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Abstract: In this study, we developed software for vehicle big data analysis to
analyze the time-series data of connected vehicles. We designed two software
modules: The �rst to derive the Pearson correlation coef�cients to analyze the
collected data and the second to conduct exploratory data analysis of the col-
lected vehicle data. In particular, we analyzed the dangerous driving patterns
of motorists based on the safety standards of the Korea Transportation Safety
Authority. We also analyzed seasonal fuel ef�ciency (four seasons) and mileage
of vehicles, and identi�ed rapid acceleration, rapid deceleration, sudden stop-
ping (harsh braking), quick starting, sudden left turn, sudden right turn and
sudden U-turn driving patterns of vehicles. We implemented the density-based
spatial clustering of applications with a noise algorithm for trajectory analysis
based on GPS (Global Positioning System) data and designed a long short-
term memory algorithm and an auto-regressive integrated moving average
model for time-series data analysis. In this paper, we mainly describe the
development environment of the analysis software, the structure and data �ow
of the overall analysis platform, the con�guration of the collected vehicle data,
and the various algorithms used in the analysis. Finally, we present illustrative
results of our analysis, such as dangerous driving patterns that were detected.

Keywords: Connected vehicle data; time series data; OBD data analysis;
correlation coef�cient

1 Introduction

Currently, massive amounts of data are collected and studied in various domains, including
engineering, computer science, commerce, security, chemistry, and bio-molecular science. New
datasets are constantly being generated and collected in various �elds, and the amount of data
is growing explosively. For example, global companies such as Google, Facebook, and Alibaba
process tens of terabytes to hundreds of petabytes of data per day [1]. Big data is a term that
describes massive amounts of data with large, varied, and complex structures that are dif�cult to
collect, store, analyze, and visualize [2]. Big data was originally associated with three key concepts:
volume, variety, and velocity of data, that is, the 3Vs model. Although big data is de�ned more
comprehensively now, the “3Vs” model is still widely used by many enterprises, such as Gartner,
IBM, and Microsoft [3]. In this study, we conducted time-series big data analysis using on-board
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diagnostic (OBD) data of connected vehicles. Based on the collected big data, we developed
software and analyzed various parameters of connected vehicles. One of the main objectives
of this study was to analyze data to derive valuable services related to automobiles. We have
developed several applications, such as a Vehicle Arrival & Departure Service Platform/Real-Time
Vehicle Monitoring System based on our software and the results of our analysis; we have recently
expanded our work to related applications. The remainder of this paper is organized as follows.
In Section 2, related work is described, and in Section 3, the structure of the big data analysis
software, development environment, procedure for data processing (including preprocessing), and
analysis software modules are described. In Section 4, the composition of the collected data is
brie�y described, and the results of various analyses are presented, including correlation coef�cient
analysis and dangerous driving pattern analysis. Finally, Section 5 presents the conclusions and
discusses future research.

2 Related Work

In this section, we explore related research on vehicle big data analysis and the development
of analysis software for vehicle big data. To date, little research has been reported on the
analysis of OBD and GPS data of vehicles. Reference [4] presents an analysis of the driving
behavior using the OBD data of vehicles and the AdaBoost (adaptive boosting) algorithm, which
is a machine-learning meta-algorithm. The proposed method collects information about vehicle
operation, including vehicle speed, engine RPM (Revolutions Per Minute), throttle position, and
calculated engine load, via the OBD interface. They used data that were simulated using the
OBD-II simulator rather than actual data; therefore, their method is somewhat limited.
Another [5] presented a personalized driving behavior monitoring and analysis system for hybrid
electric vehicles (HEVs). They proposed a method for capturing precise driver–vehicle information
based on smartphone sensors; the system also provided quantitative driver-speci�c HEV analysis
through operation mode classi�cation, energy use, and fuel use modeling. Moreover, in a previous
study, driver behavior was analyzed to improve vehicle safety [6]. The analysis was performed
based on the collected data using a CAN (Controller Area Network) data recorder, and a system
was developed for classifying drivers based on their behavior. However, although a CAN data
recorder was used for the initial data acquisition, it was not implemented in the actual vehicle.
Representative papers related to vehicle big data analysis are as follows. A big data framework
for electric vehicle range estimation that can collect different data with various structures from
numerous resources was proposed [7]. Another [8] reviewed state-of-the-art techniques used for
handling big data of smart grids and electric vehicles. A big data approach for road accident
hotspot identi�cation using Apache Spark was reported [9]. However, it does not cover the
development of vehicle big data analysis software, and most of the data used in these studies were
simulated rather than being actual data.

