
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.015161

Article

Optimal and Memristor-Based Control of A Nonlinear
Fractional Tumor-Immune Model

Amr M. S. Mahdy1,2,*, Mahmoud Higazy1,3 and Mohamed S. Mohamed1,4

1Department of Mathematics, College of Science, Taif University, Taif, 21944, Saudi Arabia
2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
3Department of Physics and Engineering Mathematics, Faculty of Electronic engineering,

Menoufia University, Menouf, 32952, Egypt
4Department of Mathematics, Faculty of Science, Al-Azher University, Nasr City, 11884, Egypt

*Corresponding Author: Amr M. S. Mahdy. Email: amattaya@tu.edu.sa
Received: 08 November 2020; Accepted: 05 January 2021

Abstract: In this article, the reduced differential transform method is intro-
duced to solve the nonlinear fractional model of Tumor-Immune. The frac-
tional derivatives are described in the Caputo sense. The solutions derived
using this method are easy and very accurate. The model is given by its signal
flow diagram.Moreover, a simulation of the system by the Simulink of MAT-
LAB is given. The disease-free equilibrium and stability of the equilibrium
point are calculated. Formulation of a fractional optimal control for the
cancer model is calculated. In addition, to control the system, we propose a
novel modification of its model. This modification is based on converting the
model to a memristive one, which is a first time in the literature that such idea
is used to control this type of diseases. Also, we study the system’s stability via
the Lyapunov exponents and Poincare maps before and after control. Frac-
tional order differential equations (FDEs) are commonly utilized to model
systems that have memory, and exist in several physical phenomena, models in
thermoelasticity field, and biological paradigms. FDEs have been utilized to
model the realistic biphasic decline manner of elastic systems and infection of
diseases with a slower rate of change. FDEs aremore useful than integer-order
in modeling sophisticated models that contain physical phenomena.

Keywords: RDTM; tumor-immune; optimal control; caputo derivative;
signal flow; simulink; disease-free equilibrium; stability; memristive;
lyapunov exponents; poincare map

1 Introduction

Delayed ordinary differential equations have been utilized in modeling cancer diseases [1–10].
Fractional order differential equations (FDEs) are commonly utilized to model systems that have
memory that exists in several physical phenomena, models in thermoelasticity field and biological
paradigms. In [1], a system of FDEs was applied for modeling the interactions in the cancer-
immune system. The model comprises double immune effectors: E1 (t) ,E2 (t) (as an example for
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natural killer cells and cytotoxic T cells), interactive ?? against the cancer cells, T (t), with a
type III’s Holling function. A type III’s Holling function represents a case where the number of
victims wasted per each predator at start increases slowly as the density of victim increases, but
then levels decrease with further increase in victim density. That means the response of predators
to the victim is decreased at low victim density, then levels decrease with further increase in
victim density.

The form of the model is (see [11]):

⎡
⎣DαT
DαE1
DαE2

⎤
⎦=
⎡
⎢⎢⎢⎢⎢⎣

a 0 0 −r1 −r2 0 0

0 −d1 0 0 0
TE1

T2+ k1
0

0 0 −d2 0 0 0
TE2

T2+ k2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T

E1

E2

TE1

TE2

T

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1)

where Dα is Caputo fractional derivative operator ( [12–15]) with 0< α ≤ 1, T=T(t), E1 =E1 (t),
E2 =E2 (t) , and a, r1, r2,d1,d2,k1 and k2 are positive constants.

Using a signal flow graph for representing the dynamical systems is very useful (see for
example [16,17]).

The signal flow graph is a graph tool that can be used to show the interrelation between
the system states and enable us to use the graph theoretic tools to discover new features of the
system.

The above system Eq. (1) can be represented by the signal flow graph
→
G as shown in Fig. 1.

The signal flow diagram of the calculated system Eq. (1) has the following adjacency matrix

A
(→
G
)
. Where each state variable is modeled by a vertex and there is an edge about two states

(a, b) if the state a affects directly the state b according to Eq. (1).

