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Abstract: The problem of predicting continuous scalar outcomes from func-
tional predictors has received high levels of interest in recent years in many
fields, especially in the food industry. The k-nearest neighbor (k-NN) method
of Near-Infrared Reflectance (NIR) analysis is practical, relatively easy to
implement, and becoming one of the most popular methods for conducting
food quality based onNIR data. The k-NN is often named k nearest neighbor
classifier when it is used for classifying categorical variables, while it is called
k-nearest neighbor regression when it is applied for predicting noncategorical
variables. The objective of this paper is to use the functional Near-Infrared
Reflectance (NIR) spectroscopy approach to predict some chemical compo-
nents with some modern statistical models based on the kernel and k-Nearest
Neighbour procedures. In this paper, threeNIR spectroscopy datasets are used
as examples, namely Cookie dough, sugar, and tecator data. Specifically, we
propose three models for this kind of data which are Functional Nonpara-
metric Regression, Functional Robust Regression, and Functional Relative
Error Regression, with both kernel and k-NN approaches to compare between
them. The experimental result shows the higher efficiency of k-NN predictor
over the kernel predictor. The predictive power of the k-NN method was
compared with that of the kernel method, and several real data sets were used
to determine the predictive power of both methods.

Keywords: Functional data analysis; classical regression; robust
regression; relative error regression; kernel method; k-NN method;
near-infrared spectroscopy

1 Introduction

Near-infrared spectroscopy (NIRS) is a technique for measuring and analyzing reflection
spectra in a class of wavelengths. Fig. 1 illustrates the basic components of the NIR spectroscopy
technique; this measurement technique is analytical, fast, and non-destructive is often used to
measure some parameters in terms of spectrum absorbance. For example, in the pharmaceutical
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industry, it is used in the manufacturing process of a drug to control the active ingredient’s
exact amount. In the food industry, the spectrum can be used to test the forage quality [1]. In
medical science, fluorescence spectroscopy can be used for cancer screening. Finally, in the food
industry, for example, a method of classifying flour products based on resistance spectra of dough
in bakeries.

Figure 1: Schematic representation of the near-infrared NIR spectroscopy-based setup, the basic

Although the NIR has given excellent results when used in various other fields such envi-
ronment and the petrochemical industries, it remains relatively new for its use in virology. This
method has also been used with great success for the identification of HIV-1 and the influenza
virus. The advantage of using this method is that it does not require reagents or test kits that
take a considerable time to perform these tests. For example, we mention the PCR (Polymerase
chain reaction) or RT-PCR (reverse transcription-polymerase chain reaction) test that gives results
in most cases for more than 2 h.

Usually, the NIR spectrometry is combined with some multivariate statistical models, such
as the principal component regression or the partial least regression. To increase the accuracy
of this procedure, we use the recent development in data science. Precisely, we combine the NIR
spectrometry technology with big-data techniques modeling. The statistical modeling of big-data
is an emerging topic of applied statistics. It has received considerable attention during the last
decade. The development of the current technology provides a way to measure different types of
instruments and the informatics tools that motivate this subject’s work. Besides, this advancement
allows the researchers to recover big data being recorded over time.

One of the most advantages of this thematic is the fact that the statistical data can be
treated as curves. Our main goal in this project is to develop a new software code induced from
some recent statistical models adapted for NIR spectrometry data viewed as curves. The proposed
models include the functional version of the PCR regression (principal component regression),
and the PLS regression (partial least squares regression), etc. It is worth noting that the originality
of the nonparametric analysis of functional statistics is that it links the probability structure to
the topological structure to explore the most pertinent information about the data. An alternative
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to the preceding methods, we propose a new smoothing method constructed by the combination
of the nonparametric functional regression methods and the kernel nearest-neighbor scheme. This
new smoothing method keeps the robustness of the weighting functions.

Functional data analysis (FDA) arises mainly to resolve problems relating to time-like curves.
In chemometric, it is usual to measure specific parameters in terms of a set of spectromet-
ric curves that are observed in a finite set of points (functional data). In the past decades,
spectroscopy has steadily gained importance as a rapid and non-destructive analytical technique
in the domains of medicine, chemistry and pharmaceutical, environmental, agricultural, and
food sciences.

