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Abstract: In the area of medical image processing, stomach cancer is one
of the most important cancers which need to be diagnose at the early stage.
In this paper, an optimized deep learning method is presented for multiple
stomach disease classi�cation. The proposed method work in few important
steps—preprocessing using the fusion of �ltering images along with Ant
Colony Optimization (ACO), deep transfer learning-based features extrac-
tion, optimization of deep extracted features using nature-inspired algorithms,
and �nally fusion of optimal vectors and classi�cation using Multi-Layered
Perceptron Neural Network (MLNN). In the feature extraction step, pre-
trained Inception V3 is utilized and retrained on selected stomach infection
classes using the deep transfer learning step. Later on, the activation function
is applied to Global Average Pool (GAP) for feature extraction. However,
the extracted features are optimized through two different nature-inspired
algorithms—Particle Swarm Optimization (PSO) with dynamic �tness func-
tion and Crow Search Algorithm (CSA). Hence, both methods’ output is fused
by a maximal value approach and classi�ed the fused feature vector by MLNN.
Two datasets are used to evaluate the proposed method—CUI WahStomach
Diseases and Combined dataset and achieved an average accuracy of 99.5%.
The comparison with existing techniques, it is shown that the proposed method
shows signi�cant performance.

Keywords: Stomach infections; deep features; features optimization;
fusion; classi�cation

1 Introduction

Gastrointestinal tract (GIT) infections identi�cation is an active research area in medical
image processing [1]. The primary GIT infections are polyp, bleeding, ulcer, and esophagitis [2].
According to the American Cancer Society (ACS), mostly older people are affected by stomach
infections and cancer. They are primarily an average age of 68 years. In America, since 2020,
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27,600 peoples are affected due to stomach cancer, and from them, 11,010 peoples are died [3].
The risk factor of stomach cancer is higher in men as compared to women. From the last ten
years, stomach infections are decreasing by up to 1.5% [4]. Wireless Capsule Endoscopy (WCE) is
the latest technology in medical imaging [5]. It has low risk as compared to Capsule Endoscopy
(CE) [6]. It is considered a �rst-line examination tool in the clinics for stomach abnormalities like
ulcers, polyps, etc. Usually, it is an 8 min examination of one patient.

For 8 min examination, approximately 56,000 frames are generated. But from them, only a
few frames are important, and the rest of them is discarded. However, this selection of impor-
tant frames is an essential task because, from 56,000 frames, it is not easy to identify infected
structures [7]. The experts perform this task manually, which is hectic and time-consuming. After
selecting important frames, another study is to classify the frames according to infections like
polyp, ulcer, bleeding, etc. A highly expert person is always required for manual labeling of
this task. Therefore, an automated computerized system is necessary to identify these infections
without helping any expert by using WCE frames [8]. But issues like low contrast and complex
background are facing by such systems for accurate identi�cation.

In recent years, many computerized techniques are presented for medical disease detection
and classi�cation. They focused on well-known medical imaging modalities such as mammography
for breast cancer [9], pathology [10], Electroencephalogram Signals [11], carcinoma [12] such
as deep learning (DL) shows much improvement in medical image processing [13,14]. DL is a
powerful machine learning tool for automated medical infections classi�cation into their relevant
category [15,16]. It can improve the abilities and health professionals in the context of early
identi�cation of these diseases. Convolutional Neural Network (CNN) is a major form of deep
learning for extracting deep high-level features against one image. CNN can process input data
into various forms like images, signals, multi-dimensional, and videos. A simple CNN model
consists of several layers like convolutional, pooling, fully connected (FC), and classi�cation [17].
The low-level features are extracted from the initial layers and going deeper for the extraction of
high-level features. In the FC layer, features are vectorize for �nal classi�cation. The most used
pre-trained CNN models are AlexNet [18], VGG [19], ResNet [20], and GoogleNet [21]. These
models are trained on the ImageNet dataset [22] and later utilized by many researchers for medical
imaging with transfer learning.

According to the previous study [23], it is observed that the optimization of the most optimal
features is more useful for accurate classi�cation of stomach infections. The primary purpose
of feature optimization is to improve a system’s accuracy and minimize a system’s time during
the features learning [24]. This article attempts to resolve high computational time and improved
accuracy for the classi�cation of stomach infections. Moreover, few other problems are also
considered, such as redundancy among extracted features, the presence of irrelevant features that
are not required for �nal classi�cation, and degrade the accuracy of stomach disease classi�cation.
We followed the features optimization problem by employing metaheuristic algorithms and fused
their performance for �nal classi�cation. For classi�cation, Neural Network is the most active
supervised learning method and utilized for �nal features classi�cation. Our major contributions
in this work are given as follows:

Ant Colony Optimization (ACO) for pixel intensity value improvement is applied to fuse two
�lters’ output.