We implemented the DBSCAN (Density-based Spatial Clustering of Applications with Noise),
ARIMA (Auto-regressive Integrated Moving Average) model, and an LSTM (Long Short-Term
Memory) algorithm to analyze time-series data. DBSCAN is a density-based data clustering
algorithm. It is easy to �nd clusters with geometric shapes because this algorithm is clustered
based on density [10]. Therefore, it is used in various �elds; in this study, it was used to analyze the
trajectory of the vehicle. LSTM is a recurrent neural network mainly used to analyze time-series
data [11]. ARIMA, which is mainly used to predict time-series data, consists of autoregressive
and moving average model [12]. The LSTM and ARIMA models are widely used to analyze and
predict time-series data. A module was designed to self-diagnose parts of autonomous vehicles
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based on the LSTM algorithm [13]. The module diagnoses vehicle defects using time-series data,
which is a correlation between previous diagnostic results of autonomous vehicle parts and
currently measured data. A new ensemble three-phase model based on LSTM was proposed to
improve the multivariate time-series prediction performance [14]. The proposed algorithm removes
time-series noise using a new adaptive noise reducer (ANR), extracts features from time-series
data using a stacked auto encoder (SAE), and proposes an ensemble model based on over-
�tting prevention of LSTM. Vehicle interaction was modeled using a modi�ed LSTM model for
trajectory prediction [15]. The proposed spatiotemporal LSTM-based trajectory prediction model
compensates for existing problems such as vanishing gradient problems and model inaccuracies
in dense traf�c. A method for analyzing and predicting traf�c patterns in Los Angeles using
machine learning and big data was proposed [16]. Here, Microsoft Azure ML was used to predict
and classify traf�c data patterns in Los Angeles. Azure ML provides users with a variety of
algorithms (including the ARIMA model) for machine learning based on a GUI (Graphical User
Interface). Novel denial-of-service (DoS) attack and distributed DoS (DDoS) attack detection
algorithms using ARIMA time-series models and chaotic systems in computer networks were
developed [17]. In the proposed algorithm, the ARIMA model is used to predict the number
of packets every following minute. A time-series analysis method based on the ARIMA model
was proposed [18], and the ARIMA model was applied to �nancial �elds such as stock price
prediction as a case study. These papers described the analysis of time-series data, even if they are
not vehicle data. At this point, various discussions on time-series big data analysis of connected
vehicles, ef�cient analysis methods, and analysis software development are needed. The data used
in this study are reliable as they were collected from real vehicles driving on real roads. One of
the main purposes of data analysis is to create new services through the analysis of collected data
and to develop fully automated big data analysis software for connected vehicles. Currently, our
big data acquisition platform is collecting and accumulating data from three different companies
that operate different types of vehicles. However, we mainly analyzed the vehicle data from one
company in this study. The results are described in this paper.

3 Development of the Analysis Software

In this section, we describe the overall development of the data analysis software. The
structure of the entire system is illustrated in Fig. 1.

The system consists of data collection, analysis, and visualization software blocks. The data
�ow from data collection to analysis software as shown in Fig. 1. A brief summary of the
process is explained in this section. To collect big data from connected vehicles, we classi�ed data
sources into business-to-business (B2B), business-to-customer (B2C), and infra data according to
the business models. We developed an interface module for collecting data from connected vehicles.
Here, the B2B data includes data from OBD dashboard (OBD-II), mobile digital terminal (MDT),
digital tacho graph (DTG), and personal navigation device (PND) depending on the type of IoT
sensor terminal of the vehicle. B2C data can be collected from the driver’s wearable device and
smartphone application. Infra data are collected from the Korea Transportation Safety Authority;
this data consist of static �les, such as .csv, .xlsx Excel, .json, and .txt. Next, we collected data
by separating dynamic data and static data. The �ow of dynamic data is as follows. The dynamic
data are updated on a cloud server (Amazon EC2) every predetermined period (10 min) by the
company collecting the vehicle data. They are uploaded to the server in the form of a .txt �le
rather than a database �le. In general, the uploaded �les are periodically parsed by the parsing
module in the cloud server and accumulate in the database server. However, the data received from