A
(→
G
)
=

T

E1

E2

TE1

TE2

T2E1

T2E2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1

0 1 0 1 0 1 0

0 0 1 0 1 0 1

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For more details about signal flow graph and theoretical graph theory, see for exam-
ple ([16,18–20]) and the references therein.

In this work, the reduced differential transform method is introduced for solving the nonlinear
fractional model of Tumor-Immune. The fractional derivatives are described in the Caputo sense.
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The solutions derived using this method are easy and very accurate. The model is given by its
signal flow diagram. Moreover, a simulation of the system using the Simulink of MATLAB is
given. The disease-free equilibrium and stability of the equilibrium point are calculated. Formula-
tion of a fractional optimal control for the cancer model is calculated. In addition, To control the
system, we proposed a novel modification of this model utilizing the method of converting it to
be a memristive system which is the first time in the literature to use such idea to control this type
of diseases. Also, we study the system’s stability via the Lyapunov exponent and Poincare map
before and after control. FDEs have been utilized to model the realistic biphasic decline manner
of elastic systems and infection of diseases but at a slower rate of change. FDEs are more useful
than integer-order in modeling sophisticated models that contain physical phenomena.

Figure 1: The signal flow graph of the studied system (Eq. (1))

The paper is structured in eight sections. In Section 2, the basic definitions of fractional
calculus are presented. In Section 3, the formulation of a fractional optimal control of the
cancer model is studied. In Section 4, we describe the Reduced differential transform method
(RDTM) with illustration examples. In Section 5, fixed points and the stability of the system are
investigated. In Section 6, the Cancer model is simulated using Simulink\Matlab and campared
with the RDTM. In Section 7, we propose a novel method to control the system based on the
idea of the memristor. Also, the equilibrium point and stability of nonlinear fractional memristor-
based cancer model are studied. In addition, we study the system’s stability via the Lyapunov
exponent and Poincare map before and after control. Conclusions are given in Section 8.

2 Basic Definitions of Fractional Calculus

In this section, we present the basic definitions and properties of the fractional calculus
theory, which are used in this paper.

Definition 1 Areal function f (z), z> 0, is said to be in the space Cα, α ∈ R, if there exists a
real number p> α such that f (z)= tpf1 (z) where f1 (z) ∈C [0,∞) , and it is said to be in the space
Cm

α if f m ∈Cα,m ∈N.
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Definition 2 The Riemann–Liouville integral operator of order α > 0 with a ≥ 0 is defined
as ([21–29]):

(
Jα
a f
)
(z)= 1

Γ (α)

∫ x

a
(z− t)α−1 f (t)dt, x> a, (2)

Definition 3 The Caputo fractional derivative operator Dα of order α is defined in the following
form ([11–14,23–30]):

Dαf (z)=

⎧⎪⎨
⎪⎩

1
Γ (m−α)

∫ x

0

f (m) (ξ)

(z− ξ)α−m+1dξ , 0≤m− 1< α <m,

f (m) (z) , α =m ∈N.
(3)

3 Formulation of Fractional Optimal Control of Cancer Model

Consider the state system given in Eq. (1), in R3, with the set of admissible control functions:

�=
{
(uE (·) , uM (·)) ∈

(
L∞ (0,Tf )2) |0≤ uE (·) , uM (·)≤ 1,∀t∈ [0,Tf ]}

where Tf is the final time, uE (·) and uM (·) are the control functions.

The objective function is defined as follows (quadratic is the control variable).

J (uE (·) , uM (·))=
∫ Tf

0

[
AT (t)+Bu2

E
(t)+Cu2

M
(t)
]
dt, (4)

Wherever both immune effectors coexist, the non biological inner solution is measured by A,
B and C.

