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Abstract: In recent years, vehicular cloud computing (VCC) has gained vast
attention for providing a variety of services by creating virtual machines
(VMs). These VMs use the resources that are present in modern smart vehicles.
Many studies reported that some of these VMs hosted on the vehicles are
overloaded, whereas others are underloaded. As a circumstance, the energy
consumption of overloaded vehicles is drastically increased. On the other
hand, underloaded vehicles are also drawing considerable energy in the under-
utilized situation. Therefore, minimizing the energy consumption of the VMs
that are hosted by both overloaded and underloaded is a challenging issue
in the VCC environment. The proper and ef�cient utilization of the vehicle’s
resources can reduce energy consumption signi�cantly. One of the solutions
is to improve the resource utilization of underloaded vehicles by migrating
the over-utilized VMs of overloaded vehicles. On the other hand, a large
number of VM migrations can lead to wastage of energy and time, which
ultimately degrades the performance of the VMs. This paper addresses the
issues mentioned above by introducing a resource management algorithm,
called resource utilization-aware VM migration (RU-VMM) algorithm, to
distribute the loads among the overloaded and underloaded vehicles, such
that energy consumption is minimized. RU-VMM monitors the trend of
resource utilization to select the source and destination vehicles within a pre-
determined threshold for the process of VM migration. It ensures that any
vehicles’ resource utilization should not exceed the threshold before or after the
migration. RU-VMM also tries to avoid unnecessary VM migrations between
the vehicles. RU-VMM is extensively simulated and tested using nine datasets.
The results are carried out using three performance metrics, namely number of
�nal source vehicles (nfsv), percentage of successful VM migrations (psvmm)
and percentage of dropped VM migrations (pdvmm), and compared with
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threshold-based algorithm (i.e., threshold) and cumulative sum (CUSUM)
algorithm. The comparisons show that the RU-VMM algorithm performs
better than the existing algorithms. RU-VMM algorithm improves 16.91%
than the CUSUM algorithm and 71.59% than the threshold algorithm in terms
of nfsv, and 20.62% and 275.34% than the CUSUM and threshold algorithms
in terms of psvmm.

Keywords: Resource management; virtual machine migration; vehicular
cloud computing; resource utilization; source vehicle; destination vehicle

1 Introduction

In the era of technology, vehicular cloud computing (VCC), Internet of vehicles (IoV) and
cloud of things (CoT) are some of the promising technologies to provide better services to
the users [1–6]. Many modern smart vehicles are connected to the cloud in VCC to offer
various services, such as information, storage, cooperation, computation, and infotainment as a
service [7,8]. Each modern smart vehicle is equipped with an on-board unit (OBU). In general,
OBU contains various components, such as storage unit, processor, sensors, global positioning
system (GPS), cameras, communication systems and many more, and OBU is underutilized for
a considerable amount of time [3,9]. Moreover, VCC provides a platform for these underutilized
vehicles’ resources, and these resources can be intelligently utilized by offering services to the users
on a pay-per-use basis [10]. For instance, car drivers and passengers can bene�t by obtaining
services like traf�c management, parking availability, emergency assistance, smooth navigation,
multimedia content sharing, etc., from the VCC [1,11].

A signi�cant number of vehicles is spending considerable amount of time at parking lot and
moving within a given area (hereafter, referred as grid). These vehicles can be participated in
VCC by connecting to nearest �xed roadside unit (RSU), which is further connected to cloud
service provider (CSP) in order to provide backbone infrastructure to the cloud [1,10–12]. On the
other hand, CSP can assign the loads to the RSUs in order to execute the same in the roadside
infrastructure. Upon receiving loads from CSP, RSU can identify suitable vehicle and create a
VM on that vehicle to perform load sharing as reported in [13]. However, the resources of the
vehicle are not fully utilized as the created VM is handling all the resources of the vehicle. Many
studies [13–22] reported that some of these VMs are overloaded and others are underutilized.
Moreover, energy consumption of overloaded and under loaded vehicles are varying with respect
to their utilization. Note that high utilization leads to drastic increase in energy consumption
and low utilization or idle situation leads to wastage of energy. Alternatively, energy consumption
increases exponentially on or above 70% of resource utilization [14,19]. Therefore, it is challenging
task to manage overloaded/source and under loaded/destination vehicles and share their load to
minimize the energy [15,18,23,24]. One of the solutions is to migrate/consolidate the over utilized
VMs of overloaded vehicles to under loaded vehicles in order to improve resource utilization.
This phenomenon motivated us to identify the overloaded vehicles and their corresponding target
vehicles by incorporating threshold value and checking the suitability of the vehicles.