2712 CMC, 2021, vol.67, no.3

some vendors are not in the form of a �le. Therefore, certain S/W modules have been developed
that directly input data into the database. Thus, parsed �les and data that are directly input to
the database constitute a database of dynamic data. In addition, static data are uploaded to the
cloud storage server (Amazon S3). The transferred data are also parsed by the parsing module
and stored in the database. The reason for dividing and processing data statically and dynamically
is to process data more ef�ciently because the data collection cycles for each type of data are
different. The static and dynamic data are combined to form an integrated database, which is
migrated to the local database server. Finally, the analysis software that we developed takes data
from this local server, called the analysis server, and performs data analysis. The analysis results
are stored in multiple distributed database servers.

Figure 1: Con�guration of the overall system

3.1 Environment for Development and Analysis
The analysis software was developed using Python 3.5; it is designed to be compatible with

Python 2.7. Next, we used various libraries to develop our analysis software. The Pandas library
was used to analyze large amounts of data ef�ciently; the Matplotlib and Plotly libraries were used
to create graphs of the analysis results. In addition, we applied arti�cial intelligence techniques to
our analysis software based on the SciPy, TensorFlow, Numpy, and Scikit-learn libraries as shown
in Tab. 1. The results of the trajectory analysis using the DBSCAN algorithm (GPS-based) were
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visualized based on the Folium library, which makes data that has been manipulated in Python
easy to visualize.

Table 1: Major libraries and versions used on our platform

Library Version Library Version Library Version

Pandas 0.23.4 PyMongo 3.8.1 Openpyxl 2.6.2
SciPy 1.2.0 Matplotlib 2.1.1 Seaborn 0.9.0
Scikit-learn 0.20.2 Plotly 3.10.0 XlsxWriter 1.1.8
Numpy 1.16.4 Folium 0.8.3 TensorFlow 1.13.1

3.2 Structure of Data Processing
In this study, three database platforms, MongoDB, In�uxDB, and Open TSDB, were used for

data collection and storage of processed data. The raw data are collected and accumulated in each
database, and the data processed by the analysis software are stored in a new table or metric (or
measurement). In�uxDB is an in-memory database that enables very fast data processing, whereas
OpenTSDB can ef�ciently store and process time-series data [19]. In addition, we used MongoDB,
the performance of which is superior to that of a relational database and does not require schema
management. In addition, the sharding technology, known as horizontal partitioning technology,
was applied to the database to increase the scalability and availability of the database. We need
to consider the availability and ef�ciency of the database because the collected vehicle data are
intended for release through the Open API (Application Programming Interface) and RESTful
(Representational State Transfer) API. Currently, this is expanding the big data collection and
analysis system based on the Hadoop ecosystem. In particular, we applied Hbase, HIVE, and
Apache ZooKeeper, which are known as subprojects of the Hadoop ecosystem, to our analysis
platform (database and server).

3.3 Exploratory Data Analysis and Data Preprocessing
In this study, we performed exploratory data analysis (EDA) and data preprocessing before

analyzing the data. The EDA and preprocessing tasks included removing not a number (NaN)
and outlier data and creating new tags. In addition, we calculated the azimuth based on the GPS
values because the current data only comprised GPS values without azimuth data. We calculated
the azimuth using the GPS between two points [20,21]. The azimuth data were used to analyze the
rotation of a car, such as a sharp left turn or a quick U-turn. The eight azimuth angles consist
of north, northeast, east, southeast, south, southwest, west, and northwest.

3.4 Correlation Coef�cient Analysis
We derived Pearson’s correlation coef�cient before analyzing the data. The software module

for obtaining the correlation coef�cient was developed based on the following formula [22]:

pX , Y =
Cov (X , Y)
σXσY

=
E [(X −µx) (Y −µY )]

σXσY
, (1)

where pX , Y is Pearson’s correlation coef�cient. E is de�ned as in Eq. (2).

[(X −µx) (Y −µY )]=

∑m
i=1 (Xi−µx) (Yi−µY )

Z
(2)
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Cov(X, Y) is the covariance of X and Y , µx is mean population x, µy is mean population
y, σx is the standard deviation of population X , σy is the standard deviation of population Y , Z
is the population, and the correlation coef�cient has a value between −1 and 1 as follows:

−1≤−|p| ≤ pX , Y ≤ |p| ≤ 1 (3)

The procedure for analyzing the correlation coef�cient with other parameters based on the
driving speed is shown in Fig. 2. The reason for analyzing Person’s correlation coef�cient is to
derive the correlation coef�cient between each parameter and perform a more detailed analysis.