Minimizing the following objective function is the main aim in FOCPs by finding the optimal
controls uE (·) anduM (·):

J (uE , uM)=
∫ Tf

0
η [E1, T , E2, uE, uM , t]dt, (5)

subjected to the constraints

DαE1 = ξ1, DαT = ξ2, ∈DαE1 = ξ3, ξi = ξ (E1,T ,E2,uE,uM, t) , i= 1, 2, 3. (6)

The following inital conditions are satisfied:

E1 (0)=E10, T (0)=T0, E2 (0)=E20. (7)

In order to give a definition of the FOCP, define a modified objective (cost) function as:

J =
∫ Tf

0

[
H (E1,T ,E2,uE,uM , t)−

3∑
i=1

λiξi (E1,T ,E2,uE,uM , t)

]
dt, (8)
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where we can define the Hamiltonian of the objective function (8) and the cancer immune system
(1) as follows:

H (E1,T ,E2,uE,uM ,t)=η(E1,T ,E2,uE,uM ,t)+
3∑
i=1

λiξi(E1,T ,E2,uE,uM ,t) (9)

H=AT+Bu2
E
+Cu2

M
+λ1(aT−r1TE1−r2TE2)+λ2

(
−d1E1+ T2E1

T2+k1

)
+λ3

(
−d2E2+ T2E2

T2+k2

)
.

(10)

From (8) and (10), the necessary and sufficient conditions of FOPC can be derived as follows.

Dαλ1 = ∂H
∂E1

, Dαλ2 = ∂H
∂T

, Dαλ3 = ∂H
∂E2

, (11)

0= ∂H
∂uk

⇒ 0= ∂H
∂uE

, 0= ∂H
∂uM

. (12)

DαE1 = ∂H
∂λ1

, DαT = ∂H
∂λ2

, DαE2 = ∂H
∂λ3

, (13)

λi,
(
Tf
)= 0. (14)

where λi, i = 1, 2, 3 are the Lagrange multipliers. Eqs. (12) and (13) produce the necessary
conditions in terms of a Hamiltonian of the FOPC. We arrive at the following theorem.

Theorem 1. If uE and uM are optimal controls with corresponding state E1
∗, T∗ and E2

∗, then
there are adjoint elements, λi

∗, i= 1, 2, 3, satisfy the following conditions.

(i) Co-state equations (adjoint equations)

Dαλ∗1 =A+λ∗1

(
−d1+ T2

T2+ k1

)
+λ∗2 (−r1T) , (15)

Dαλ∗2 = λ∗1

(
2k1TE1

T2+ k1

)
+λ∗2 (a− r1E1− r2E2)+λ∗3

(
2k2TE2

T2+ k2

)
, (16)

Dαλ∗3 = λ∗2 (−r2T)+λ∗3

(
−d2+ T2

T2+ k2

)
. (17)

(ii) Transversal cases

λ∗i
(
Tf
)= 0, i= 1, 2, 3. (18)

(iii) Optimality conditions

H
(
E∗
1 ,T

∗,E∗
2 ,u

∗
E,u

∗
M,λ∗
)= min

0≤u∗E ,u∗M≤1
H
(
E∗
1 ,T

∗,E∗
2 ,u

∗
E,u

∗
M ,λ∗
)
. (19)

Moreover, the controlling functions u∗E ,u
∗
M are presented by

uM = λ∗2TE2

2C
, uE = λ∗2TE1

2B
, (20)
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u∗E =min
{
1,max

{
0,

λ∗2TE1

2B

}}
, u∗M =min

{
1,max

{
0,

λ∗2TE1

2C

}}
. (21)

For more details about problem optimal control, see for example [31–34].

4 Applications of Reduced Differential Transform Method (RDTM)

To clarify the efficiency of our proposed method [34–41], we shall apply it to a special case of
fractional-order biological systems that presented in [11]. The symbolic calculus software MatLab
is used to calculate all of the results given here. Recently, there is some growth in the area of
numerical study as well as their applications ([42–55]).

