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Abstract: With COVID-19 continuing to rage around the world, there is a
spread of epidemic-related information on social networking platforms. This
phenomenon may inhibit or promote the scale of epidemic transmission.
This study constructed a double-layer epidemic spreading–information dis-
semination network based on the movements of individuals across regions
to analyze the dynamic evolution and coupling mechanism of information
dissemination and epidemic transmission. We also proposed measures to con-
trol the spread of the epidemic by analyzing the factors affecting dynamic
transmission. We constructed a state probability equation based on Markov
chain theory and performed Monte Carlo simulations to demonstrate the
interaction between information dissemination and epidemic transmission.
The simulation results showed that the higher the information dissemination
rate, the larger the scale of information dissemination and the smaller the
scale of epidemic transmission. In addition, the higher the recovery rate of the
epidemic or the lower the infection rate of the epidemic, the smaller the scale of
information dissemination and the smaller the scale of epidemic transmission.
Moreover, the greater the probability of individuals moving across regions,
the larger the spread of the epidemic and information. Finally, the higher the
probability of an individual taking preventive behavior, the smaller the spread
of the epidemic and information. Therefore, it is possible to suppress epidemic
spread by increasing the information dissemination rate, epidemic recovery
rate, and probability of individuals taking preventive behavior, while also
reducing the infection rate of the epidemic and appropriately implementing
regional blockades.

Keywords: Coupling mechanism; moving and regional individuals;
heterogenous areas; double-layer coupling network

1 Introduction

In the year 2020, a new type of coronavirus pneumonia (COVID-19) swept through the
world. As of July 20, 2020, COVID-19 was responsible for more than 16 million infections and
600,000 deaths in more than 200 countries and regions. The number of infections has continued
to increase, seriously threatening human life and health. It has also had a significant impact
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on global economic development. In the information age, when an infectious disease spreads in
a society, information about that disease will spread quickly through social platforms, such as
Weibo, WeChat, Twitter, and Facebook. The spread of such information can cause changes in
human behavior, which can affect the spread of the disease [1,2]. For instance, the outbreak of
an epidemic may lead to an increase in people’s awareness of the epidemic and thus cause them
to take protective measures, which would inhibit the spread of the epidemic [3]. Because infor-
mation dissemination and epidemic transmission influence each other, exploring their interaction
mechanism holds great significance for understanding and controlling the spread of epidemic [4].
Different countries and regions have taken different measures to deal with the COVID-19 pan-
demic. Therefore, there is an urgent need to explore the factors affecting the spread of epidemic
in the context of epidemic information coupling and to propose measures that can control the
spread of COVID-19.

Early studies on epidemic transmission were based on using differential equations to con-
struct infectious epidemic models [5–9], including the susceptible-infected (SI), susceptible-infected-
susceptible (SIS), and susceptible-infected-recovered (SIR) models. The main shortcoming of these
models is that they do not consider the heterogeneity of individual contact. Network theory can
provide a new perspective for solving this problem [10–12]. In some studies [13–16], the spread of
epidemic was simulated and analyzed by establishing infectious epidemic models based on complex
networks. For the most part, only one dynamic process of epidemic transmission was studied.
Taking into consideration the impact of information dissemination on epidemic transmission,
some scholars have proposed a series of models to explore the interaction between multiple
dynamic processes. Funk et al. [17] linked the information dissemination model with the SIR
model to investigate how the spread of awareness of the epidemic affected the spread of the
epidemic itself. The authors considered that susceptible individuals who had information about the
disease were less likely to be infected when they came into contact with infected individuals. Ruan
et al. [18] studied how the spread of individual crisis awareness affected the spread of epidemic.
By using the information-driven vaccination SIR model based on the homogeneous Erdös–Rényi
network and the heterogeneous scale-free network, they found that the greater the information
creation rate and information sensitivity, the clearer the effect of suppressing the spread of
epidemic. However, these studies mainly used a single-layer network model to explore the inter-
action between information dissemination and epidemic transmission. They did not consider clear
structural differences between the information dissemination network and the disease transmission
network. To address this shortcoming, some scholars explored the coupling effect of epidemic
transmission and information dissemination using a multilayer network. Granell et al. [19] pro-
posed an unaware-aware-unaware + susceptible-infected-susceptible (UAU+SIS) model based on
multiplex networks to describe the coevolution of awareness of diffusion and the spread of the
epidemic. Through Monte Carlo simulation, they found that the coupled dynamic process changed
the outbreak threshold of the epidemic. However, in this study they assumed that the infected
individuals were immediately conscious of their state and that these conscious individuals could
be immune to the disease. To explore epidemic information dissemination in general, Granell
et al. [20] added mass media to the UAU+SIS model to disseminate information on a large scale.
They found that the degree of immunity of informed individuals and the mass media changed the
metacritical point of the epidemic’s spread. The multilayer network structures used in these studies
were static, whereas the contact network between individuals changed dynamically over time.

