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Abstract: In several countries, the ageing population contour focuses on
high healthcare costs and overloaded health care environments. Pervasive
health care monitoring system can be a potential alternative, especially in the
COVID-19 pandemic situation to help mitigate such problems by encouraging
healthcare to transition from hospital-centred services to self-care, mobile care
and home care. In this aspect, we propose a pervasive system to monitor the
COVID’19 patient’s conditions within the hospital and outside by monitoring
their medical and psychological situation. It facilitates better healthcare assis-
tance, especially for COVID’19 patients and quarantined people. It identi�es
the patient’s medical and psychological condition based on the current context
and activities using a fuzzy context-aware reasoning engine based model.
Fuzzy reasoning engine makes decisions using linguistic rules based on infer-
ence mechanisms that support the patient condition identi�cation. Linguistics
rules are framed based on the fuzzy set attributes belong to different context
types. The fuzzy semantic rules are used to identify the relationship among the
attributes, and the reasoning engine is used to ensure precise real-time context
interpretation and current evaluation of the situation. Outcomes are measured
using a fuzzy logic-based context reasoning system under simulation. The
results indicate the usefulness of monitoring the COVID’19 patients based on
the current context.
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1 Introduction

COVID’19 positive older adults with some medical history (comorbidity) have more proba-
bility of suffering from long-term illness or certain severe or life-threatening medical conditions.
They might get terri�ed as soon they came to know about their likelihood of being COVID’19
positive. The psychological pressure on these age groups makes them scared, feeling stressed, and
depressed. The fear of social isolation and feeling of loneliness may increase their mental stress.
Context-aware computing can be an effective solution in such a scenario as it has demonstrated
success in many domains [1–3], thanks to its accuracy. The proposed approach is designed for
facilitating remote monitoring services to improve the quality of care of COVID’19 patients.
A context-aware system for monitoring a patient’s medical and physical conditions receives infor-
mation. It consists of combinations of sensors to gather the patient’s physiological signals to
predict the patients’ current condition through a decision support system and initiate necessary
actions to safeguard the patient’s life. The proposed pervasive context-aware architecture to mon-
itor the patient’s condition uses a fuzzy logic-based context-modelling and reasoning framework.
As shown in Fig. 1, the system consists of the following modules.

a. Wireless Sensor Network (WSN)—Consists of sensors for monitoring the patient’s
vital signs.

b. Remote monitoring services: For monitoring the patient’s physiological signal remotely and
continuously through Body Area Network (BAN), connected to the internet and facilitating
the interaction between patients and caretakers through a web camera and sensors.

c. Reasoning and decision support: To predict the patient’s current situation through current
and previous knowledge and to perform an action accordingly.

d. Cloud Storage: To store sensor data for future analysis services.

It is challenging to obtain a correct and accurate prediction of the current context using the
traditional approaches, especially with the raw data. i.e., the sensor data, which might be imperfect
and incomplete. This research aims to develop an extensible and �exible approach to monitor
the patient’s vital signs based on the current context and predict the patient’s condition even
remotely and act accordingly. The current context is interpreted using a fuzzy reasoning frame-
work, which facilitates meaningful reasoning. The framework and its performance are evaluated
using simulation.