Example 4.1 Take into account the cancer fractional model (1) (c.f [11]):

Applying RDTM Eq. (22), we get:

Γ ((k+ 1)α+ 1)
Γ (kα+ 1)

T (k+ 1)=
⎡
⎣aT (k)− r1

k∑
i=0

T (i)E1 (k− i)− r2
k∑
i=0

T (i)E2 (k− i)

⎤
⎦ ,

Γ ((k+ 1)α+ 1)
Γ (kα+ 1)

E1 (k+ 1)=
[
−d1E1 (k)+

∑k
j=0
∑j

i=0T (i)T (j− i)E1 (k− j)∑k
i=0T (i)T (k− i)+ k1

]
,

Γ ((k+ 1)α+ 1)
Γ (kα+ 1)

E2 (k+ 1)=
[
−d2E2 (k)+

∑k
j=0
∑j

i=0T (i)T (j− i)E2 (k− j)∑k
i=0T (i)T (k− i)+ k2

]
,

(22)

T (k+ 1)= Γ (αk+ 1)
Γ (α (k+ 1)+ 1)

⎡
⎣aT (k)− r1

k∑
i=0

T (i)E1 (k− i)− r2
k∑
i=0

T (i)E2 (k− i)

⎤
⎦ ,

E1 (k+ 1)= Γ (αk+ 1)
Γ (α (k+ 1)+ 1)

[
−d1E1 (k)+

∑k
j=0
∑j

i=0T (i)T (j− i)E1 (k− j)∑k
i=0T (i)T (k− i)+ k1

]
,

E2 (k+ 1)= Γ (αk+ 1)
Γ (α (k+ 1)+ 1)

[
−d2E2 (k)+

∑k
j=0
∑j

i=0T (i)T (j− i)E2 (k− j)∑k
i=0T (i)T (k− i)+ k2

]
.

(23)

By substituting Eq. (1) in Eq. (23).

The series solution of the system (1.1) can be calculated via applying the differential inverse
transform, where a= r1 = r2 = 1,d1 = 0.3,d2 = 0.7,k1 = 0.3,k2 = 0.7 and different 0 < α1 ≤ 1 and
get it as:

T (t)=
N∑
n=0

T (n) tαn, E1 (t)=
N∑
n=0

E1 (n) tαn, E2 (t)=
N∑
n=0

E2 (n) tαn.

We get the solution as a series (for illustration see Figs. 2–4):

T (t)= 0.8+ 0.54
Γ (α+ 1)

tα + 0.3971
Γ (2α+ 1)

t2α + · · ·
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E1 (t)= 0.1+ 0.0381
Γ (α+ 1)

tα − 0.01143
Γ (2α+ 1)

t2α + 0.114× Γ (α1+ 1)
Γ (2α+ 1) [0.896+ 0.3Γ (α+ 1)]

t2α + · · ·

E2 (t)= 0.2− 0.04448
Γ (α+ 1)

tα + 0.031136
Γ (2α+ 1)

t2α + 0.1507× Γ (α1 + 1)
Γ (2α+ 1) [0.896+ 0.7Γ (α+ 1)]

t2α + · · ·

From model (1) the numerical results are given in Figs. 2–4. Where in Figs. 2–4, we present
the behavior of numerical simulations of T, E1 and E2 model cancer with different values of α.

Figure 2: The numerical simulations T, E1 and E2 of model cancer at alpha= 1

Figure 3: The numerical simulations of T, E1 and E2 model cancer at alpha= 0.95
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Figure 4: The numerical simulations T, E1 and E2 of model cancer at alpha= 0.75

5 Fixed Point and the Stability of The System

To compute the fixed points, equate all right hand sides of (1) to zero.