Retrain Inception V3 deep learning model using transfer learning and extract high-level
features from Global Average Pool (GAP) layer.
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Deep features are optimized using the Crow search algorithm and PSO along with dynamic
�tness function. The maximal approach fuses the resultant optimal features.

Multilayer perceptron neural network (MLNN) is implemented for the classi�cation of opti-
mal fused features. A fair comparison is also conducting with contemporary techniques based on
accuracy and time (testing time).

The rest of the paper is organized as follows: related work is presented in Section 2. The
proposed method, which includes features optimization, fusion, and MLNN based classi�cation, is
described in Section 3. Results and discussion are presented in Section 4, and Section 5 concludes
the paper.

2 Related Work

In medical imaging, several deep learning techniques are implemented in the past two years
and showed considerable success. For stomach diseases, deep learning models [25] were uti-
lized to enhance classi�cation accuracy. The Kvasir dataset was trained on the deep networks,
including Inception-v4, NASNet, and Inception-ResNet-v2. In [26], ResNet50 deep model was
utilized to classify the bleeding and healthy WCE images. This model achieved a sensitivity of
96.63%. Khan et al. [14], developed a CAD system for the classi�cation of stomach diseases. The
researchers implemented the active contour segmentation on HSI color space, and then a novel
saliency method was applied to the YIQ color space. They evaluate this method on their private
dataset, consisting of 9000 bleeding, ulcer, and healthy images. The average segmentation accuracy
achieved is 87.9635% for ulcers, and the classi�cation results are very promising. A model [27],
was presented based on the handcrafted and convolutional neural network (CNN) features. Gabor
features and DenseNet based Faster Region-Based CNN (Faster R-CNN) were combined to detect
the abnormal regions in the esophagus from WCE images. They evaluate their method on the
Kvasir and the MICCAI 2015 dataset and achieve the precision of 92.1% and 91% respectively.

A deep learning-based model [28] was presented for the detection of stomach diseases. They
proposed the Mask Recurrent CNN (RCNN) model for the segmentation of the ulcer region. In
the classi�cation phase, transfer learning is applied to ResNet101 for the deep feature extraction.
This model achieved 99.13% classi�cation accuracy on the cubic SVM classi�er. In [29], the
transfer learning approach was utilized to classify normal, benign ulcers, and cancer. Transfer
learning was done using VGGNet, Inception, and ResNet. The highest performance was achieved
on the ResNet model. A system [16] was developed based on the DenseNet CNN (DCNN) model
to recognize stomach abnormalities. In this model, color features were extracted from the HSV
and LAB color spaces, and DenseNet features were extracted by applying transfer learning.

In the feature selection step, Tsallis entropy is implemented for the selection of robust features.
A method [8] was developed to classify stomach infections based on the handcrafted and deep
features. Color, Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT), and deep
VGG-16 features fused, and selection of features done through Genetic Algorithm (GA). A novel
preprocessing technique [30] was proposed to enhance the classi�cation accuracy to recognize
normal and bleeding regions. Zhao et al. [31] designed a rotation-tolerant image feature. This
novel feature is rotation invariant and showed its effectiveness in the detection of stomach abnor-
malities. This technique, with only 126 image features, performed better as compared to the HOG
features. A-scale technique was proposed based on completed local binary patterns and Laplacian
pyramid (MS-CLBP) [32] to identify ulcer regions. The ulcer’s detection was done using the Green
component from RGB color space and Cr component from the YCbCr color space. This proposed
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method achieved an average accuracy of 95.11% on the SVM classi�er. A deep learning-based
model [33] was developed for the classi�cation of abnormal and normal frames. This method
utilized a Weakly Supervised Convolutional Neural Network (WCNN) for classi�cation. A Deep
Saliency Detection (DSD) method was used for detection, and an Iterative Cluster Uni�cation
(ICU) method was used to localize the anomalies. The highest AUC achieved by this method
is 96%.