Near-infrared spectrometry (NIR) provides benchmark examples coming from chemometrics.
It is an analytical chemometric technology quick technique that involves subjecting a sample to
infrared radiation to measure certain parameters of interest in terms of the absorbance spectrum;
see, among others [2,3]. Absorption spectroscopy is used as an analytical chemistry tool to
determine the presence of a particular substance in a sample and, in many cases, to quantify the
amount of the substance present. The utility of absorption spectroscopy in chemical analysis is
because of its specificity and its quantitative nature. In spectroscopy, the measured spectra are
typically plotted as a function of the wavelength or wave-number but analyzed with functional
data analysis (FDA) techniques. Traditionally, spectral data are analyzed through multivariate
statistical methods such as multiple linear regression (MLR), principal components regression
(PCR), and partial least squares regression (PLS) [4,5], which consider the spectrum as a set of
m different variables (curves).

There are many applications of the FDA in spectrometry. For example, these NIR spectra
have been used in [6] to predict the oil content of the corn samples (multivariate calibration).
In [7], the goal is to predict the composition (fat, sugar, and water content) of biscuit dough
pieces using predictors of the NIR reflectance spectrum of dough pieces at 256 equally spaced
wavelengths. In the food industry, the spectrum can be used to predict the fatness of a piece of
meat (see [8]). NIR spectra are also used to study the forage quality assessment (see [9–12] for
recent advances).

More precisely, this paper aims to use the functional Near-Infrared Reflectance spectroscopy
approach to predict some chemical components with some modern statistical models based on the
kernel and k-NN procedures. In this article, three NIR spectroscopy datasets are used as examples:
Cookie dough, sugar, and tecator data. Specifically, we propose three models for this kind of data:
Functional Nonparametric Regression, Functional Robust Regression, and Functional Relative
Error Regression, with both kernel and k-NN approaches.

The paper is organized as follows. Section 2 describes the prediction problems and the data
used. We discuss our results in Section 3. The conclusion is presented in Section 4.

2 Materials and Methods

2.1 Spectroscopic Analysis
Grid of measurements Near-infrared spectrometry provides benchmark examples coming from

chemometrics. This is a non-destructive technology able to measure numerous chemical com-
pounds in a wide variety of products (food industry, petroleum industry, wood industry, etc.);
see among others [2,13–16]. For instance, let us consider a sample of 72 cookie dough samples.
Each sample is illuminated by a light beam at 700 equally spaced wavelengths (ω1, . . . ,ω700)

in the near-infrared range 1100−2498 nm. For each wavelength ω and each cookie sample i,
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the absorption Xi(ω) of radiation is measured. The ith discretized spectrometric curve is given by
Xi (ω1) , . . . ,Xi (ω700), and Fig. 2 displays the 72 spectrometric curves.

Figure 2: Cookie dough 72 samples of near-infrared spectra

All these curves involve some continuum in their structure, even if they are observed at
discrete points. The terminology of functional data refers to this continuous feature. Figs. 3
and 4 give a benchmark example of such data for the food industry introduced in [17]: 268
samples of sugar were dissolved, and the solution was measured spectrofluorometrically. For every
sample, the emission spectra from 275 to 560 nm were measured in 0.5 nm intervals (i.e., at 571
wavelengths ω1, . . . ,ω571) the ith discretized spectrometric curve is given by Xi (ω1) , . . . ,Xi (ω571).
We mention [18], who studied 215 finely chopped pieces of meat (tecator data). For the ith piece
of meat, one observes a spectrum of absorption Xi(·) sampled at 100 equally spaced wavelengths
ω1, . . . ,ω100 from 850 to 1050 nm.

Figure 3: 268 spectrometric curves sampled of the sugar data
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Figure 4: The 215 NIR spectroscopy curves of the tecator data

Throughout these three examples, which will be our connecting thread, one can remark that
the grid of measurements (i.e., wavelengths) for the spectrometric curves is quite dense.

In chemometrics, there are often function-like absorbance or emission spectra—mainly for
food samples—used to determine certain ingredients’ content. The use of spectra function is
typically much cheaper than alternative chemical analysis.