5.1 1 Studying the Stability:
We calculate the Jacobian matrix as:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a− r1E1− r2E2− r1T − r1T

2TE1k1(
T2+ k1

)2 − d1 + T2(
T2+ k1

)0
2TE2k2(
T2+ k2

)2 0− d2+ T2(
T2+ k2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 5: The dependency of Lyapunov exponents on the system parameters
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Figure 6: The behavior of Lyapunov exponenets vs. time of the uncontrolled system where a =
r1 = r2 = 1,d1 = 0.3,d2 = 0.7,k1 = 0.3,k2 = 0.7 and α = 1

Figure 7: Poincere map of E2 (t) vs. E1 (t) of the uncontrolled system where a= r1 = r2 = 1,d1 =
0.3,d2 = 0.7,k1 = 0.3,k2 = 0.7 and α = 1

Stability of E0 (0, 0, 0) :

J (E0)=

⎡
⎢⎣
a 0 0

0 −d1 0

0 0 −d2

⎤
⎥⎦ .
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Figure 8: Poincere map of E1 (t) vs. T (t) of the uncontrolled system where a= r1 = r2 = 1, d1 =
0.3,d2= 0.7,k1 = 0.3,k2 = 0.7 and α = 1

To calculate the Eigen-values, we write:∣∣∣∣∣∣
a−λ 0 0
0 −d1−λ 0
0 0 −d2−λ

∣∣∣∣∣∣= 0.

Then we have: λ1 = a, λ2 =−d1, λ3 =−d2.
Stability of all fixed points using Lyapunov exponents and poincare map satisfy the behavior

of the uncontrolled system, see Figs. 5–8.

6 System Simulink

In this section, in Fig. 9, we ready a simulation of the system by Simulink of MATLAB.
From which, as shown in Figs. 10–12, it is clear that the solutions of the system by the proposed
method are the same as it from the Simulink. In addition, the diagram of the Simulink shows the
dependency of the system components on each other.

The following Figs. 10–12, show the simulation responses that completely agree with the
analytical solution. Figs. 13–15, represents the phase spaces.

7 The Memristor-Based Conrelled Cancer Model

The memristive system is the system that has a memristor. The memristor is a variable that
store the history of a selected state variable. Converting systems to be memristive means using
the history of the system to improve and control the dynamics of the system.

Considering the symmetry of the cancer model (1), we modified this model to become a
memristive system via the method of adding a memristor effect to the first equation. In this work,
we use the memristor that has a quadratic nonlinearity for flux φ and the electric charge q.

q (φ)= c1φ + c2φ
2.



CMC, 2021, vol.67, no.3 3473

Figure 9: System simulation by MATLAB\Simulink

Figure 10: T(t) of cancer model at alpha= 1

So, the memductance is given by W (φ) = dq
dφ = c1 + c2φ where c1 and c2 are two memristor

parameters with positive values (for more details about types of memristors and its applications
see for example [35]). We suggest to add a memristor effect as the feedback term on the first
equation of the original system T(t) and use the second equation as the internal state equation
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of memristor, then a 3-dimensional memristive controlled cancer system can be constructed:

DαT = aT − r1TE1− r2TE2−W (E1) , DαE1 =−d1E1+ T2E1

T2+ k1
,

DαE2 =−d2E2+ T2E2

T2+ k2
, W = (c1+ c2E1) .

Figure 11: E1(t) of cancer model at alpha= 1

Figure 12: E2(t) of cancer model at alpha= 1
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Figure 13: E1(t) vs. T(t) space from Simulink simulation of the cancer model

Figure 14: E2(t) vs. T(t) space from Simulink simulation of the cancer model

In the following, we study the fixed point and the stability of the proposed memristive
controlled cancer system.

I Fixed Points of the Proposed Memristive Controlled Cancer System

To compute the fixed points solve the following system:

DαT = aT − r1TE1− r2TE2− (c1+ c2E1)= 0,DαE1 =−d1E1+ T2E1

T2+ k1
= 0,

DαE2 =−d2E2+ T2E2

T2+ k2
= 0.
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Figure 15: E2(t) vs. E1(t) space from Simulink simulation of the cancer model

II Studying the Stability:

We calculate the Jacobian matrix as: J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a− r1E1− r2E2 −r1T − c1 −r1T
2TE1k1(
T2+ k1