Some scholars have considered the mobility of individuals and explored the interaction
between information dissemination and epidemic transmission by constructing dynamic multilayer
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networks. For instance, Xia et al. [2] considered the epidemic spread–information dissemination
coupling process in the case of individuals moving randomly. Mao [21] constructed a triple-
diffusion model of infectious diseases, information, and preventive behaviors through a metropoli-
tan social network on the premise that individuals move between workplaces, homes, service
locations, and neighbors. They used an agent-based method to simulate the triple diffusion. Not
only do individuals move, but the distribution of individuals is regional, and the characteristics
of disease transmission in different regions and their overall impact may be different. Buscarino
et al. [22] studied the local and global scales of epidemic transmission, taking into consideration
that different areas had different infection levels. They found that the faster the individual moved,
the greater the probability that individuals executed long-distance jumps, the greater the regional
density, and the more likely a global outbreak was to occur. Tian et al. [23] studied the dynamic
transmission process of infectious epidemic between heterogeneous individuals in a limited open
area. They found that the average infection probability of individuals, population size of infected
individuals in the region, and infectious ability of the epidemic had a great impact on the scale
of the outbreak. However, these studies only paid attention to individual mobility or regionality,
and they did not combine these two factors to explore their joint impact on epidemic and
information dissemination.

To overcome these shortcomings, we studied the impact of both individual mobility and
regionality on the dynamics of epidemic transmission and information dissemination. We con-
structed a double-layer epidemic spread–information dissemination network model to study the
interaction between epidemic transmission and information dissemination when individuals move
and when their distribution is regional. By analyzing the factors that affect the dynamic transmis-
sion, we propose measures to control the spread of the epidemic. In the coupled dynamics model,
we used the Markov state transition equation to calculate the probability that an individual was in
a certain state at different time steps. We also conducted Monte Carlo simulations to demonstrate
the process of interaction between information dissemination and epidemic transmission. This
research not only supplements previous dynamic network research, but it also provides suggestions
for the formulation of infectious epidemic control measures.

The rest of this article is organized as follows. Section 2 introduces the constructed model.
Section 3 presents the simulation results and results analysis. Section 4 offers the main conclusions
and directions for future research.

2 Proposed Model

This research mainly involves two models: (1) An epidemic spread–information dissemination
network model that is used to describe the real-life social relationships between people and their
physical contacts; and (2) an epidemic spread–information dissemination dynamics model that
is used to describe the spread of information and the epidemic among the population and the
process of individual state changes.

2.1 Epidemic Spread–Information Dissemination Coupling Network
We constructed an epidemic spread–information dissemination coupling network by modifying

the double-layer network model based on moving individuals proposed by Xia et al. [2]. In this
work, we considered both the mobility of individuals and the regionality of individuals’ activities.
The proposed epidemic spread–information dissemination coupling network is shown in Fig. 1a.
The model consists of two layers: The upper layer, which is the information layer, and the lower
layer, which is the epidemic layer. The upper and lower layers represent the social network and
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physical contact network, respectively. In Fig. 1a, network nodes are represented as circles and the
connections between the nodes of different layers are represented by dotted lines, indicating that
these nodes are the same individual. We assumed that the network structure of the information
layer was static in the short term because the social relationships between people are generally
relatively stable in the short term. Conversely, the network structure of the epidemic layer changed
dynamically because in real life, people commonly move because of different factors, such as work,
life, and travel. They will meet different people at different times, which causes the structure of
the physical contact network to change constantly.