Figure 2: Correlation coef�cient derivation

Figure 3: Structure of the analysis software

3.5 Development of Analysis Software Based on Time-Series Data
The structure and procedure of our analysis software are illustrated in Fig. 3. The procedure

is brie�y described as follows. First, the outliers (which are outside the data range of each
parameter) are removed from the collected data. Then, a preprocessing operation is performed in
which new tags are attached to the processed data. Each step of data preprocessing is carried
out in parallel, and the newly tagged data are stored in a new table (or metric). Next, the
data are analyzed on an analysis engine, which is a collection of various analysis methods and



CMC, 2021, vol.67, no.3 2715

algorithms. The analysis engine includes algorithms to detect dangerous driving patterns, such
as rapid acceleration, rapid deceleration, sudden starting, and sudden stopping. It also includes
various machine-learning algorithms we have implemented, such as k-nearest neighbor, multilayer
perceptron (MLP), support vector machine (SVM), decision tree, and trajectory analysis modules.

In particular, we implemented the DBSCAN algorithm, ARIMA model, and LSTM algorithm
for time-series data analysis. As mentioned earlier, DBSCAN was used to analyze the trajectory
of the vehicle in this study. We used the ARIMA model and LSTM to predict the battery voltage,
coolant temperature, and engine oil temperature of the vehicle. Nevertheless, not all the algorithms
we have implemented are used in the analysis engine and research on how to apply the most
suitable algorithm to analyze the data we have collected is currently in progress.

4 Analysis Results

In this section, we describe representative results of our analysis, including the results of
dangerous driving patterns.

4.1 Data Con�guration
The main distribution of the collected data was as follows: The data collection period was

from January 2017 to February 2020; the data were collected from three companies. Currently,
the size of the dataset is approximately 73.1 GB with 793,138,471 rows (as of February 2020).
The types and amounts of data parameters collected by each company are different. The monthly
data distribution is shown in Fig. 4. The x- and y-axes represent time and the number of rows
of data, respectively.
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Figure 4: Distribution of the collected data

Tab. 2 lists the columns (�eld names) of automobile data we collected from Company C. Cur-
rently, the data �eld names and quantities for each company are slightly different. We are trying to
standardize the data format. In addition, various preprocessing and post processing operations are
necessary because not all data are completely input into the database. Tab. 2 presents all the data
�elds that can be collected when the data are in the ideal form. The data column is composed of
up to 48 columns. The description of the �eld name is as follows. First, the collected vehicle data
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includes a car code (CAR_CD) for an automatic number, “CREATE_TIME” for the date and
time when the data are created, and GPS-related information. The GPS information includes the
latitude and longitude, GPS time, and GPS speed. The driving speed (RUN_SPEED), maximum
speed (MAX_SPEED), and average speed (AVG_SPEED) of the vehicle are collected alongside
data related to the driving distance (DRV_DISTANCE/DRV_DISTANCE_DAY/etc.). In addition,
various data were collected, including the odometer (ODO) and cylinder load value (CLV), intake
air temperature (IAT), and outside air temperature (OAT). Finally, data such as DTG SIGNAL
and DTG_STATE columns and DEVICE_STATE, indicating terminal status, are accumulated.

Table 2: Field names of collected data

CAR_CD DTG SIGNAL CLV (Cylinder Load Value) ATQ (Actual Engine-Percent
Torque)

CREATE_TIME DTG_STATE COT (Coolant Temperature) EGR (Cmd EGR and
EGR err)

DEPOT_ID DEVICE_STATE IAT (Intake Air
Temperature)

FTQ (Engine
Friction-Percent Torque)

RSV_NO RUN_SPEED OAT (Outside Air
Temperature)

CTB (Catalyst Temperature
Bank 1)

STL_CNT MAX_SPEED MAP (Manifold Air
Pressure)

EST (Time Since Engine
Start)

GPS_SPEED AVG_SPEED MAF (Manifold Air Flow) EFR (Engine Fuel Rate)
LONGITUDE ODO (Odometer) IFC (Instantaneous Fuel

Consumption)
AAT (Ambient Air
Temperature)