2 Literature Survey

References [4,5] describe the basic concepts of remote patient monitoring while [1,6,7] inves-
tigate related issues such as health conditions’ monitoring on speci�c aspects, scheduling alarm
in the particular situation, and behavioural activities of the patient. Reference [8] reviews the
personal care prototype of wearable devices, like Jawbone UP. Reference [1] illustrates (a) mon-
itoring patients’ activities for an extended period, (b) pattern recognition during sleeping, and
(c) automatic warning indication. CARA project [7] develops the context-aware decision pro-
cessing in a hospital environment and [9,10] propose a framework to facilitate optimized and
continuous care using intelligent reasoning methods for the massive volume of heterogeneous
data. The cascaded reasoning method [2,11] designed a pipeline for reasoning components to
monitor patients. References [12,13] created a context-based emergency alarm system for doctors
to monitor their patients’ health. References [14–17] proposed a prototypal model for operator-
assisted home-based total care networks integrated with a service platform to share patient-related
information. Reference [16] advised a patient’s electrocardiogram (ECG) monitoring collecting and
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displaying the ECG data in real-time. References [18–22] have suggested various methods for
monitoring the patient’s medical condition. Psychological parameters play a vital role in a patient’s
recovery. The positive mental health will make the patient feel better and improve his/her health.
References [23,24] proposed sensor-based activity recognition in smart homes. The researchers
in [25–34] proposed an approach to characterize the patient’s length of stay in the hospital relating
to its context and traits. In this paper, we propose a framework to monitor the patient’s medical
history and psychological factors, especially for the COVID’19 affected older adults.

3 Proposed Methodology

WSN plays a vital role in implementing the proposed healthcare monitoring system, as shown
in Fig. 1.

Figure 1: The proposed healthcare monitoring system’s architecture

According to the design, the patient is monitored by WSN. Once the WSN starts collecting
the data, the gathered information is sent to the BS (base station) for further processing. WSN
and BS are connected through WiFi, ZigBee [35] or Bluetooth. The data processing layer processes
and analyzes the data. Caretakers, hospitals, or healthcare professionals are provided with the
interpretation obtained through the data processing and decision analysis based on the physical
event monitoring, the patient’s medical history, and its comparison with the current context. The
reasoning method is used to understand the patient’s behaviour based on the current context.
Among the various context reasoning decision models available, the fuzzy logic is selected as
it makes it easy to add, delete, and update the rules based on the context. Semantics-based
ontology mechanisms, rule-based expert systems, statistical classi�cation, and instance-based are
examples of existing reasoning mechanisms. However, these approaches need domain knowledge
to fabricate better output. Though the Neural Network (NN) and Bayesian NN (BNN) can
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understand the problem, the system must be trained frequently to update the model weights. It is
proposed to develop a new framework to overcome the frequent update of model weights in the
existing system. The new framework is designed by adapting the rule-based method with learning
skills, making our system more intelligent than the current system. We propose the most suitable
approach to obtain pervasive healthcare monitoring by combining a fuzzy rule-based reasoning
method, a classi�cation model, and a case-based reasoning method into a single framework. This
proposed framework will recognize the patient’s condition based on daily living activities and
their medical history. In the proposed approach, a context-aware healthcare monitoring system is
implemented using a window-based framework (Fig. 2).

Patient Department Doctor BAN Time / 
Context 

Processing & 
Decision

Storage 

Figure 2: Window-based framework

In Fig. 2, “Patient,” “Department,” “Doctor” and “BAN” (Body Area Network—a wireless
network of wearable computing devices) are members of the framework. The sensing operation
is carried out based on the time or context. As the interpretation of the sensor data as the
context is imperfect and incomplete, to make the sensor data meaningful, an extensible and
�exible method is adopted by implementing the processing and decision-making approach. The
working principle of the window-based framework for the hospital management system is shown
in Fig. 3. It comprises the following steps where Pn denotes the ‘nth’ patient, DPn denotes the
‘nth’ department, Dn denotes the ‘nth’ doctor, and Hn denotes the ‘nth’ hospital.

Figure 3: Window-based hospital management system

Step 1: Initialization

Step 1.1: Let Hk be the hospital k, where k= {1, 2, . . . , K} ∀ k ∈H

Step 1.2: Let DPd be the department d, where d = {1, 2, . . . , D} ∀ d ∈DP
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Step 1.3: Let Dokdj be the jth doctor, where j = {1, 2, . . . , J} in the dth department (where

∀ d ∈DP) of the kth hospital (where ∀ k ∈H).

Dokdj = {Do1
11 ∪Do2

12 ∪ . . .∪DoK
DJ} ∀ k ∈H.

Step 1.4: Let Pkdp be the Patient p, where p= {1, 2, . . . , P} in the kth hospital’s dth department.