(a) (b)

Figure 1: (a) Double-layer epidemic spread–information dissemination coupling network. (b) Phys-
ical contact network of the epidemic layer

The physical contact network of the epidemic layer is shown in Fig. 1b. Consider a square
area with a side length L where N individuals are randomly distributed. The square area consists
of four areas of the same size, which are denoted as area A, area B, area C, and area D. Assume
that at a certain time t, when the distance between any two nodes is less than r, there is a
physical contact relationship between the nodes. Then, a link is added between them to obtain
the physical contact network at time t. Because of the mobility of individuals, it is assumed that
at each moment, individuals choose to move across regions by a long-distance movement with the
probability of pjump ∈ [0, 1] or within the region they belong to by a short-distance movement with
the probability of (1−pjump). A movement is considered to be a long-range movement only when
an individual moves between different regions; in all other cases, a movement is considered to
be a short-range movement. The position of a node (an individual) that performs a short-range
movement is determined by its position at the previous time step and the angle and speed of the
movement. Assuming that individual i moves a short distance at time t, its position is Pi(t), and
its moving speed and direction are expressed as vi (t) and θi(t), respectively. The moving speed of
an individual at time t is vi (t)= v, so the position and orientation of individual i at time (t+ 1)
can be expressed as follows:{
Pi (t+Δt)=Pi (t)+ vi (t)Δt

θi (t+Δt)= ξi(t+Δt)
, (1)
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where ξi(t + 1) denotes a random variable that obeys a uniform distribution in the interval of
[−π , π ], and Δt represents the time interval (time step) of the individual’s movement. The moving
distance of individual i in the horizontal direction in a time step is expressed as v cos θi(t)Δt, and
the moving distance in the vertical direction is expressed as v sin θi(t)Δt. When individual i chooses
to move a long distance across regions at time t, it will randomly choose a position in the other
three regions as its spatial position at time (t+1). When the probability pjump of all of the nodes
in a certain area is zero, it is assumed that the area is subjected to blockade measures, so points
from other areas cannot jump to this area. When the spatial position of a node changes, the
physical contact relationships between nodes also change. Thus, at time (t + 1), a new physical
contact network is constructed. Finally, when the physical contact network containing N nodes
is constructed, the corresponding social network can be constructed. Because social networks are
generally scale-free networks, in the simulation process, a Barabási–Albert (BA) scale-free network
with N nodes is used to generate social networks.

2.2 Epidemic Spread–Information Dissemination Dynamics
In this study, we assumed that the dynamics of information dissemination in social networks

could be described by the SIR model. Based on this assumption, individuals in the information
layer could be in one of three states: Susceptible state UI , infection state AI , or recovery state NI .
State UI means that individuals have not received epidemic-related information. State AI repre-
sents that individuals have received epidemic-related information. State NI means that individuals
have received epidemic-related information but do not pass that information to others. The
subscript I indicates the information layer. The specific information dissemination dynamics are
shown in Fig. 2a. When an individual in state UI is in contact with an individual in state AI , the
individual in state UI can change its state to state AI with the probability of βI . An individual in
state AI can change its state to state NI with the probability of μI . Once an individual changes
its state to state NI , it remains in this state; that is, its state cannot be further changed.