LATITUDE ALTITUDE EVC (Electric Vehicle
Charge)

ERT (Engine Reference
Torque)

GPS_TIME RPM EVM (Electric Vehicle
Charging Mode)

MDT (Monitor Status since
DTC cleared)

BATT_POWER BAP (Barometric
Pressure)

TIS (Time of Idle Status) DMA (Distance Traveled
While MIL is Activated)

DRV_DISTANCE AFR (Actual Fuel
economy)

TPS (Throttle Position
Sensor)

DMC (Distance Traveled
since DTC cleared)

DRV_DISTANCE_
DAY

APS (Accelerator
Pedal position Sensor)

O2S (Bank1-Sensor1(wide
range O2S)-Lambda)

CMV (Control Module
Voltage)

Although data columns related to electric vehicles exist, the data were not collected. Similarly,
data were not collected for certain other data �elds. In this study, the valid data among the
collected data were analyzed. Among the collected data, preprocessing tasks, such as removing
outliers and calculating GPS-based azimuth, were performed before analysis.

We plotted a histogram of the collected data to determine the distribution of the collected
data and the composition of the �eld values as shown in Fig. 5. In the red graph, the overall
data of each �eld are shown, and in the green graph, data excluding the zero value in the red
graph are shown. The reason for removing the zero value is to enable the data to be inspected
in detail. The data �elds with a default value of zero have the highest proportion of zero values.
Therefore, the distribution of all the data can be checked in detail by excluding the zero value. In
Fig. 5, the �eld name is shown above each chart, and the x- and y-axes represent the data value
of each �eld and the number of data in a given range, respectively. As shown in the charts relating
to the driving speed, such as GPS_SPEED Histogram or RUN_SPEED Histogram, all vehicles
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traveled at a speed less than 175 km/h. This means that most of the collected speed data consist
of values that do not exceed a maximum of 180 km/h. In addition, the histogram graph of the
battery voltage or cylinder load value (CLV) �eld that can be seen in the red graph (including the
0 value) and green graph are almost the same. This is because the battery voltage is 27.7 V, not
the default value of “0” as in the case of vehicle speed data (when the vehicle is stationary).

Figure 5: Data histograms (selected �elds)

4.2 Correlation Coef�cient
We analyzed the correlations using our S/W module based on Pearson’s correlation

coef�cient formula.

Fig. 6 (Graph A) shows the results of the correlation analysis based on the driving speed
of a speci�c vehicle. The x- and y-axes represent the value of the correlation coef�cient and
the name of the data �eld used to measure the correlation coef�cient, respectively. The results
of the analyzed correlation coef�cient can be summarized as follows: The parameter with the
highest correlation with the running speed (RUN_SPEED) is RPM (0.731), and the positive
correlation coef�cient was highest in the order of instantaneous fuel consumption (IFC/0.714),
accelerator pedal position sensor (APS/0.707), throttle position sensor (TPS/0.693), and cylinder
load value (CLV/0.657). In addition, the outside air temperature sensor (OAT/−0.525) has the
highest negative correlation coef�cient. This is because the faster the driving speed of the car, the
lower the outside temperature generally becomes. This is interpreted as the decrease in outside
temperature when the car is running at high speed. We have been expanding the analysis engine
by clustering each parameter based on a correlation analysis module. A graph analyzing the
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correlation coef�cient between the columns of the entire dataset is shown in Fig. 6 on the right
(Graph B).

Figure 6: Pearson’s correlation coef�cient

4.3 Analyzed Data
In this section, we present representative results of the various dangerous driving patterns

we analyzed.

