.14) into Eq. (A.11), the derivative of σpn with respect to xj can be further
simplified as

∂σpn

∂xj
= σ

1−pn
pn

(
σ
pn
vm, j

q
xj

− pxp−1
j λTCT

j kj,(0)Cju
)
= σ

1−pn
pn

(
σ
pn
vm, j

q
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j λT

j kj,(0)uj

)
(A.15)
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Appendix B. Dimensions of the suspension
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Figure B.1: Dimensions of suspension. (a) Side view. (b) Top view