(a) (b)

Figure 2: (a) Node state transition diagram of the information layer. (b) Node state transition
diagram of the epidemic layer

The transmission dynamics of the epidemic can also be described by the SIR model, as shown
in Fig. 2b. The states of individuals in the epidemic layer can be divided into three categories:
Susceptible state SE , infection state IE, and recovery state RE . Individuals in state SE are not sick,
yet they can be infected by sick contacts with a certain probability. Individuals in state IE are sick
and can infect their neighbors. Individuals in state RE are no longer infected and cannot infect
other individuals. The subscript E indicates the epidemic layer. We assume that the probability
of a susceptible individual being infected after having contact with an infected individual is βE.
The probability of an infected individual entering a recovery state is μE. βE denotes the infection
rate of the epidemic. μE denotes the recovery rate of the epidemic. The spread of information
can affect the spread of the epidemic. In this work, it is assumed that individuals who are not
infected but receive information related to the epidemic will take preventive actions with the prob-
ability of ω. The protection rate of preventive behaviors is set to 60%; that is, when susceptible
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individuals who have taken preventive behaviors come into contact with infected individuals, the
probability of being infected (βE) will become 40% of the original probability.

The processes of information and epidemic transmissions are expressed by dynamic equations.
Two vectors, piI (t) = [piAI (t)piUI (t)piNI (t)]T and piE (t) = [piSE (t) piIE (t)piRE (t)]T , are used to
represent the probability that node i is in state AI , UI , or NI in the information layer at time t
and the probability that the node is in state SE , IE , or RE in the epidemic layer, respectively. The
transformation equations of each state of node i from time t to time t+ 1 are as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

piUI (t+ 1)= piUI (t)
[
1− fiI (t)− giE (t)

]
piAI (t+ 1)= piUI (t)

[
fiI (t)+ giE (t)

]
+ (1−μI)piAI (t)

piNI (t+ 1)= piNI (t)+μIpiAI (t)

, (2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
piSE (t+ 1)= piSE (t) [1− giE (t)]

piIE (t+ 1)= piSE (t)giE (t)+ (1−μE)piIE (t)

piRE (t+ 1)= piRE (t)+μEpiIE (t)

, (3)

where,

fi
I (t)= 1−

N∏
j=1

[1−βI IijpjAI (t)], (4)

giE (t)= 1−
N∏
j=1

[1−βEEij(t)pjIE (t)]. (5)

fiI (t) represents the probability that node i is informed by its informed neighbors in the
information layer at time t. giE (t) represents the probability that node i is infected by its infected
neighbors in the epidemic layer at time t. Iij are the elements of the adjacency matrix of the social
network. If there is a link between nodes i and j in the information layer, then Iij = 1; otherwise,
Iij = 0. Eij(t) are the elements of the adjacency matrix of the physical contact network at time t.
If there is a link between nodes i and j in the epidemic layer at time t, then Eij (t)= 1; otherwise,
Eij (t)= 0.

When calculating and simulating the model, at the initial moment, we randomly selected a
certain percentage of individuals as infected people at the epidemic layer, and these individuals
became infected at the information layer. The remaining individuals were susceptible both at the
epidemic layer and the information layer. The states of individuals at different layers changed
based on the information and epidemic transmission dynamics until there were no more infected
people at the epidemic layer and the information layer.

3 Simulation Results and Analysis

In general, the population density of a region and the population density of an infected
population were different. Therefore, we simulated the coupling and spread of information and
the epidemic in a heterogeneous region. First, based on the BA model, we generated a social
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network with 1,000 nodes by introducing one node and three links into the network at each time
step. To generate the corresponding physical contact network, we constructed a square area with
a side length of L = √

1000 and divided it into four equal areas, denoted as A, B, C, and D.
We used a random function to generate 1,000 nodes that met the coordinate interval of the
corresponding area. When the distance between the nodes was within the radius of the interaction,
we established links between them to obtain the physical contact network. The node density of
the entire region was one. The node density was defined as the ratio of the total number of nodes
in the region to the area of the region. In this work, we considered that there was no specific
distribution form for the coordinate values of the randomly generated points. We also conducted
simulations using random coordinate values that obeyed a uniform distribution, beta distribution,
and normal distribution. These different distribution forms had influenced the accuracy of the
simulation results but did not affect the regularity of the influence of the parameters on the
results. To study more general cases, we selected coordinate values without specific distribution
forms. After building the social network and physical contact network, we analyzed the impacts
of the following factors on epidemic transmission and information dissemination: Different cross-
regional jump probability, information dissemination rate, information recovery rate, epidemic
transmission rate, epidemic recovery rate, and the probability of taking preventive behaviors.
We obtained all of the simulation results based on the assumption that at the initial moment, 70,
130, 250, and 550 nodes were scattered in areas A, B, C, and D, respectively. The initial number
of infected nodes in each area was five. All of the results presented in the following denote the
averaged results of 20 experiments.