In this paper, we propose a resource management algorithm, called resource utilization-aware
VM migration (RUVMM) that selects the appropriate source and destination vehicles, and suitable
VMs hosted on the source vehicle for the process of VM migration. For this, it monitors the trend
of resource utilization and selects the source and destination vehicles within a pre-determined
threshold limit. It ensures that the resource utilization of any vehicles should not exceed the
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threshold before or after the migration process. In this way, it solves the challenges associated
with VM migration in VCC. RU-VMM is simulated using MATLAB and tested using nine
randomly generated datasets. The simulation results are carried out for RU-VMM algorithm and
compared with two existing algorithms, namely threshold-based algorithm [14,18] and cumulative
sum (CUSUM) [13] in terms of three performance metrics, namely number of source vehicles,
percentage of successful VM migrations and percentage of dropped VM migrations. For the sake
of comparison, we use threshold and CUSUM algorithms as other algorithms are not directly
comparable to our algorithm. The comparison results show that RU-VMM algorithm performs
better than other two algorithms in terms of above performance metrics. Our major contributions
are as follows.

• We develop a resource management algorithm, RUVMM to migrate the over utilized VMs
that are hosted on the overloaded vehicles to the under loaded vehicles.
• The overloaded vehicles are identi�ed by determining a threshold value and checking the

suitability of vehicles.
• The migration process determines the source vehicles and destination vehicles by avoiding

unnecessary migrations and ensures that the resource utilization of any vehicles at any point
of time should not exceed the threshold.
• We simulate the existing algorithms, threshold and CUSUM, and compare their results to

show the ef�cacy of the proposed algorithm.

The rest of the paper is organized as follows. Section 2 discusses various studies carried out
in the �eld of VM consolidation and migration. Section 3 presents the vehicular cloud model and
problem statement followed by the proposed algorithm and performance metrics in Section 4 and
Section 5, respectively. Simulation results are discussed in Section 6. We conclude in Section 7
with some notable remarks and future works.

2 Related Work

In the recent past, many researchers [7,9,25] have explored the advancement and application
of VCC for better traf�c management, entertainment services, assistance in emergencies to drivers,
�nding parking areas, smooth navigation, managing data centers, parking lot and many more.
With an increase in popularity, VCC also faces various notable problems, such as resource man-
agement, energy consumption, bandwidth, latency and many more [17,23,26]. Researchers have
explored different dimensions of VCC to address the above-mentioned problems, which are brie�y
discussed in this section.

Hamdi et al. [18] have stated that high energy consumption makes an adverse effect on cost
and environment. They have highlighted VM consolidation techniques in various dimension and
discussed some important characteristics of VM consolidation techniques like varying nature of
resource requirement, ideal power consumption of physical machines etc. Wu et al. [23] have
proposed a power-aware scheduling algorithm, which uses the utilization threshold strategy to
select host physical machines and minimum utilization gap to select VMs for the process of
VM migration. Here, they used power-aware best �t decreasing to select destination vehicles.
Hsieh et al. [17] have considered both current and future utilization of resources, and predicted
future utilization of resources more accurately. They have determined the host overload and under
load detection to perform this prediction. Li et al. [26] have proposed an energy-ef�cient and
quality-aware VM consolidation technique, which uses four algorithms, namely multi-resource
host overload detection, quality of service-aware VM selection, discrete differential evolution-
based VM placement and under-loaded host detection to improve resource utilization and reduced
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energy consumption. Mekala et al. [16] have focused on the resource requirement rate for task
classi�cation, resource balance ranking and processing element cost to evaluate overloaded host,
under loaded host and VMs for migration. Sharma et al. [27] have proposed a failure prediction
technique, which is based on exponential smoothing to trigger two fault tolerance mechanisms,
namely VM migration and VM check pointing. Many other studies on power and resource-aware
VM placement and VM migration techniques are discussed in [3,10,11,28,29].