2.2 Statistical Analysis
This paper aims to present various ways of nonlinear modeling relationships in datasets

containing functional data and discuss methodological aspects. We focus on the particular case
when one regresses a scalar response on an explanatory functional variable. To fix the ideas, let’s
present the mathematical formulation of our prediction problem. Indeed, assume that we aim to
predict the content of certain ingredients: the sucrose content for the cookie dough, the quality
ash in the percentage of the sugar given, and the fat content for the piece of meat. Denoted
contents by Yi, the spectrometric curves associated Xi. Note that Y ’s values for the percentage
of the sugar are discrete; Therefore, we will consider that Y is a continuous approximation.
We assume that the output variable Y and the input variable X are linked by the following
regression formula

Y =m (X)+ ε, (1)

where m(·) is an unknown operator modeling the relationship between X and Y and the white
noise ε represents an independent random variable of X with a symmetric distribution. The
statistical challenge consists of proposing a relevant estimator. Here, we focus our attention
on regression models such that m (X) = E (Y |X) (i.e.,E (ε|X)= 0) , and propose in the following
three models: Functional Nonparametric Classical Regression, Functional Robust Regression, and
Functional Relative Error Regression.

2.2.1 Functional Classical Regression
The nonparametric estimation of the functional regression was initially studied by [19,20],

who used the Nadaraya Watson method to estimate this statistical model. Precisely, the function
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m(.) is explicitly expressed using the least square error criterion by

m(x)= argmin
t

E

(
(Y − t)2|X = x

)
. (2)

It follows that

m (x)=E [Y |X = x] .

So, for all fixed curves x we predict the response y with respect to the criterion in Eq. (2) by
m̂(x) (the classical kernel estimator of m(x)) defined by

m̂(x)=
∑n

i=1YiK
(‖x−Xi‖

hn

)
∑n

i=1K
(‖x−Xi‖

hn

) , (3)

with K is a kernel function and hn is a non-negative real sequence.

2.2.2 Functional Robust Regression
This regression model is obtained by resolving the following optimization problem

θ(x)= argmin
t

E (ρ(Y , t)|X = x) . (4)

ρ is a real-valued Borel function chosen by the user according to the studied data. The model
in Eq. (4) has been introduced in functional statistics by [21,22]. The robustness is the main
advantage of this model. It permits the analysis of the data even in the presence of the outliers.
Its functional estimation is expressed by

θ̂ (x)= argmin
t

∑n
i=1 ρ(Yi, t)K

(‖x−Xi‖
hn

)
∑n

i=1K
(‖x−Xi‖

hn

) . (5)

2.2.3 Functional Relative Error Regression
This last regression is an alternative nonparametric regression to the least square regression

model. It is recently considered in functional statistics by [23]. It is defined by the following rule

r(x)= argmin
t

E

(
(Y − t)2

Y2

∣∣∣∣X = x

)
. (6)

The expression of this regression is explicitly given by

r (x)= E
[
Y−1|X = x

]
E
[
Y−2|X = x

] ,
and its estimator is defined by

r̂(x)=
∑n

i=1Y
−1
i K

(‖x−Xi‖
hn

)
∑n

i=1Y
−2
i K

(‖x−Xi‖
hn

) . (7)
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3 Results and Discussions

The performance of all the models mentioned above is closely linked with the use of different
parameters involved in the estimation. We opted for the asymmetric quadratic kernel defined as
K(u) = 3

4

(
1− u2

)
1[0,1](u). Thus, the smoothness of curves Xi(t) and the smoothing parameter

hn are the most influencing parameters in this prediction issue. Concerning the norm ‖ . ‖, the
distances between the smoothed curves are computed by

∥∥Xi−Xj
∥∥=

√∫ 1

0
(Xi (ω)−Xi (ω))2 dω.

For basic materials on the latter notion, we refer the readers to [19]. On the other hand, the
bandwidth parameter, h, selection is a more important procedure for conducting the estimation.
Our main goal is to compare two methods (kernel CV method and the k-Nearest Neighbors k-
NN method) for our three estimators m̂, r̂ and θ̂ . In the following, we describe the use of these
methods for our proposed estimators.