The dangerous driving behavior standard is that of the Korea Transportation Safety Author-
ity [23]. Fig. 7 (graph1) shows the results of rapid vehicle acceleration. Vehicle 1384 had the
highest number of rapid accelerations, followed by vehicles 11359, 11325, 11296, and 21356. In
this graph, the x- and y-axes represent the vehicle number and the number of rapid accelerations,
respectively. The results of the rapid deceleration analysis are shown in graph2 in Fig. 7, where
the x- and y-axes represent the vehicle number and the number of rapid decelerations, respectively.
The number of rapid decelerations was the highest for vehicle 11325; the number of rapid decel-
erations was relatively high for vehicles 1384 and 21356. Additionally, our analysis showed that a
vehicle with a large number of rapid accelerations has a high number of rapid decelerations. Apart
from this, analyzing the sudden starting and stopping (harsh braking) pattern of vehicles, we
identi�ed vehicle 11325 as having performed many sudden starts and stops. This �nding enabled
us to analyze the driver’s unique driving patterns. The results of analyzing the quick start pattern
are shown in graph3 in Fig. 7, with the x- and y-axes representing the vehicle number and the
number of quick starts, respectively. The largest number of quick starts was detected for vehicles
11325 and 1384, which, coincidentally, also had large numbers of rapid accelerations and rapid
decelerations. This re�ects the fact that vehicle drivers are known to have their own patterns. The
results for the sudden stop pattern of the vehicles are shown in graph4 in Fig. 7. Vehicle 1367
had the highest number of sudden stops. In addition, the number of sudden stops was generally
higher than the number of quick starts. In addition, the proportion of rapid decelerations among
the number of quick starts, sudden stops, rapid accelerations, and rapid decelerations was the
largest. Graph 4 in Fig. 7 presents the vehicle number and the number of sudden stops on the x-
and y-axes, respectively.
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Figure 7: Driving behavior patterns

Fig. 8 (graph5) shows the results of our analysis of the sudden left or right turn patterns for
each vehicle, with the x- and y-axes representing the vehicle number and the number of sudden
left or right turns, respectively. This result was obtained by analyzing the data for 2017 and 2018.
The blue and orange bars on this chart represent the number of sudden (sharp) left or right turns
in 2017 and 2018, respectively. As shown in the graph, vehicle 11296 had the highest number of
sharp left or right turns during these two years. Vehicle 8804 had the highest number of sharp
left or right turns in 2017. Fig. 8 (graph6) shows the results for the sudden U-turn pattern and
shows that, for these two years only vehicle 11332 showed a pattern of making sudden U-turns.
In general, vehicle 11332 had a large number of rapid accelerations (within the top 32%), rapid
decelerations (within the top 35%), quick starts (within the top 20%), and sudden stops (within the
top 25%). Nevertheless, the sudden U-turn pattern had the lowest occurrence among the analyzed
data. In graph, the x-axis represents the vehicle number, and the y-axis represents the number of
sudden U-turns per year. Fig. 8 (graph7) shows the results of the seasonal analysis of the fuel
economy of the vehicle, with the x-axis showing the vehicle number, and the y-axis the average
fuel economy (km/l). These results are summarized as follows: vehicle 11332 had the highest fuel
ef�ciency (approximately 22 km/l); the fuel ef�ciency of the vehicle was higher in summer (green)
than in winter (red). The main reason for this is that the viscosity of the oils is higher at low
temperatures. In addition, in winter, vehicles consume more fuel to preheat the engine than in
summer, and the tire pressure is lowered, which translates into poor fuel economy. The developed
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software was designed to analyze the mileage of the vehicle as well as the mileage by period
(yearly, monthly, daily). Fig. 8 (graph8) shows the annual mileage (km) of each vehicle (blue-
green) and the monthly mileage of vehicle 1367 (pink). The most operated vehicle at 35,284 km
per year was 11296.

Figure 8: Driving behavior patterns

We also applied the analysis module we developed earlier based on the data received from
Company C to the vehicle data of a second company (Company B). The module was used to
identify dangerous driving patterns based on the data of Company B.

We analyzed all the data for January 2020 and the results are shown in Fig. 9, where the x-
and y-axes represent the vehicle number and the number of counts for each pattern, respectively.
Fig. 9 (graph1) shows the rapid acceleration pattern of vehicles of Company B. The results show
that, with the exception of vehicle 11, most vehicles did not perform a large number of rapid
accelerations. In addition, graph2 in Fig. 9 shows the results for the rapid deceleration pattern
and shows that the number of rapid decelerations of vehicle 11 was the highest. Fig. 9 (graph3
and graph4) shows the quick start and sudden stop patterns. The results of this analysis also
show that most of the vehicles except for vehicle 11 did not perform a large number of rapid
accelerations, quick starts, or sudden stop patterns.