Andreolini et al. [14] have presented a dynamic load management approach using cumulative
sum (CUSUM) algorithm to take a decision on VM reallocation. For this, it determines the abrupt
change in the CPU utilization without considering any �xed thresholds. If the change is persistent,
then it selects the corresponding host as a sender host and �nds a suitable guest host to initiate the
migration process. This algorithm achieves better performance and low overhead as it minimizes
the number of migrations. However, the number of source vehicles is increased to a greater extent
due to unknown thresholds over time. Alternatively, they have considered the load behavior of
resources without relying on average measures. Khanna et al. [15] have monitored the performance
of resources. If the performance exceeds a threshold, then it initiates the process of migration. The
threshold value is relying on the service level agreement. Hence, it may vary with respect to the
resources. Hsu et al. [19] have considered 70% as a threshold to perform the task consolidation.
If the load exceeds 70%, then it redirects the load to other resources. However, in the case of
the unavailability of resources, it keeps the load by violating the threshold. Some other studies on
threshold-based algorithms are discussed in [20,21]. Most of the above studies have not considered
the trend behavior of resource utilization of the vehicles while selecting source and destination
vehicles in the process of VM migration. In this paper, we propose an algorithm, RU-VMM,
which focuses on the trend and change in resource utilization to select source and destination
vehicles and continuously monitors the utilization before and after the process of migration, such
that unnecessary migrations are avoided.

3 Vehicular Cloud

3.1 Vehicular Cloud Model
We consider a heterogeneous VCC environment, as shown in Fig. 1, where a large number

of vehicles provide Intra and Inter grid transport facilities. This environment has a signi�cant
difference while comparing with traditional datacenters, and they are moving network pool,
autonomous cloud formation and federation, mobility, and many more. In VCC, the vehicles are
equipped with various resources, which are generally underutilized. These underutilized resources
can host virtual machines (VMs) in order to help the cloud service provider (CSP) to render
various services and improve their utilization. Whenever a vehicle enters in a grid, it broadcasts a
beacon beam that consists of various information about that vehicle. The beacon beam is received
by the roadside unit (RSU) of the respective grid. Moreover, vehicles are connected to the CSP
through the RSU that are present in the grid. Here, CSP is a centralized unit to distribute the
loads among the RSUs. RSUs keep track of the vehicles, and collect and monitor the current
load, utilization of the VMs of the vehicles (i.e., resource utilization) along with the information
like path, speed, parking time of the vehicles, etc. Note that RSU is a centralized component
to monitor the vehicles that are present in a grid. Here, we assume that the resource utilization
of vehicles is identi�able and collected periodically by the corresponding RSU. RSUs receive the
loads from the CSP and distribute the same to the vehicles of the grid. Each vehicle can host one
or more VMs to execute the assigned load and each VM contains its own operating system and
required hardware resources using virtualization technology. To meet better resource utilization
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and load management, migration of overloaded VMs to under loaded VMs is required. However,
the challenging task is the selection of the source vehicles, destination vehicle, and VMs in the
process of migration. It is important to mention that VM migration is associated with various
parameters, such as bandwidth, delay, and cost. Here, unnecessary migrations can signi�cantly
increase these parameters. Therefore, suf�cient attention should be taken in the selection of source
vehicles, destination vehicles, and VMs in order to overcome unnecessary migrations.