A CAD system [34] was proposed based on the fusion of geometric and deep CNN features
to classify WCE images. The geometric features were extracted from the segmented image and
fused with VGG-16 and VGG-19 deep features. Euclidean Fisher Vector method was utilized for
the fusion of features, and the best features were selected using the conditional entropy technique.
The selected feature set �nally fed to the K-Nearest Neighbor (KNN) for classi�cation. A super-
pixel segmentation method [35] was proposed to detect bleeding areas in WCE video frames. The
CMYK color space helped to segment the bleeding region more accurately. The above studies
show that the deep learning models give improved accuracy; however, it is also noted that the
researchers are facing problem in the selection of good features for �nal classi�cation. Therefore,
we are considering the problem of best features using the optimized features fusion.

In summary, the numerous existing techniques used deep learning models for the classi�cation
of stomach infections. Few of them combined deep models and achieved better accuracy, but
computational time is signi�cantly increased. In the few studies, the contrast of original images is
improved and then trained a deep learning model. They also applied feature selection techniques
to select the best features for better classi�cation accuracy.

3 Proposed Methodology

An automated optimized deep features based design is presented to classify stomach diseases
using WCE images. The proposed method consists of a few important steps, as illustrated in
Fig. 1. First, the contrast of original images is improved and utilized to train the pre-trained
CNN model—Inception V3. Extracted deep learning features are optimized using two metaheuris-
tic techniques—PSO and dynamic �tness function and Crow search algorithm. After that, the
optimal features are selected from the original search space and fused through the maximal fusion
approach. Final features are classi�ed using MLNN and in the output return—labeled images and
numerical results.

3.1 WCE Image Enhancement
Enhancement of contrast in an image is an important step and essential for better visu-

alization of an object in the image. This step’s main advantage is to get stronger and more
relevant features for the accurate classi�cation of medical infections. In this article, we presented
a hybrid contrast enhancement approach for WCE image improvement. Initially, fused the output
of two �lters named—top-hat and bottom-hat and then applied the ACO algorithm for pixel
enhancement. Mathematically, the complete enhancement process is de�ned below:

Consider, we have WCE images datasets 1 ∈ R and one image is denoted by ψ(x, y) of
dimension 512×512×3. It is not an original size, but we resize database images according to this
dimension. Let, ψtop(i, j) denotes resultant top-hat �ltering image, ψbot(i, j) denotes bottom-hat
�ltering image, and ψfu(i, j) denotes a fused image of the same dimension as input. The top-hat
and bottom hat �lters are de�ned as follows:

ψtop(i, j)=ψ(x, y)−ψ(x, y) ◦ b (1)
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where, ◦ represent the opening operator, b denotes the structuring element, and its value is de�ned
as 20.

ψbot(i, j)=ψ(x, y) · b−ψtop(i, j) (2)

Figure 1: The proposed architecture of stomach disease classi�cation using optimized deep
learning features

Here, · represent closing operator, and b is the same as structuring element. Later, fused the
output of both images using the following equations:

ψt1(i, j)=
∑

(ψ(x, y), ψtop(i, j)) (3)

ψfu(i, j)= S(ψt1(i, j), ψbot(i, j)) (4)

where, ψt1(i, j) represent the output of the original and top-hat image and
∑

describe the
addition operation. ψfu(i, j) is a fused �ltered image and S represent subtraction operation,
respectively. This operation subtracts the image obtained by Eq. (3) and the image obtained by
Eq. (2). The size of this fused image same as the input image 512× 512× 3. The visible results
of this step are showing in Fig. 2 (second row). After this, we applied ACO further to increase
the pixel intensity level. ACO is a metaheuristic algorithm [36] and recently been involved in
many applications for different purposes. The idea of ACO is indirect communication among folks
of a generated population. In this algorithm, ants are following the shortest path between their
nest and food source. Three main steps are involved in this algorithm—initialization, pheromone
update, and �nal solution. Initially, set the upper limit of pheromone. Then in the solution phase,
each ant is randomly selecting a vertex. Each ant selects the next vertex based on the Roulette
approach, which is based on probability. This process is continuing until the complete path is
completed. Mathematically, it is de�ned as follows:

Ψk
uv =

{
[quv]α × [wuv]β∑

k∈allowedk
[quk]α × [wuk]β

if u ∈ allowedk (5)