)2 −d1+ T2(
T2+ k1

) 0

2TE2k2(
T2+ k2

)2 0 −d2+
T2(

T2+ k2
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Stability of E0 : J (E0)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a −r1
(c1
a

)
− c1 −r1

(c1
a

)

0 −d1+

(c1
a

)
((c1

a

)2
+ k1

) 0

0 0 −d2+

(c1
a

)
((c1

a

)2
+ k2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

That has the following Eigen-values:

λ1 = a, λ2 =−d1+
( c1
a

)
(( c1

a

)2+ k1
) , λ3 =−d2+

( c1
a

)
(( c1

a

)2+ k2
)

The above system has solved numerically using Rung–Kuta method where a = r1 = r2 =
1, d1 = 0.3,d2 = 0.7,k1 = 0.3,k2 = 0.7, c1 = 0.0005, c2 = 0.005 and the initial conditions are
T (0) = 0.8,E1 (0) = 0.1, E2 (0) = 0.2. The solution of the memristive cancer model is shown
in Figs. 16–18. The proposed memristive cancer model is well controlled as shown in its time



CMC, 2021, vol.67, no.3 3477

response see Figs. 19–21. The stability of the equilibrium points are shown by the behavior of
Lyapunov exponents and Poincere maps see Figs. 22–27.

Figure 16: T(t) of the proposed memristive cancer model is well controlled

Figure 17: E1(t) of the proposed memristive cancer model is well controlled

The phase planes of the memristive canser model are shown in Figs. 19–21.
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Figure 18: E2(t) of the proposed memristive cancer model is well controlled

Figure 19: The phase plane E1(t) vs. T(t) of the memristive controlled cancer model
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Figure 20: The phase plane E2(t) vs. T(t) of the memristive controlled cancer model

Figure 21: The phase plane E2(t) vs. E1(t) of the memristive controlled cancer model
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Figure 22: The behavior of Lyapunov exponenets vs. time of the controlled system where α = 1
a= r1 = r2 = 1.

Figure 23: Poincere map of E1 (t) vs. T (t) of the controlled system where a= r1 = r2 = 1,α = 1,
d1 = 0.3,d2 = 0.7,k1 = 0.3,k2 = 0.7
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Figure 24: Poincere map of E1 (t) vs. T (t) of the controlled system where a= 3, r1 = r2 = 1,d1 =
0.3,d2 = 0.7, k1 = 0.3,k2 = 0.7 and α = 1

Figure 25: Poincere map of E1 (t) vs. T (t) of the controlled system where a= 2, r1 = r2 = 1, d1 =
0.3,d2 = 0.7, k1 = 0.3,k2 = 0.7 and α = 1



3482 CMC, 2021, vol.67, no.3

Figure 26: Poincere map of E2 (t) vs. T (t) of the controlled system where a= 1, r1 = r2 = 1, d1 =
0.3, d2 = 0.7,k1 = 0.3,k2 = 0.7 and α = 1

Figure 27: Poincere map of E2 (t) vs. T (t) of the controlled system where a= 3, r1 = r2 = 1, d1 =
0.3,d2= 0.7, k1 = 0.3,k2 = 0.7 and α = 1

8 Conclusions

In this paper, a nonlinear cancer fractional model of the Tumor-Immune problem has been
calculated which plays a necessary role in applied sciences. The fractional derivatives have been
described in the Caputo sense. Also, RDTM has been applied to get the approximate solutions of
this model. A signal flow diagram of the calculated system has been proposed and disscussed. The
free disease equilibrium (FDE) and stability of equilibrium point have been studied. A simulation
of the system using Simulink of MATLAB has been presesnted. The phase space has been
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displayed. To control the nonlinear fractional model of the Tumor-Immune, we have proposed a
novel modification of this model via converting it to be a memristive system. It is the first time in
the literature to convert such models to be memristive. Also, we have studied the system’s stability
via Lyapunov exponents and Poincare maps before and after control. The numerical simulations
are very consistent with the analytical ones.
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