The results of the data analysis of Company B are summarized as follows. As shown in the
previous analysis (Company C), a vehicle generally decelerates more frequently than accelerating
rapidly. The difference from the previous data analysis is that the number of rapid acceleration
and deceleration patterns was signi�cantly higher for vehicle 11. This is expected because the data
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were collected from logistics vehicles. In other words, quick start or sudden stop would not be
expected to occur frequently compared with a general passenger car in the case of a logistics
vehicle operated by an experienced driver compared to a general passenger car driven by a layman.
In addition, the drivers of logistics vehicles would be unlikely to accelerate repeatedly because they
drive considering the fuel ef�ciency of the vehicle. The results of the sudden left or right turn
analysis are shown in graph5 in Fig. 9, which shows that the pattern of sudden left or right turns
is evenly distributed throughout the vehicles. The largest number of sudden left or right turns
during one month was performed by vehicle 122, which performed more than 60 in a month.
Conversely, vehicle 11 did not exhibit a pattern of sudden left and right turns despite having the
highest number of rapid accelerations, rapid decelerations, quick starts, and sudden stops (as of
January 2020). A pattern of sudden U-turns could not be identi�ed from the analysis of the data
of this company (as of January 2020).

Figure 9: Driving behavior patterns (Company B)
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We also analyzed the trajectory of a vehicle using GPS data and DBSCAN. For each point in
a cluster, the algorithm requires the existence of at least a minimum number of points (MinPts)
in an Eps-neighborhood of that point. The formula is de�ned as follows [10]:

NEps (p)=
{
q ∈ ε | dist (p, q)≤NEps

}
(4)

Here, the Eps-neighborhood of a point p, denoted by (p), and point A is directly reachable
from p if point q is within distance epsilon (ε) from core point p, where epsilon (ε) denotes
the distance to de�ne the neighborhood. The purpose of trajectory analysis is to analyze the
driving route and main operating locations of vehicles. Before performing the trajectory analysis,
we derived the main locations of the vehicle based on the GPS data, and clustered the collected
data using the DBSCAN algorithm based on the derived main locations. Because GPS data are
not received when the vehicle is turned off, the main location of the vehicle is derived by using
two rules according to the operating conditions of the vehicle. The method for deriving the main
location of the vehicle is as follows. First, GPS data are continuously collected while the vehicle
is in operation. Therefore, we de�ned the location as the main driving (operating) location when
GPS data from the same location were received for more than 5 min (when the vehicle is turned
on). Second, GPS data are not continuously collected while the vehicle is turned off. Therefore,
when the GPS values received when the vehicle stops and when the vehicle is turned on after some
time are within the same range, this location is de�ned as the main driving (operating) location.
We performed cluster analysis of data collected from 315 vehicles of Company A based on the
DBSCAN algorithm and the major driving (operating) locations (visited points) we derived. We
analyzed the main driving (operating) location of the vehicle in detail by adjusting the values
of epsilon (ε) and MinPts which is the minimum number of neighbors within epsilon (ε) radius,
and clustered the main driving (operating) locations into 11 groups. Based on the map, of the
11 clustered groups, �ve clusters were concrete batch plants (Factories A–E), and two clusters
were garages where the vehicles were parked. The locations of the remaining four clustered groups
were unspeci�ed, and these locations were identi�ed as concrete placement points within the
construction site. Fig. 10 (Map A) shows the driving route of a vehicle on a map, based on
the Folium library. Analysis of the data revealed that the driving ranges of many vehicles were
identical. In addition, most of the vehicles were operated in the driving section within 1 h 30 min
(1.5 h), as shown in Fig. 10 on the right (Map B).

Figure 10: Vehicle route and driving radii of vehicles
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We analyzed and predicted the time-series data using the ARIMA and LSTM models in
this study. Parameters such as the battery voltage (BATTERY_VOLTAGE), coolant temperature
(COOLANT_TEMPER), and engine oil temperature (ENGINE_OIL_TEMPER) of the vehicle
were used for analysis and prediction.