3386 CMC, 2021, vol.67, no.3

where, i, j denotes starting and ending points, quv denotes pheromone factor, wuv represent heuris-
tic factor, set of nodes are represented by allowedk, and β represent heuristic factor, respectively.
The next step is to update the pheromone process for the enhancement of the solution. The
updating process is de�ned as follows:

quv← (1− e)quv+∆qbest
uv (6)

where, e represent evaporation parameter of range 0≤ e≤ 1 and total pheromone amount de�ne
by ∆qbest

uv of kth optimal path. The optimal solution in each path selected as follows:

∆qbest
uv =


1

f (Cos)
if u, v>∈Cos

0 Otherwise

(7)

where the current optimal solution set is de�ned by Cos. Hence, for �nal �tness function if f (C) <
f (Cos), then pixels are updated as the current optimal solution and continuing until all iterations
are completed. After all iterations, we obtained a new image in which all optimal pixels are move
to the infected part. Visually, results are illustrated in Fig. 2 (third row).

Figure 2: Hybrid WCE images enhancement results



CMC, 2021, vol.67, no.3 3387

3.2 Deep Learning Features Extraction
Inception V3: Inception V3 is a directed acyclic graph (DAG) network with 350 connections

and 316 layers, including 94 convolutional layers [37]. The DAG network structure expresses the
complex system of a network having multiple inputs to multiple layers. Numerous �lters are
applied on many layers of this network for feature extraction. The �exibility of inception V3
allows for applied different sizes of �lters and parameters on the same layer than the traditional
CNN layer with �xed parameters. Initially, the Inception V3 is trained on challenging and largest
image database ImageNet [22], having 1000 classes and over a million images. The network has
learned a wide range of various features of different objects. The input size of the image for
the inception V3 is 299-by-299-by-3. This article uses this model for the classi�cation of stomach
infections like ulcers, polyp, etc. For training of this model on the stomach database, the deep
transfer learning concept is applied.

Deep Transfer Learning: Transfer learning is a widely adopted technique for recognition and
detection tasks. The pre-trained models are used to enhance the performance of machine learning
tasks. Transfer learning [38] can be de�ned as the domain D with two components: a feature vec-
tor Y = {y1, y2, y3, . . . , yn} and a probabilistic distribution P(Y); can be de�ned as B= {Y , P(Y)}
and we have a task having T with two components one is ground truth Z= {z1, z2, z3, . . . , zn} and
second is objection function T = {Z, f (.)}. This function can be trained using a training database.
f (.) function is utilized to predict the class label f (y) of an unknown class label y. The function
can be written as in probabilistic form as P(z | y). Transfer learning can be expressed in terms of
domain source like as BT =

{(
xT1 , xT1

)
,
(
xT2 , xT2

)
, . . . ,

(
xTn , xTn

)}
and learning rate ST and the

targeted output can be expressed as BS =
{(

xS1 , xS1

)
,
(
xS2 , xS2

)
, . . . ,

(
xSn , xSn

)}
and the targeted

function will be illustrated as SS. Transfer learning major target is to enhance the learning rate
for the prediction of the targeted object using the recognition function fS(.) based on the training
for learning from BT and BS, where BT 6=BS and ST 6= SS. Inductive transfer learning is ef�cient
in pattern recognition. An Annotated database is required for ef�cient training and testing while
implementing inductive transfer learning. Transfer learning can be performed using different class
labels ZT 6= ZS and differential distributions P(ZT | YT) 6= (ZS | YS). The distribution function
of image P(YT) can be eliminated by on the last layer using function fT(.) which is used for
new label prediction by removing linear function for new label prediction SS using function fS(.).
Transfer learning is ef�cient in dealing with fewer amounts of data in medical imaging �eld. The
middle layers of deep CNN models, while performing transfer learning, can be utilized as an input
feature space for classi�er training while dealing with different tasks to improve the recognition
performance [39]. The adopted deep transfer learning (TL) model is expressed in Fig. 3. In the
learning process through TL, initialized the learning rate of 0.0001 and mini-batch size of 28. The
activation function is applied on the global average pool (GAP) layer and obtained a resultant
feature vector of dimension N× 2048.

3.3 Features Optimization
Features optimization is an essential step for selecting the most optimal features by employing

Metaheuristic techniques. The main aim of this step is to neglect the irrelevant features from
the �nal classi�cation step. In this article, two optimization techniques are implemented: i) Crow
Search Algorithm (CSA) and ii) PSO along with Dynamic Fitness Function. Visually, the process
of this step is shown in Fig. 4. In this �gure, it is illustrated that the original feature vector of
dimension N× 2048 is feed in the optimization algorithms. In in the output, two optimal vectors
are obtained of dimension N×1256 and N×962, respectively. It is noted that this resultant vector
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size has been changed according to the nature and size of datasets. The detailed mathematical
description of each method is given below.