Pkdp = {P
1
11 ∪P2

12 ∪ . . .∪PK
DP} ∀ d ∈DP, ∀ p ∈ P, ∀ k ∈H

Step 1.5: Let BANdj
p be the BANp, where p= {1, 2, . . . , P} in the jth hospital’s dth department.

BANd
p = {BAN11

1 , BAN11
2 , . . . , BAN21

1 , . . . , BAN12
1 , . . . , BANDK

P } ∀ d ∈DP, ∀ k ∈H

Step 2: Sensing and Processing

Step 2.1: Pkdp (w) and BANdk
p (w) be the amount of data generated from the patient’s Pp

respective BANp in the kth hospital’s dth department.

Step 2.2: Processing of the sensor data using Fuzzy Context Model

After initializing all the requirements and components wherever it is essential to monitor the
patient’s health condition, the next step is to process the sensor data. Moreover, sensors’ data
need to be indexed as context entities’ attributes to perform this operation. A fuzzy context model
is used to structure the context of current raw data and constructed with two models, namely
the low-level context and high-level context models. The low-level contexts are structured into
Personal Context and Environmental Context. In contrast, the high-level contexts consist of the
activity event and medical condition. The patient’s state is obtained from the low-level context
and high-level context that identify the patient’s current condition based on the current context.
The different types of attributes belong to low-level and high-level contexts are listed in Fig. 4.

After pre-processing, the sensor data is indexed into the respective attributes set using a
discrete fuzzy set. The fuzzy set is adapted to represent sensor data attributes as a low-level or
high-level context using the fuzzy rule-based engine. The respective membership function for each
attribute is built with the fuzzy set (Fig. 5). The function is used to represent how each attribute
is taking part in the activity. It is used to measure the degree of involvement of each input.
A membership function symbolizes the degree of participation of each input. It describes the
functional overlap between inputs and eventually agrees on the output response. The attributes
and their corresponding membership functions for our context model are given in Tab. 1

Along with the high-level context elucidation, the reasoning operation is also performed with
the help of the fuzzy set listed in Tab. 1. In the fuzzy reasoning process, the relationship among
the attributes is identi�ed using the fuzzy semantic rules. These Semantic rules are also used to
map the various fuzzy sets. The syntax for the fuzzy semantic rules is de�ned as follows.

“If A is X, then B is Y,” where A and B are the fuzzy numbers in the fuzzy sets X and Y.

The membership values (weighting factors) are used to �nd the supremacy of semantic rules
in the fuzzy output sets. Inputs are combined logically (based on logical methods) to obtain a
speci�ed input’s expected output. For example, consider fuzzy semantic rules given in Tab. 2.



2436 CMC, 2021, vol.67, no.2

Figure 4: Low-level and high-level contexts

Figure 5: Fuzzy context modelling
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Table 1: Attributes, fuzzy sets, and membership function

Attributes Fuzzy set Membership function

{Male, Female} Gender Gender of the person
{Young, Middle-age, Elder} Age Age of the person
{Open, Close} Window Status of window
{Morning, Afternoon, . . ., Late Night} Time Time of the day
{ON, OFF} TV TV status
{Cold, Warm, Hot} Temperature Room temperature
{Mute, Normal, Noisy} Sound Level of noise
{Bedroom, Living Room, . . ., Kitchen} Location Current location
{Dry, Normal, Wet} Humidity Humidity level
{Dark, Normal} Light Status of light
{Hypertension, . . ., Diabetes} Medical condition Health status

Table 2: Fuzzy activity-based semantic rules

Rule 1: If Activity is Sleeping and (TV is ON or Cooker is ON or Lights is ON) then
Situation is Abnormal

Rule 2: If Activity is Sleeping and Location is not Bedroom, then Situation is Abnormal
Rule 3: If Activity is Cooking and Location is Kitchen and Cooker is OFF, then the