Using the kernel CV method, we obtain

m̂kernel(x)=
∑n

i=1YiK
(‖x−Xi‖

hopt

)
∑n

i=1K
(‖x−Xi‖

hopt

) , (8)

θ̂kernel(x)= argmin
t

∑n
i=1 ρ(Yi, t)K

(‖x−Xi‖
hopt

)
∑n

i=1K
(‖x−Xi‖

hopt

) , (9)

and

r̂kernel(x)=
∑n

i=1Y
−1
i K

(‖x−Xi‖
hopt

)
∑n

i=1Y
−2
i K

(‖x−Xi‖
hopt

) , (10)

where hopt is the data-driven bandwidth obtained by a cross-validation procedure:

hopt= argmin
h
CV (h) where CV (h)=

n∑
i=1

(
Yi− Ỹkernel

(−i) (Xi)
)2

,

with Ỹkernel
(−i) (Xi) the values of the estimator m̂kernel, r̂kernel or θ̂kernel calculate at Xi.

Using the method of k-Nearest Neighbors k-NN procedure, we obtain

m̂kNN(x)=
∑n

i=1YiK
(

‖x−Xi‖
hkopt

)
∑n

i=1K
(

‖x−Xi‖
hkopt

) , (11)
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θ̂kNN(x)= argmin
t

∑n
i=1 ρ(Yi, t)K

(
‖x−Xi‖
hkopt

)
∑n

i=1K
(

‖x−Xi‖
hkopt

) , (12)

and

r̂kNN(x)=
∑n

i=1Y
−1
i K

(
‖x−Xi‖
hkopt

)
∑n

i=1Y
−2
i K

(
‖x−Xi‖
hkopt

) , (13)

where hkopt is the bandwidth corresponding to the optimal number of neighbors obtained by a
cross-validation procedure:

hk =min

{
h ∈ R

+such that
n∑
i=1

IB(x,h) (Xi)= k

}
,

with

kopt = argmin
k
CV (k) where CV (k)=

n∑
i=1

(
Yi− ỸkNN

(−i) (Xi)
)2

,

where k ∈ {10, 10+ ⌊ n
100

⌋
, 10+ 2

⌊ n
100

⌋
, . . . ,

⌊ n
100

⌋}
(�.� is the ceiling function) and ỸkNN

(−i) (Xi) repre-

sent the values of the estimator m̂kNN , r̂kNN or θ̂kNN calculate at Xi. To evaluate the efficiency of
the proposed model in this prediction issue, we randomly split the n-sample into two parts: One is
a training sample (Xi,Yi)i∈Train (for example, we take 65% of the sample form the cookie dough
data, 75% form the sugar data) which is used for modeling procedure, and the other is a testing
sample (Xi,Yi)i∈Test which is used to verify the prediction effect. The testing sample provides the
mean squared error (MSE) and the relative mean squared error (RMSE) of prediction:

MSE = 1
nTest

∑
i∈Test

(
Yi− Ỹ (Xi)

)2
and RMSE = 1

nTest

∑
i∈Test

(
Yi− Ỹ (Xi)

Yi

)2

,

where nTest is the length of the testing sample and Ỹ(Xi) indicate the prediction values of the
estimators m̂kernel, r̂kernel, θ̂kernel, m̂kNN , r̂kNN and θ̂kNN calculate at Xi. The obtained prediction
results are shown in Figs. 5–7.

Figs. 5–7 give an idea of the accuracy of the predictions corresponding to one run. They
present the last 15th, 16th and 20th of each data’s predictions, respectively: The observed values
(black curve), the predicted values (dashed red for the kernel regression, and green for the k-
NN one) are drawn. It is depicted in Figs. 5–7 that there is a significant gain among the k-NN
models compared to the kernel CV ones. The k-NN models for the classical, robust, and relative
regression give better results than the kernel CV for the classical, robust, and relative regression.
To further explore the performances of the six methods, we carry out M = 100 independent
replications, which allow us to compute 100 values for MSE and display their distribution through
a bean plot. Figs. 8–10 show the bean-plots of the MSE of the prediction values. Moreover,
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Tab. 1 shows that the models in Eqs. (11)–(13) give small MSE followed by those in Eqs. (8)–(10).
The same fact is confirmed by Tab. 2, where we present the RMSE.

Figure 5: Prediction of the last 15 testing cookie dough samples

Figure 6: Prediction of the last 16 testing sugar samples

The values of RMSE are relatively stable and smaller for the three k-NN functional models,
namely m̂kNN , r̂kNN and θ̂kNN as compared to the kernel CV models, namely m̂kernel, r̂kernel and
θ̂kernel. Although the performance of the studied models is varied, the variability of the MSE
and RMSE are relatively stable for the three proposed models k-NN for the classical, robust,
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and relative regression as compared to that of the kernel CV for the classical, robust and relative
regression models.