Figure 3: Process of the deep transfer learning model

Figure 4: Flow diagram of deep features optimization

3.3.1 Crow Search Algorithm
The Crow Search Algorithm (CSA) [40] is a metaheuristic optimization method. CSA is a

population-based approach that is inspired by the intelligent behavior of crows. This approach
works based on the idea that crows store their extra food and utilized it when needed. The
orientation of each crow i at the generation gtn can be represented by a vector rgtn

i . The possible
solutions are given as:

rgtn
i = [rgtn

i, 1 , rgtn
i, 2 , rgtn

i,3 , . . . , rgtn
i, n ] (8)

i= 1, 2, 3, . . . , N

gtn= 1, 2, . . . , gtnmax

where N is the number of populations, the maximum number of generations is gtnmax.The
memory zgtn

i represents the hiding position of food of each crow, and this is observed as the
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best position. After each generation, each crow moved to a new location. This new location is
mathematically described in the following equation:

rgtn+1
i =

rgtn
i +Ri×Fgtn

i

(
zgtn

j − rgtn
i

)
if cj ≥PAgtn

j

a random location otherwise
(9)

where, Fgtn
i denotes the �ight length of ith crow, PAgtn

j represents the awareness probability of jth

crow at generation gtn, Ri and cj are the random numbers, and zgtn
j represents the memory of jth

crow. The value Fgtn
i signi�cantly in�uence the algorithm. The higher values of �ight length help

global search problems and lower local search values [41]. Initially, each crow is randomly placed
in the search space. It is considered in this step that its initial positions represent the memory
of the crow. The new position of crow is evaluated during each generation by utilizing a �tness
function fn, and the memory position of crow is updated according to the following equation:

zgtn+1
i =

rgtn+1
i if fn

(
rgtn

i

)
is better than fn

(
zgtn

i

)
zgtn

i otherwise
(10)

After this, positions are updated until all iterations are performed and obtained an optimal
vector of dimension N×962. This vector’s length is not consistent and may be changed according
to the input and de�ned problem.

3.3.2 Particle Swarm Optimization (PSO)
PSO is a biologically inspired algorithm derived from the swarm’s social behavior for its

survival [42,43]. This algorithm’s main objective is to �nd the best possible solution for the
problem from a given set of solutions. A swarm refers to the set of candidate solutions, and each
solution is a particle. Each particle has its speci�c position and moves with some velocity in the
search space. After each iteration, the PSO obtains the best solution, and the position is changed.
The particle selects the new position based on previous knowledge [44]. Each particle is evaluated
according to the de�ned �tness function. In the end, PSO �nds an optimal solution.

Suppose there is an N-dimensional search space with n number of particles, the
N-dimensional vector for the ith particle of the swarm is denoted by Ai = (ai1, ai2, . . . , aiN).
The previous best location of the ith particle is li = (li1, li2, . . . , liN), this gives the best �tness
value. The lowest function value particle is represented as L}. The velocity of the ith particle is
represented as Wi = (wi1, wi2, . . . , wiN). The manipulation of particles is done according to the
following equations:

wx+1
id =ω×wx

id + z1× rand( )×
(
lx
id − ax

id

)
+ z2×Rand( )×

(
lx
gd − ax

gd

)
(11)

aid = aid +wid (12)

where d = {1, 2, 3, . . . , N} , ω represents the inertia weight, rand(), and Rand() are random
functions that generate the pseudorandom values within the range [0, 1]. z1 and z2 are the two
constant positive numbers cognitive parameter, and social parameter, respectively.

In the �rst equation, the velocity of ith particle is calculated at each iteration. z1 ×

rand( )×
(
lx
id − ax

id

)
calculates the distance between the ith particle and its personal best location.
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z2×Rand( )×
(

lx
gd − ax

gd

)
calculates the distance between the ith particle and global best location.

The functions rand( ) and Rand( ) makes the algorithm more �exible because these functions pro-
vide randomness [45]. In the second equation, the new position of ith particle is calculated. The
multi-layered neural network (MLNN) is employed as a �tness function and accuracy measure is
used for the analysis. Based on the �tness function, the best particles are analyzed, but we have
a problem with the number of iterations. Therefore, we update the �tness function with dynamic
change. In the dynamic change, iterations are stopped when the accuracy of MLNN is decreased
up to 4 iterations and consider the last highest accuracy. In this work, by following this approach,
we obtained an optimal feature vector of dimension N× 1256 after 21st iterations.