The simulation was first conducted using the following parameter values: βI = 0.1, μI = 0.5,
βE = 0.6, μE = 0.1, r= 1, pjump = 0, v = 0.03, and ω = 0.2. The changes in the density of nodes
in different states in the information and epidemic layers with time are presented in Fig. 3, which
shows that the density of nodes in state UI gradually decreased and finally reached steady state.
The density of nodes in state RI first gradually increased and then reached steady state. The
density of nodes in the state of disseminating information increased sharply in a short period
of time and then slowly decreased until it reached a value of zero. The peak density of nodes
in the information layer in the state of disseminating information was 27%, and the scale of
information dissemination was 87.9%. The density of nodes in the susceptible state in the epidemic
layer gradually decreased with time until it reached steady state. The density of nodes in the
recovery state gradually increased with time until it reached steady state. The density of infected
nodes reached the peak value in a short period of time and then slowly decreased until it reached
a value of zero. The highest density of infected nodes was 37%, and the scale of the epidemic
spread was 63.8%. By combining the node densities corresponding to various states in each area
given in Figs. 3c–3f, we concluded that the node density of an area had a significant influence
on the spread of the epidemic. As mentioned earlier, the initial number of infected nodes was
the same in the four areas, but the node densities were different. The node density increased from
area A to area D. In area A, where the node density was very low, the peak and scale of the
epidemic infection were very small. In addition, we did not observe any large-scale outbreaks in
areas B and C. However, in area D, which had the highest node density, there was a large-scale
outbreak. The peak density of infected people exceeded 60%, and the spread of the epidemic was
close to 100%.
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Figure 3: Information and epidemic transmission process. (a) Spread of information in the entire
area. (b) Spread of the epidemic in the entire area. (c)–(f) Spread of the epidemic in areas A–D

We also analyzed the convergence of the above model. We extracted the node density values
of the information layer and the epidemic layer in each state at different time steps. If the density
of nodes in each state eventually reaches a stable state over time, it indicates that the model is
convergent. The convergence analysis results are presented in Tab. 1, which shows that for both
the information layer and the epidemic layer, steady state was reached at 50 timesteps, and the
node density of each state converged to a certain value. In Tab. 1, UI (t), AI (t), NI (t), SE (t),
IE(t), and RE(t) represent the node densities in the corresponding states at time t. Considering
these results, we set the time step as 50 for all of the subsequent experiments.

Table 1: Convergence analysis results

ρ
∖
t 10 30 50 70 90 110 130 150

UI (t) 0.145 0.125 0.125 0.125 0.125 0.125 0.125 0.125
AI (t) 0.041 0.001 0.000 0.000 0.000 0.000 0.000 0.000
NI (t) 0.814 0.874 0.875 0.875 0.875 0.875 0.875 0.875
SE (t) 0.383 0.353 0.353 0.353 0.353 0.353 0.353 0.353
IE (t) 0.356 0.052 0.006 0.000 0.000 0.000 0.000 0.000
RE (t) 0.261 0.595 0.641 0.647 0.647 0.647 0.647 0.647
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(1) How does the probability of a node jumping across regions, i.e., pjump, affect the spread
of the epidemic and information?