Situation is Abnormal
Rule 4: If (Activity is Resting or Activity is WatchingTV) and Duration is VeryLong, then

the Situation is Abnormal

Rule 3 portrays that though the location is the kitchen, the cooker is in the off state. By
this condition, fuzzy reasoning mechanism will predict that the situation is abnormal, and hence
the patient is in an abnormal condition. Psychologically, COVID’19 patients are disturbed due to
the current pandemic and lockdown. We can predict the COVID’19 patients’ condition based on
current context and activity. These activity-based semantic rules will produce a better outcome.
For instance, Rule 2 combines the fuzzy set location and the context to formulate the semantic
rule. Though the patient is not in Bedroom, the patient is sleeping. It says that the patient is
Abnormal, and the patient needs medical assistance immediately. By monitoring the activity of
COVID’19 affected patients, it is possible to predict their psychological and medical conditions.
Tab. 3 lists the examples for Fuzzy Patients’ medical history-based semantic rules. Here a patient’s
medical history and activity event are considered to predict the condition of the patient. In
rule 2, fuzzy sets such as location, TV, and patient’s medical history predict the patient’s status.
Usually, the sensor data is uncertain, inaccurate, and consists of missing information. Due to this
distinctiveness and to make the sensor data meaningful, a rule-based mechanism is proposed by
adopting the fuzzy logic principle.

As shown in Fig. 6, this rule-based system consists of fuzzy sets, rules, and a hypothesizing
engine to predict the sensed data based on the current context. From the inference operation,
the patients’ current status is decided. The fuzzi�cation uses the de�ned membership functions
to process the inputs like ECG (Electrocardiogram), BP (Blood Pressure), Temperature, etc., and
fuzzify them. The inference/hypothesizing engine begins the processing after fuzzifying the input
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with the membership function’s help. It uses the de�ned semantic rule to classify the input from
one or more fuzzy sets to map with the patient’s correct condition.

Table 3: Patient’s medical history based semantics rules

Rule 1: If the activity is not Exercising and (HeartRate is VeryHigh or RespirationRate is
VeryHigh), then Situation is Abnormal

Rule 2: If (Activity is Sleeping or Activity is Resting or Activity is WatchingTV or
Activity is Toileting) and SystolicBlood Pressure is High, and
DynamicBloodPressure is High) then the Situation is Abnormal

Rule 3: If SystolicBloodPressure is VeryHigh and DynamicBloodPressure is VeryHigh,
then Situation is Abnormal

Rule 4: If (HeartRate is VeryLow or RespirationRate is VeryLow) and
(SystolicBloodPressure is VeryLow or DynamicBloodPressure is VeryLow), then
Situation is Abnormal

Figure 6: Fuzzy rule-based engine

After mapping, the defuzzi�cation is performed to extract the fuzzy output, obtaining the
patient’s exact status. Decisions should be made by applying effective data analysis techniques.
Assume that a patient’s blood pressure data A checked on timeframe T= {1, 2, 3, . . . , t} with G=
{W1, W2, . . . , Wm} window frames as shown in Fig. 7. For example, P23

4 represents the patient

‘4’ associated with the department ‘3’ in hospital ‘2’. B32
34 indicates BAN-3 of patient 4 is tied to

the department ‘3’ of hospital ‘2’. The normal blood pressure of three-timeslots (4, 5, 6) in the
second (Fig. 7) window (W2) is checked as 140 (Avg.W2), which is higher than the critical level
of 125, i.e., (if (Avg.Wm> 125)).
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Step 3: Storage and Access

After extracting and processing the sensor data to decide the patient’s condition, it must be
stored for further analysis. For this purpose, cloud assistive technology [36] will bring a better
outcome. Assume that there is a geo-dispersed data center DCn, where {n= 1, 2, 3, . . . , N} placed
in the cloud, connected to all gateways GWm where {m= 1, 2, 3, . . . , M}. With gateways’ help, the
data is transferred and stored in the corresponding cloud data center for future analysis.