3.4 Features Fusion and Classi�cation
Finally, obtained optimal features are fused in one vector by a new equation based on maxi-

mal value. Feature fusion aims to improve the accuracy performance of the proposed algorithm.
However, on the other side, it has one major disadvantage—prediction and training time are
increased. Consider, we have two feature vectors X1 ∈ R and X2 ∈ R, where X1 denotes feature
vector of CSA of dimension N × 962 and X2 denotes feature vector of PSOaD of dimension
N× 1256, respectively, then the fused vector is de�ned as follows:

X̃3 = {X3←Maximum (X1, X2) & X3 ∈Not Repeated (13)
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Figure 5: Proposed system prediction results

where, X̃3 is output fused feature vector and X3 is output after each iteration. The total
number of iterations is performed based on both vectors’ total dimension length, such as 962+
1256 = 2218. Hence, we obtained a �nal feature vector after fusion of dimension N × 1976. Of
the total, 252 features are irrelevant, which are removed during the �nal fusion. Finally, we imple-
mented a multilayer perceptron neural network (MLNN) for the �nal features classi�cation [46].
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An MLNN consists of an input layer followed by a hidden layer and output layer. The fused
features are considered as neurons; then output is generated as follows:

Ŷ = δ0

 M∑
j=0

WjδH

 M∑
j=0

W H
ij H

 (14)

where, Ŷ is the output of this network, Wj represent weight values, and δH represent hidden
layers, respectively. There is no hard rule for selecting optimal neurons, so we choose input units
to be 600 having one hidden layer and 50 neurons. Bayesian backpropagation is applied to achieve
the best accuracy. In the output, numerical values and labeled results are obtained. A few labeled
results are showing in Fig. 5.

4 Experimental Setup and Results

The proposed technique was evaluated on combined publicly available datasets. The dataset
contains 15,000 color images of different stomach infections. Stomach bleeding and healthy image
classes are obtained from [14] having 3000RGB images per class. Ulcerative-colitis and esophagitis
classes extracted from publicly available stomach disease dataset Kvasir [47]. Data augmentation
was performed to increase the images per category. The polyp class of dataset was acquired from
Kvasir [47], ETIS-LaribPolypDB [48], and CVC-ClinicDB [49]. A 70:30 approach is employed
during the learning of the proposed model, where cross-validation was 10-fold. Multiple classi-
�ers are selected for a fair comparison of MLNN. The other chosen classi�ers are a �ne tree,
linear discriminant, Naïve Bayes, and ensemble classi�er. Each classi�er’s robustness is evaluated
using multiple performance evaluation measures like accuracy, precision, sensitivity, F1 Score, and
computational time. All experiments are carried out using Intel Core i7, an 8th generation CPU
equipped with 16 GB of RAM and 8 GB GPU. For a tool, the MATLAB 2019a version was used.

4.1 Separate Vector Results
Initially, results are computed on individual feature vectors to analyze the performance of

the proposed framework. Tab. 1 describes the classi�cation results of individual feature vectors
such as original extracted deep features from GAP layer, GAP features optimization using PSOaD
method, and CSA based deep features optimization. Fine trees achieve 72.92% accuracy for
original deep features, whereas, on PSOaD and CSA, the achieved accuracy is 79.46% and 81.90%.
This accuracy shows that the optimization process improves the accuracy of up to an average
8%. Similarly, the computed accuracy for the linear discriminant classi�er is 85.15%, 90.57%, and
93.66% for deep features, PSOaD, and CSA, respectively. The best accuracy is achieved on MLNN
of 95.37. The original deep features accuracy of MLNN is 89.46%, whereas 93.60% for PSoaD.
Based on the accuracy, we can easily observe that the optimization of features provides better
results than original features.