First, we studied the dissemination of the epidemic and information for the case in which the
cross-region jump probability of nodes in each region was the same. The values of the parameters
were as follows: βI = 0.1, μI = 0.5, βE = 0.6, μE = 0.1, r= 1, pjump = 0.05, v= 0.03, and ω = 0.2.
The results are shown in Fig. 4. By comparing the results in Fig. 4 with those presented in
Fig. 3, we observed that the cross-regional jump of nodes increased the scale of information
dissemination and epidemic spread and greatly increased the overall scale of epidemic infections.
Based on the changes in the nodes in each region, the cross-region jumps of nodes increased the
scale of epidemic infections in each region. In areas where the population density was very low,
the epidemic spread was limited, and its spread was due to the cross-regional jumps of nodes.
In this case, the peak density of nodes in state AI of the information layer was 29%, and the scale
of information dissemination was 98.9%. The peak density of the infected nodes in the epidemic
layer was 49.6%, and the scale of the epidemic spread was 95.7%.

Figure 4: Spread of information and the epidemic at pjump = 0.05. (a) Spread of information in
the entire area. (b) Spread of the epidemic in the entire area. (c)–(f) Spread of the epidemic in
areas A–D

Next, we studied the dissemination of the epidemic and information when the cross-region
jump probability of each regional node was different. The parameters were set as follows: βI = 0.1,
μI = 0.5, βE = 0.6, μE = 0.1, r= 1, v= 0.03, and ω = 0.2. The probability of a node in areas A
and B making a cross-area jump was 0.05, whereas that in areas C and D was zero. The results
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are shown in Fig. 5. When areas C and D, which had large infection scales, were blocked, the
nodes inside them were not allowed to move across areas, and only areas A and B (with small
infection scales) were open to each other. In this case, the peak density of nodes in state AI of
the information layer was 30%, and the information dissemination scale was 90.7%. The peak
density of infected nodes in the epidemic layer was 40.9%, and the epidemic spread was 71.5%.
By comparing the results in Fig. 5 with those in Fig. 3, we concluded that the overall scale of
the epidemic increased, but this increase was small. By comparing results in Fig. 5 with those in
Fig. 4, we observed that blocking areas C and D greatly reduced the scale of epidemic infections.

Figure 5: Spread of information and the epidemic at pjump = 0.05 in areas A and B. (a) Spread
of information in the entire area. (b) Spread of the epidemic in the entire area. (c)–(f) Spread of
the epidemic in areas A–D

(2) How do the information dissemination rate βI and the information recovery rate μI affect
the spread of information and the epidemic?

We repeated the simulation by changing the information dissemination rate βI ; all the other
parameters were constant. The fixed parameter values were μI = 0.5, βE = 0.6, μE = 0.1, r = 1,
v= 0.03, ω = 0.2, and pjump = 0.01, and the values of βI were 0.1, 0.3, 0.5, and 0.7. The change
in the infection density of the entire region and each area in the information and epidemic layers
over time and the change in the infection scale with the four different values of βI are presented
in Fig. 6. It was found that the information dissemination rate increased, the density of nodes in
state AI also increased, and the density of nodes in state RI when the dissemination approached
its end also increased. The information dissemination rate increased, the density of nodes in
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state SE decreased, and the density of nodes in state RE when the spread was approaching
its end also decreased. The information dissemination rate increased from 0.1 to 0.7; the peak
density of nodes in state AI of the information layer increased from 28.4% to 93.7%; and the
information dissemination scale increased from 94% to 99%. The maximum density of nodes
in the infected state within the epidemic layer decreased from 40.9% to 20.5%, and the scale
of epidemic transmission decreased from 81.2% to 65.7%. Note that in the proposed model,
individuals who were in state AI and SE at the same time would take preventive measures with
a certain probability to reduce the probability of being infected, thereby reducing the scale of
epidemic infections.