Figure 7: Prediction of the last 20 testing tecator samples

Figure 8: The bean-plots of the MSE of the prediction values by the six methods for the cookie
dough data

The principal NIR data parameters were evaluated using a sample of 72, 268, and 215 obser-
vations for the cookie dough, sugar, and tecator data, respectively. The results are summarized
in Figs. 5–10. The analyzed parameters are the sucrose content for the cookie dough, the quality
ash in the percentage of the sugar given, and the fat content for the tecator, which are ranged
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between 9.95%− 23.19% for the sucrose content, 8%–33% for the ash and 0.9%–49.1% for the
tecator fat, respectively. Such a data analysis was operated using six functional models: Functional
Nonparametric Classical Regression, Robust Functional Regression, and Functional Relative Error
Regression for both Kernel CV and k-NN procedures (i.e., m̂kernel, r̂kernel, θ̂kernel m̂kNN , r̂kNN
and θ̂kNN).

Figure 9: The bean-plots of the MSE of the prediction values by the six methods for the
sugar data

Figure 10: The bean-plots of the MSE of the prediction values by the six methods for the
tecator data
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The comparison of both prediction plots in Figs. 5–7 indicates that the k−NN method (green
dashed curve) gives better prediction results than the kernel CV approach (red dashed curve).
Figs. 8–10 display various bean-plot which summarize the distribution of MSE computed over 100
experiments based on m̂kernel, m̂kNN , r̂kernel, r̂kNN , θ̂kernel and θ̂kNN from left to right, respectively.
That confirms the previous results, as we can see the distribution of MSE for the k-NN approach
is small and very tight compared to the kernel CV method, as can be clearly seen in Figs. 8–10.
Based on the results in Tabs. 1 and 2, it is clear that the best models (having a small MSE and
RMSE) are m̂kNN , r̂kernel and r̂kNN .

Table 1: MSEs by the six methods for each data

Methods data Classic CV Classic k-NN Robust CV Robust k-NN Relative CV Relative k-NN

Cookie dough 2.9108 2.0372 2.8136 2.0609 3.0574 2.1502
Sugar 2.1599 1.7417 2.1149 1.7183 2.1499 1.7698
Tecator 4.0304 2.2646 3.8297 2.2857 7.2204 3.2498

Table 2: Relative mean squared error RMSE by the six methods for each data

Methods data Classic CV Classic k-NN Robust CV Robust k-NN Relative CV Relative k-NN

Cookie dough 0.0641 0.0406 0.0629 0.0428 0.0487 0.0325
Sugar 0.0349 0.0252 0.0325 0.0249 0.0315 0.0236
Tecator 1.5249 0.2758 1.0383 0.2167 0.3473 0.1357

4 Conclusion

A review of the FDA methodologies, most used in chemometrics, has been presented in this
work next to different applications, most of which are in spectroscopy where the absorbance
spectrum is a functional variable whose observations are functions of wavelength. The work has
been divided into two main parts that can be read independently. The first part (Section 2)
presents a set of chemometrics applications in most of which the aim is to either predict a variable
of interest from the NIR spectrum. The second part (Section 3) summarizes our functional
models’ results based on the proposed methods defined in Eqs. 8–13.

In this work, an alternative approach to deal with spectrometric data has been suggested. This
approach considers a spectrum as a function of the wavelength or wave-number rather than as a
set of separate points. We combine the recent development in Chemistry and modern Statistics.
Specifically, we use the NIR spectroscopy technology from Chemistry, which is an inexpensive,
rapid, and accurate method. Moreover, it reduces the need for conventional wet Chemistry pro-
cedures. On the other hand, from modern statistics, we use some functional models that allow
exploring all the information of the spectroscopy analysis where spectral data are viewed as curves.
Specifically, we propose three models for this kind of data: Functional Nonparametric Regression,
Functional Robust Regression, and Functional Relative Error Regression, with both kernel and
k-NN approach to compare between them. On the real examples studied (Cookie dough, Sugar,
and tecator data), we show that our method using the k-NN procedure is more efficient (gives
better results in the sense of MSE) than those with Cross-validation. To conclude, models of
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intermediate dimensionality in the high-dimensional setting is undoubtedly a highway for deriving
new useful statistical methods for the food industry.
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