4.2 Proposed Fusion Results for CV= 15
In this experiment, we computed results using the proposed optimal features fusion. We used

several optimal features to perform experiments for the evaluation of the proposed technique.
This experiment’s main goal is to analyze fusion performance compared to individual algorithms
on a selected dataset. Tab. 2 shows this experiment’s result and achieves the best accuracy of
99.3% with a 99% F1 score. The other calculated measures are the precision rate of 98.8%,
sensitivity is 99.2%, and FNR is 0.7%. The second-best performance is achieved by 98.6% for
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W-KNN and Ensemble classi�er. However, the lowest achieved accuracy was 84.4% using �ne
trees. The performance of MLNN is also given in Tab. 3. This table shows each class’s classi�-
cation accuracy separately, such as bleeding 99%, ulcer 99%, etc. Based on this accuracy, it can
prove the performance of the proposed method on the selected dataset. The time noted during
the classi�er prediction is also given in Tab. 2, which shows the Fine Tree outperforms, but its
accuracy is too low compared to MLNN. Hence, overall, MLNN provides better accuracy for
this experiment.

Table 1: Classi�cation accuracy on individual feature vectors on multiple classi�ers

Classi�er Feature vector Measures

Deep features PSOaD CSA Accuracy (%) FNR (%)

Fine tree X 72.92 27.08
X 79.46 20.54

X 81.90 18.10
Linear discriminant X 85.15 14.85

X 90.57 9.43
X 93.66 6.34

MLNN X 89.46 10.54
X 93.60 6.40

X 95.37 4.63
Gaussian Naïve Bayes X 83.05 16.95

X 89.45 10.55
X 92.20 7.80

W-KNN X 82.98 17.02
X 92.36 7.64

X 94.12 5.88
Ensemble X 83.04 16.96

X 92.72 7.28
X 94.50 5.5

Table 2: Classi�cation results using proposed fusion at CV= 15 on selected dataset

Classi�er Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1 score (%) Time (s)

Fine tree 84.4 15.6 84.8 84.0 84.6 35.007
LDA 98.5 1.5 98.0 98.0 98.2 37.942
MLNN 99.3 0.7 98.8 99.2 99.0 45.136
GNB 96.3 3.7 94.2 96.2 94.4 38.431
W-KNN 98.6 1.4 97.2 98.2 97.4 49.500
Ensemble tree 98.6 1.4 97.8 98.4 98.2 114.27
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4.3 Proposed Fusion Results Using CV= 10
In this experiment, we fused both optimal vectors using the maximal fusion approach and

perform classi�cation. It is noted that the fusion process improves accuracy, but time is also
increased. The results are given in Tab. 4. This table shows that MLNN better accuracy than
other methods like the �ne tree, naïve bayes, etc. The accuracy of MLNN is 99.5%, which is
improved up to an average 0.4%. The other measures for MLNN are FNR (0.5%), precision rate
of 96%, sensitivity of 99.5%, and F1 Score is 97.7%. The prediction time is also noted at 48.83 (s).
The linear discriminant classi�er also performed well and achieved an accuracy of 99.3%, where
the consume time was 42.451 (s). This classi�er’s accuracy is also improved compared to results
on CV at 15 up to 0.8%. Fine Tree achieves the worst classi�cation accuracy of 85.1%. But the
prediction time of this classi�er is best as compared to all other methods. Tab. 5 described the
proposed method’s authenticity in terms of each class’s correctly predicted accuracy. Based on this
table it shows that the proposed method outperforms MLNN.

Table 3: Confusion matrix of MLNN for proposed fusion at CV= 15 on selected dataset

Stomach Class Stomach class

Bleeding Healthy Polyp Esophagitis Ulcer

Bleeding 99% 1% <1%
Healthy <1% >99%
Polyp 99% <1% 1%
Esophagitis <1% <1% >99%
Ulcer 1% 99%

Table 4: Classi�cation results using proposed fusion at CV=10 on selected dataset

Classi�er Accuracy (%) FNR (%) Precision (%) Sensitivity (%) F1_Score (%) Time (s)

Fine tree 85.1 14.9 85.2 86.1 85.6 31.078
LDA 99.3 0.7 99.2 98 98.6 42.451
MLNN 99.5 0.5 96 99.5 97.7 48.83
GNB 96.3 0.7 82 96 88.4 34.153
W-KNN 98.5 1.5 91 98 94.3 48.494
Ensemble tree 99.1 0.9 95 99 96 116.95

Table 5: Confusion matrix of MLNN using proposed framework at CV= 10

Stomach Class Stomach Class

Bleeding Healthy Polyp Esophagitis Ulcer

Bleeding 99% 1%
Healthy <1% >99%
Polyp 99% <1% <1%
Esophagitis <1% >99% <1%
Ulcer <1% 99%
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Figure 6: Comparison of this work model selection with other pre-trained models