Figure 6: Impact of the information transmission rate βI on information and epidemic transmis-
sion. (a) Infection density and scale of information in the entire area. (b) Infection density and
scale of disease in the entire area. (c)–(f) Infection density of disease in areas A–D

Next, we conducted a simulation by changing the information recovery rate μI ; the other
parameters remained fixed. The fixed parameter values were βI = 0.1, βE = 0.6, μE = 0.1, r = 1,
v = 0.03, ω = 0.2, and pjump = 0.01, and the values of μI were as follows: 0.3, 0.5, and 0.7.
Fig. 7 presents the following: The change in the infection density of the entire region and each
area in the information and epidemic layers over time and the change in the infection scale with
the three different values of μI . As shown in Fig. 7, the smaller the information recovery rate,
the larger the peak and the final scale of information dissemination in the information layer.
However, the inhibitory effect on the entire epidemic layer and the spread of epidemic in each
region was not clear. The dissemination of information had reached a certain scale, so even
when the information recovery rate decreased, it could not significantly inhibit the spread of
the epidemic.
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Figure 7: Impact of the information recovery rate μI on information and epidemic transmission.
(a) Infection density and scale of information in the entire area. (b) Infection density and scale
of disease in the entire area. (c)–(f) Infection density of disease in areas A–D

Figure 8: Impact of the epidemic transmission rate βE on information and epidemic transmission.
(a) Infection density and scale of information in the entire area. (b) Infection density and scale
of disease in the entire area. (c)–(f) Infection density of disease in areas A–D
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(3) How do the epidemic transmission rate βE and the epidemic recovery rate μE affect
information and epidemic transmission?

We conducted this simulation by changing the epidemic transmission rate βE and fixing the
other parameters. The fixed parameter values were βI = 0.1, μI = 0.5, μE = 0.1, r = 1, v = 0.03,
ω = 0.2, and pjump = 0.01, and the values of βE were 0.1, 0.3, and 0.5. In Fig. 8, we show the
change in the infection density of the entire region and each area in the information and epidemic
layers over time as well as the change in the infection scale with βE. The reduction in the disease
transmission rate not only significantly reduced the peak density of infectious nodes and the scale
of disease transmission but also reduced the peak density of nodes in state AI of the information
layer and the scale of information dissemination. The epidemic transmission rate increased from
0.1 to 0.5, the highest node density of the information layer in state AI increased from 11.2% to
20%, and the information dissemination scale increased from 64% to 85.5%. The highest density
of nodes in an infected state in the epidemic layer increased from 8% to 22%, and the scale of
the epidemic spread increased from 28% to 64.5%. The change in the node state density in each
area reflected the inhibitory effect of reducing the infection rate on the spread of the epidemic.
These results showed that in all the areas, the peak density of infected nodes and the scale of the
epidemic spread decreased with the decrease in the infection rate.

Figure 9: Impact of epidemic recovery rate μE on information and epidemic transmission.
(a) Infection density and scale of information in the entire area. (b) Infection density and scale
of disease in the entire area. (c)–(f) Infection density of disease in areas A–D

Next, we conducted a simulation by changing the epidemic recovery rate μE while keeping
all the other parameters fixed as follows: βI = 0.1, βE = 0.6, μI = 0.5, r= 1, v= 0.03, ω = 0.2, and
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pjump= 0.01. The values of μE were 0.1, 0.3, 0.5, and 0.7. The change in the infection density of
the entire region and each area in the information and epidemic layers over time and the change
in the infection scale with μE are presented in Fig. 9. The increase in the epidemic recovery rate
not only reduced the peak density of information disseminators and the scale of information
dissemination in the information layer, but it also reduced the peak density of infected people
and the scale of the epidemic spread in the epidemic layer. The epidemic recovery rate increased
from 0.1 to 0.7, the peak density of nodes in state AI of the information layer decreased from
28.4% to 14.6%, and the scale of information dissemination dropped from 93.9% to 46%. The
peak density of infected nodes in the epidemic layer decreased from 41.5% to 3.3%, and the scale
of the epidemic spread decreased from 80% to 10%. The change in the node state density in each
area reflected the inhibitory effect of increasing the recovery rate on the spread of the epidemic.
This finding was most prominent in area D, which had the highest population density.

(4) How does the probability of taking preventive actions ω affect information and epidemic
transmission?