Figure 7: Time slot on window-based framework

4 Performance Evaluations

Monitoring and measuring Covid’19 patients’ daily living activities are mandatory to decide
their medical history and psychological condition. It is essential to monitor the daily living activity
of Covid’19 positive patient is to recognize their psychological condition. This daily living activity
can be classi�ed, based on the motion, into (1) the motionless activity or static activity, and
(2) motion full or dynamic activity or complex activity. The static activity corresponds to the
motion which belongs to the human body’s static posture, such as lying, standing, sleeping,
etc., measured as the thigh and trunk posture. Three-dimensional acceleration and orientation of
the thigh and the trunk (t, Ax, Ay, Az, Gx, Gz, Tx, Ty, Tz) are measured continuously using
smartphones and bio harness sensors. The standard deviation in each one-second window of the
thigh or trunk acceleration values determines the motionless activity. When the standard deviation
is lower than a threshold, then the activity is classi�ed as static else dynamic. In our testing, the
threshold value for thigh acceleration was 0.25 m/s, and for the trunk, it was 0.3 m/s to detect
static activity. The patient’s activity state is determined by accelerating the thigh and trunk and
previous activity state. If the acceleration value is above the threshold and the previous state is
static, then the patient activity transits from static to dynamic. The algorithm in Fig. 8 is a simple
rule-based system used for the real-time recognition of static activities. The mean accelerations
over the one-second window are converted to a corresponding inclination angle (α), using the arc
cosine transformation, as described in Eq. (1).

α degrees= 180/5 ∗ arc cos (β/f ) (1)

where β is the mean acceleration of the corresponding axis, f is the earth’s gravity, α in degrees
corresponds to the angle of inclination for the trunk or thigh. Moreover, the real-time classi�-
cation of complex/dynamic activities of Covid’19 patients, the machine learning classi�ers, such
as Bayesian Network, Decision Tree, K-Nearest Neighbors, and Neural Network, are employed.
For new occurrences, the classi�cation model is used to identify the membership. The inference
process starts as soon the classi�cation model is fed with the sensor data and completes with the
help of the features extracted from the sensor data. The patient’s activity is predicted from the
maximum con�dence value.
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input: Extracted Feature Vector, Previous Activity State
output: Activity State
begin

SD-Thigh � Standard Deviation of the Smartphone Acceleration;
SD-Trunk � Standard Deviation of the BioHarness Acceleration;

for each SD-Thigh and SD-Trunk of the feature-vector do
switch Previous Activity State do

case Transitional
if SD-Thigh <=0:25 and SD-Trunk<= 0:3 then

ActivityState = Stationary;
else

ActivityState = Active;
end

end
case Active

if SD-Thigh <= 0.25 and SD-Trunk<= 0.3 then
ActivityState= Transitional;

else
ActivityState= Active;

end
end
case Stationary

if SD-Thigh > 02.5 and SD-Trunk > 0.3 then
ActivityState=Transitional;

else
ActivityState= Stationary;

end
end

endsw
end

end

Figure 8: Algorithm for simple rule based system

Classi�cation Models

Information was obtained from individual patients named physically for supervised learning.
Each person’s data are randomly grouped for training and testing. The classi�cation model is
applied to each record’s training data set and then tested with the respective testing set known
as the personal model. This model is speci�c for each user but cannot be adapted for different
users. Moreover, to overcome the scalability limitation in a personal model, another model is
proposed, as the default model can be adapted for different users. In this model, the diverse user’s
information is joined together to fabricate a standard classi�cation model. Though a common
classi�cation model is built, it may not match each person’s speci�c activity because of the
individuals’ physical divergence. Further, to obtain better performance using the classi�cation
model adapted model, misclassi�ed occurrences are removed or �ltered after evaluating the default
model using a 10-fold cross-validation method.