4.4 Proposed Fusion Results Using CV= 10
A detailed discussion of proposed classi�cation results is presenting in this section. The main

�ow is shown in Fig. 1, which shows the proposed method executed in the series of steps, and
each step is connected with the previous step. It means the input of each step is directly affected
by the system performance. The results are computed in different steps to analyze the strength
of each step. Initially, deep features are extracted from enhanced WCE images and retrained
Inception V3 CNN model using deep transfer learning. After that, two optimization techniques
are implemented and passed deep feature vector at the same time. In the output, two resultant
vectors are obtained, and we test both vectors separately, as results are given in Tab. 1. This table,
it is showing that the results are improved after applying optimization techniques. An average
8% change is occurred in the results after applying PSOaD and CSA. The maximum achieved
accuracy in this table is 95.37%. Later, we fused both optimal vectors using a maximal approach
and perform classi�cation using MLNN. After fusion, the results are computed using two cross-
validation values—15 and 10. The 15-fold cross-validation results are given in Tab. 2 and con�rm
through Tab. 3. Tab. 2 shows the maximum results of 99.1% on MLNN, whereas the minimum
noted accuracy is 84.4%. Tab. 4 shows the 10-fold validation results and achieved an accuracy of
99.5%, where the minimum attained accuracy is 85.1%. The 99.5% accuracy of MLNN is proved
through Tab. 5. In addition, the prediction and training time is also noted. The prediction time
is given in Tab. 2 and 4 and shows that the �ne tree performs more ef�ciently than all other
classi�ers. Still, the accuracy of this classi�er is not suf�cient.In the choice of pre-trained model,
we also compare with other deep neural nets like AlexNet, VGG16, VGG19, GoogleNet, and
ResNet50 with Inception V3. We just replace the pre-trained model in Fig. 1 and compute results
by employing the same steps. Results are visually plotted in Fig. 6. This �gure, it is showing that
the selection of Inception V3 is works well. The ResNet50 also gives an accuracy of 97.52%,
which is the second highest compared to other techniques. The overall time of MLNN is also
plotted in Fig. 7. This �gure shows that individual optimization steps consume the lowest time
than the proposed method, but the proposed step’s accuracy is much better. Hence, the overall
proposed method is performed more ef�ciently for the classi�cation of selected stomach infections.
Tab. 6 shows the comparison of the proposed method with existing techniques. In [50], the authors
used 442 WCE images for the experimental process and achieved an accuracy of 98.49%. In [15],
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7,400 WCE images are used by authors and attained an accuracy of 99.13%. Later in [8] images
are increased and achieved an accuracy of 96.50%. In this work, we were using 15,000 images
and achieved an accuracy of 99.50%, which is better than these listed methods.

Figure 7: Prediction time comparison of proposed framework with individual steps

Table 6: Comparison with existing techniques

Ref. Year Total images Accuracy (%)

[50] 2018 442 98.49%
[15] 2020 7,400 99.13%
[8] 2020 9,889 96.50
[1] 2020 6,000 98.40
Proposed 2020 15,000 99.50%

Figure 8: Con�dence interval of the proposed method

Besides, we also computed the con�dence interval of the proposed method. We consider the
con�dence level 95%, 1.960σx− , and the resultant standard deviation is 0.4, σx− is 0.2828, and
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margin of error is 99.1±0.554 (±0.56%). This con�dence interval shows that the proposed method
accuracy is consistent and signi�cantly better for all con�dence levels, as shown in Fig. 8.

5 Conclusion

A deep features optimization-based design is implemented in this article for stomach infections
classi�cation using WCE images. In the presented design, deep learning features are computed
through TL and optimized using two metaheuristic algorithms- PSOaD and CSA. Both algo-
rithms’ performance is separately evaluated and analyzed, each with original extracted deep
learning features. Based on the original features, the optimal vectors better accuracy of 93.60%
and 95.37%, whereas the original features highest accuracy was 89.46%. Fused both optimal
vectors in the next step and feed in MLNN for �nal classi�cation. This step gives an accuracy of
99.5%, which is improved compared to individual features and existing techniques. The presented
results concluded that optimal features’ fusion provides better accuracy than separate optimal sets.
Hence, this work’s major primary strength is the optimal feature selection and later fusion by
maximal value. However, the major drawback of the fusion process is consuming higher time.
Future work will focus on improving the database and construct a CNN model from scratch.
Moreover, deep learning will be elected to consider the problem of ulcer and polyp segmentation.
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