Figure 10: Impact of the probability of taking preventive actions ω on information and epidemic
transmission. (a) Infection density and scale of information in the entire area. (b) Infection density
and scale of disease in the entire area. (c)–(f) Infection density of disease in areas A–D

Lastly, we conducted a simulation by changing the probability of taking preventive actions ω;
the other parameters remained fixed. The fixed parameter values were βI = 0.1, βE = 0.6, μI = 0.5,
μE = 0.1, r= 1, v= 0.03, and pjump= 0.01. The values of ω were 0.2, 0.6, and 1. The change in the
infection density of the entire region and each area in the information and epidemic layers over
time and the change in the infection scale with ω are presented in Fig. 10. According to the results
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in Figs. 10a and 10b, increasing the probability of taking preventive actions reduced the peak
density of information and epidemic infections and the final scale of the spread of information
and the epidemic. The probability of taking preventive actions increased from 0.2 to 1, the peak
density of nodes in state AI of the information layer decreased from 27.6% to 20.7%, and the scale
of information dissemination decreased from 94.2% to 83%. The peak density of infected nodes
in the epidemic layer decreased from 40.7% to 19.7%, and the scale of epidemic transmission
decreased from 80% to 58%. As shown in Figs. 10c–10f, the increase in the probability of taking
preventive actions had no clear effect on areas A and B because the rate of infection in these
areas was very low. In area C, the increase in the probability of taking preventive actions reduced
the peak density of infected people and the scale of transmission. It also had the most significant
effect on the peak density of infected people and on the reduction of the scale of infection in
area D.

4 Conclusions

Our analysis of the factors affecting epidemic transmission can provide a helpful scientific
basis for epidemic prevention and control. This study considered the fact that people move around
and tend to be active in fixed areas. We analyzed the dynamic evolution and coupling effect
of information dissemination and epidemic transmission during the epidemic. We constructed a
double-layer epidemic spread–information dissemination network in which the social network of
the information layer was a static network. The network structure did not change over a short
period of time. The physical contact network of the epidemic layer was a dynamic time-varying
network that considered the mobility and regional activity of individuals. After constructing the
double-layer network, we simulated the spread of information and the epidemic in the information
and epidemic layers using the SIR model and studied the impact of several factors on epidemic
transmission and information dissemination. The considered factors included different cross-
regional jump probabilities, information dissemination rate, information recovery rate, epidemic
transmission rate, epidemic recovery rate, and the probability of taking preventive actions.

Through these simulations, we found that increasing the rate of information dissemination
could increase the peak density of information disseminators and the scale of information dis-
semination at the information layer, although this had an inhibitory effect on the spread of the
epidemic. The inhibitory effect of the information layer on the epidemic layer was achieved pri-
marily by enabling informed individuals to take preventive behaviors to reduce the probability of
infection. The simulation results also showed that the higher the probability of taking preventive
behavior, the more obvious the inhibitory effect on the epidemic. Therefore, in epidemic control,
it is necessary to improve the dissemination of information and provide more people with infor-
mation related to the epidemic. In addition, other measures are needed to increase the probability
of individuals taking preventive behaviors, such as making the wearing of masks compulsory
on certain occasions. The results also showed that the scale of the spread of information and
epidemic was larger when people moved across regions over long distances than when they moved
within their current region. Therefore, people should minimize cross-regional transit during an
epidemic. Finally, with respect to lockdown measures, in areas with a high population density and
high infection levels, the lockdown significantly helped to control the epidemic in our simulations.
However, in areas with a small population density and relatively low infection levels, the blockade
policy could be appropriately relaxed.

Although this study provides theoretical guidance for the prevention and control of the spread
of epidemic, there is room for further improvements. In this work, we explored only the impact
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of a single influencing factor on the spread of information and the epidemic. The interactions
between multiple influencing factors were not considered. In addition, we considered that an
individual had only three states in the epidemic layer: Susceptible state, infected state, and recovery
state. However, in real life, an individual can have other states, such as a latent state and an
isolation state. Therefore, in future research, we will increase the number of individual states in
the epidemic layer and study the impact of simultaneous changes in multiple influencing factors
on the spread of information and the epidemic. In addition, deep learning has been shown to
have excellent performance in solving complex problems [24,25] and may provide a new approach
for our future research.
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