As shown in Tab. 4, the default model’s and adapted model’s total instances are 6109 and
6827, respectively. The adapted model can be the perfect model for each user as it can be
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built with higher instances. The 10-fold cross-validation is used to test the classi�ers’ ef�ciency
because the adapted model is examined for each speci�c user by applying various machine learning
classi�ers. Tab. 5 lists the performance of different classi�ers. Each adapted model’s classi�cation
accuracy remains consistently above 90%. Fig. 9 plots three different Bayesian network classi�er
models’ accuracy values for eight patients. The default model’s process starts with identifying the
most related/similar previous cases (or problems). Their information is then reused to solve the
problem (similar to a previous case or problem). Next, this solution is modi�ed for the new
problem. The updated solution is retained if it is suitable for solving the new problem.

Table 4: Number of activity instance for different classi�cation models

Activity Personal model Default model Adapted model

Sitting 415 525 605
Standing 302 405 495
Walking 1485 1580 1689
Running 1048 1137 1258
Bending 389 476 598
Walking stairs 1894 1986 2182
Total 5533 6109 6827

Table 5: Weighted average accuracy using different classi�ers and models

Classi�er Precision (%) Recall (%) F1-score (%) MCC (%) Accuracy (%)

Personal model

Bayesian network 98.3 98.3 98.3 98.0 98.3
K-nearest neighbor 99.1 99.1 99.0 98.9 99.0
Neural network 98.8 98.7 98.7 98.6 98.7
Decision tree 99.0 99.0 99.0 98.9 99.0

Default model

Bayesian network 86.3 85.1 85.2 82.8 85.1
K-nearest neighbor 98.1 98.1 98.1 98.0 98.1
Neural network 97.1 96.9 96.9 96.6 96.9
Decision tree 97.9 97.9 97.9 97.6 97.9

Adapted model

Bayesian network 93.2 93.2 93.1 93.0 93.2
K-nearest neighbor 98.3 98.3 98.2 98.0 98.3
Neural network 98.3 98.2 98.2 98.1 98.2
Decision tree 98.5 98.5 98.5 98.3 98.5
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Figure 9: Accuracy of different models using Bayesian network classi�er

The similarity measures involved in case-retrieval very much depend on the application
domain. Further, context awareness and a query-sensitive mechanism are used for the similarity
measure to address these problems. The query-sensitive methodology is developed with context
understanding within our reasoning system, as in Eq. (2).

Qi(P, T)=

∑n
p=1 E ∗Q(p, T)∑n

p=1 E
(2)

where Qi represents the global similarity of the present case (queried) P. The past case T · Qi
is calculated based on the local similarity of the present case, the past case, and the dynamic
weight E. The default model (CBR) is capable of making analogies based on previous experience.
However, to perform reasoning functions, suf�cient solved cases are needed as the reasoning
resources. Supervised learning scheme—labelling the solutions can be tedious. Unsupervised learn-
ing mechanism—by adopting an adaptation technique for CBR derived from fuzzy logic based on
intelligent reasoning and modelling.

• The Fuzzy adaptation model �rst con�gures the fuzzy reasoning engine by setting up fuzzy
sets and rules.
• Then traverse the case base to �nd similar cases using K-NN. Now, based on the traversed

case, predict the weighted median of similarity.
• If the con�dence of the prediction is low, apply the fuzzy adaptation technique.
• Use the fuzzy output to revise the solution of the present case.

Daily activity performance can be measured with the help of a confusion matrix as shown
in Tab. 6

• If the outcome of a prediction is abnormal, and the actual situation is also abnormal, it is
called a true positive (TP).
• If the actual situation is normal, but the predicted situation is abnormal, it is a false

positive (FP).
• Conversely, a true negative (TN) has occurred when both the prediction and actual situa-

tions are normal. A false-negative (FN) is when the prediction outcome is normal, while
the actual situation is abnormal.

The receiver operating characteristic (ROC) is used to evaluate our reasoning framework to
predict accuracy. Fig. 10 describes the ROC curve calculating the TP and the FP rates. Each point



CMC, 2021, vol.67, no.2 2443

in ROC represents the prediction result for three different models. The best possible prediction
method would yield a point in the upper left corner (0, 1).