Figure 11: Prediction of time-series data using ARIMA (battery voltage)

The data used for the prediction and analysis were collected from one vehicle of Company B
for 2 h (from April 15, 2020, at 22:10 to April 16, 2020, at 00:09:59). Because data were collected
every second, 7200 data (rows) were collected per parameter. The analysis and results for the
prediction of the battery voltage data are described here. Fig. 11 (Graph A–C) shows the results
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that were obtained using the ARIMA model. In this graph, the x-axis contains the time axis
in seconds and the y-axis represents the battery voltage (26.0 V up to 29 V). The orange and
blue lines represent the actual and predicted battery values, respectively. In addition, graph (A) in
Fig. 11 shows the actual and predicted battery voltage for the �rst 10 min. Here, we can see that
the voltage decreased from the beginning of the vehicle operation to approximately 4 min, where
after it stabilized at 28 V. Graph (B) in Fig. 11 shows the actual and predicted values for the last
10 min of driving. Fig. 11 (graph (C)) shows the actual and predicted battery voltage for the last
5 min (after 1 h 55 min), and the gray area in the graph shows the predicted battery voltage (blue
line) for 1 min after 2 h. As shown at the top (Graph A–C) of Fig. 11, the prediction model that
was implemented seems to be correct, with the predicted values being in good correspondence
with the actual values. In fact, the battery voltage predicted for the last 10 s (after 1 h 59 min
50 s) was 28.37 V and the actual value was 28.4 V, indicative of very high prediction accuracy.
The maximum value of the actual battery voltage for 10 s was 28.7 V, and the minimum value
was 28.3 V. We �tted the model without constraints (trend= ‘nc’); the detailed information of the
model is shown at the bottom (D) of Fig. 11. The prediction results of the coolant temperature
and engine oil temperature using the ARIMA model were also highly accurate.

Figure 12: Prediction of time-series data using LSTM (battery voltage)

Next, we used the LSTM model, in this case a stateful stacked model, to estimate the battery
voltage, coolant temperature, and engine oil temperatures. The data are composed of 7200 data
points for 2 h, as in the ARIMA model; the data structure for training the model is as follows.
We trained the model using 3600 data points (1 h) and evaluated our model using data from
30 min (1 h to 1 h 30 min). The testing was conducted with the data of the remaining 30 min (1 h
30 min to 2 h). The battery voltage data were scaled using the MinMaxScaler class (maximum
value 1, minimum value 0), and the loss function was set to “mean_squared_error.” Adam, which
is an adaptive learning rate optimization algorithm that was designed speci�cally for training deep
neural networks, was also used as the optimizer [24]. The estimated value of the battery voltage
based on LSTM is shown in Fig. 12, in which the x- and y-axes represent time (s) and the
value obtained by scaling the battery voltage data of the vehicle (Max 1, Min 0) respectively.
The predicted value in the graph, the red line with the value of 0.850, is equal to 28.42 V. That
is, the predicted value of the battery voltage of the vehicle using the LSTM model is 28.42 V.
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Considering that the average battery voltage of the data collected for 2 h is 28.39 V, the predicted
value is considered to be fairly accurate (99.89% of average values). However, it does not appear
to follow the trend shown in the graph (red line) in Fig. 12. In addition, the values predicted for
the temperatures of the coolant and engine oil using LSTM were inaccurate. Currently, we are
conducting research to �nd and create models to overcome these problems.

5 Conclusions and Future Work

In this paper, we extensively described our big data analysis platform, the structure of data
collection, the development environment of the analysis software, data processing procedures, and
the structure of the data analysis software including preprocessing. We performed various analyses,
such as correlation, rapid acceleration and rapid deceleration, quick start, sudden stop, sudden
left turn, sudden right turn, sudden U-turn (dangerous driving patterns), mileage, fuel ef�ciency,
and trajectory analysis based on the analysis software we developed. In addition, ARIMA and
LSTM models were used to predict vehicle data, such as the battery voltage. A summary of
the representative results is as follows: Most vehicles had unique driving patterns, such as rapid
acceleration and deceleration, and sudden stop and start. In fact, a vehicle with a large number
of rapid accelerations has a high number of rapid decelerations according to our analysis. The
fuel ef�ciency was generally higher in summer than in winter. Moreover, most of the vehicles
belonging to one company had similar driving radii in the trajectory analysis. Currently, we are
working on expanding our analysis software; we are conducting research to develop new business
models based on the software we developed and the results of our analyses. In particular, we
are analyzing the driving patterns of automobiles ef�ciently by improving the performance of the
trajectory analysis algorithm. In future, we aim to identify ways in which to apply deep learning
and machine learning algorithms, such as decision trees, SVMs, and LSTM, to automotive data
using a variety of approaches. Furthermore, we plan to conduct research on the analysis of
unstructured data, such as vehicle-related images and video �les, based on arti�cial intelligence
technology. Eventually, we expect to derive more accurate analysis results and create various
business models based on the analyzed results.
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