Table 6: Confusion matrix

Actually abnormal (+ive) Actually normal (−ive)

Predicated abnormal (+ive) TP (Patient is abnormal and
prediction is abnormal)

FP (Patient is normal but
prediction is abnormal)

Predicted normal (−ive) FN (Patient is abnormal but
prediction as normal)

TN (Patient is normal and
prediction is normal)

Figure 10: Receiver operating characteristics curve for anomaly detection

For the Fuzzy adaptation method, the best performance is 96.5% Speci�city, 92.3% Precision,
and 91.8% accuracy (Fig. 11); while setting the con�dence value threshold to 0.7, the normal CBR
approach only gives 91.5% Speci�city, 82.8% Precision, and 89.5% Accuracy.

The proposed method’s packet loss and data transmission rates are compared with the existing
healthcare monitoring system [18]. Tab. 7 describes the amount of data transmitted within 24
hours, the packet loss rate, and the sensor data acquisition frequency. As in Tab. 7, while using
the existing method, the percentage of packet loss is 0.7% for transferring 7MB of data per day.

For the Fuzzy adaptation method, the best performance is 96.5% Speci�city, 92.3% Precision,
and 91.8% accuracy (see Fig. 11); while setting the con�dence value threshold to 0.7, the normal
CBR approach only gives 91.5% Speci�city, 82.8% Precision, and 89.5% Accuracy. The proposed
method’s packet loss and data transmission rates are compared with the existing healthcare
monitoring system [17]. Tab. 7 describes the amount of data transmitted within 24 h, the packet
loss rate, and the sensor data acquisition frequency. As in Tab. 7, while using the existing method,
the percentage of packet loss is 0.7% for transferring 7MB of data per day. In our proposed
method, the data loss of transferring 30 GB data per day is less than 0.64%, as shown in Tab. 8.
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Therefore, the proposed method (in Tab. 8) has a better packet delivery ratio than the existing
method (in Tab. 7). From Tab. 8, the short-distance wireless transmission and remote wireless
transmission are operated normally, and there is less data loss while transmitting the health care
data in real-time.

Figure 11: Accuracy prediction graph for three models

Table 7: Performance table—existing healthcare application [18]

Parameter Acquisition
frequency of the
sensor data (Hz)

Packet
loss-rate (%)

Data
transmitted
in 24 h

Std

Heartrate 0.3 <0.1 25,920 bytes 24
Respiratory 0.3 <0.1 25,910 bytes 24
Patient temperature 0.3 <0.1 25,890 bytes 24
R–R interval 1 <0.1 86,390 bytes 24
Acceleration X 100 <0.1 2,164,986 bytes 24
Acceleration Y 100 <0.1 2,164,980 bytes 24
Acceleration Z 100 <0.1 2,164,900 bytes 24

Table 8: Performance table—proposed healthcare application

Performance factors Healthcare application

Bio harness sensor data size (heartbeat, temperature) 30 GB/day
Transmission capacity of the generated sensor data 29 GB/day
Packet delivery ratio 98.5%
Data loss <0.64%
Energy consumption 73.59 J
Classi�cation accuracy 96.87%
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5 Conclusion

In this article, we proposed a context-aware health monitoring system to monitor the health
and psychological condition of the COVID’19 affected or quarantined elderly patients. This
framework is developed with a fuzzy-reasoning mechanism to make a prediction/decision about
the patient’s status using the event and medical context. A fuzzy context set is used to categorize
the attributes based on the activity of the patient. The patient’s activity and medical history are
recognized using three different classi�cation models; among these fuzzy adapted model yields
the best accuracy since it follows the unsupervised learning method. This proposed method
appreciably improves the reasoning engine’s performance in accuracy, speci�city, and ef�ciency.
By adopting the proposed framework, the COIVD’19 patients, especially the older adults, can
be monitored to analyze their activity based on the context. Moreover, this is obtained by
acclimatizing the adaptation model with the context reasoning method. The proposed method
can enhance the system functionality in security aspects since the patient’s data carries the most
accurate information to undergo treatment encryption standards.
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