Figure 1: A system architecture

3.2 Problem Statement
Let us consider a grid G, in which a set of n vehicles, V = {Vi | i= 1, 2, 3, . . . , n} is presented

and connected to the RSU. Each vehicle Vi, 1≤ i≤ n can host Mi, 1≤ i≤ n VMs. VMU[i, j, k] is
a 3-D matrix which represents the utilization of VMj, 1≤ j ≤Mi at time instance k, 1≤ k≤ t, that
is hosted on vehicle Vi, 1≤ i≤ n (Eq. (1)). Here t represents the time window in which utilization
of the vehicles are periodically collected.

1 2 . . . t

VMUijk=

VMi1

VMi2
...

VMiMi


VMUi11 VMUi12 · · · VMUi1t

VMUi21 VMUi22 · · · VMUi2t
...

... . . .
...

VMUiMi1 VMUiMi2 · · · VMUiMit

 (1)
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It is noteworthy to mention that, the utilization of the vehicle Vi, 1≤ i≤ n at time instance k,
1≤ k≤ t is the summation of the utilization of the hosted VMs at that time. Here, the problem
is to �nd the source vehicles, destination vehicles and VMs for the process of VM migration
such that the number of �nal source vehicles and the percentage of dropped VM migration are
minimized, and the percentage of successful VM migration is maximized. Alternatively, the main
aspect of the problem is to reduce the number of �nal source vehicles in order to minimize the
unnecessary number of VM migration(s).

4 Proposed Algorithm

The proposed resource utilization-aware VM migration (RU-VMM) algorithm is a load bal-
ancing algorithm. It is implemented in the centralized cloud in which RSUs of the grids act as
intermediary between vehicles and cloud. The objective of this algorithm is to migrate the load
from the VMs that are hosted on overloaded vehicles to the VMs that are hosted on under loaded
vehicles. Alternatively, it balances the load of the VMs and improves the resource utilization of
the VMs. This algorithm works in three phases as follows. In the �rst phase, it �nds the set of
probable source vehicles. In the second phase, it �nds the VMs that are hosted on the source
vehicles to initiate the process of migration. In the last phase, it �nds the destination vehicles to
migrate the VMs and performs the actual process of migration. The pseudo-code of these phases
is shown in Algorithm 1 and Procedures 1–4. Tab. 1 shows the notations and their de�nition used
in the pseudo-code of the proposed algorithm. An overview of the proposed algorithm is shown
in Fig. 2.

Table 1: Notations used in the pseudo-code and their de�nition

Notation De�nition Notation De�nition

VUik Resource utilization of vehicle
Vi at time instance k

nfsv Number of �nal source vehicles

VMmig Set of VMs that are suitable
for migration

Vdest Set of destination vehicles

npsv Number of probable
source vehicles

Vsrc Set of source vehicles

SPSV Set of probable source vehicles STD Standard deviation function
ncvmm Number if candidate VMs

suitable for migration
POWER Function to calculate exponentiation

SORT Function to sort in
ascending/descending order

AVG Average

npdv Number of probable
destination vehicles

AVGUTI Average utilization

nvmm Number of successful
VM migrations

RU-VMM algorithm �rst calculates the utilization of the vehicles for a given time window
as shown in Algorithm 1 (Line 1–5). Then it calls the three procedures for selecting probable
source vehicles (Procedure 1), checking their suitability (Procedure 2, which is called from Pro-
cedure 1, Procedure 3 and Procedure 4), �nding VMs (Procedure 3) and destination vehicles
(Procedure 4), respectively.
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Figure 2: An overview of the proposed algorithm
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Algorithm 1: Pseudo code for RU-VMM
Input: A 3-D matrix VMU, n= number of vehicles, t= length of time window and M[i]= number
of VMs in vehicle i
Output: Vsrc, Vdest, VMmig
1. for i= 1, 2, 3, . . . , n do
2. for k= 1, 2, 3, . . . , t do

3. VU [i, k]=
M[i]∑
j=1

VMU [i, j, k]

4. endfor
5. endfor
6. Call FIND-SOURCE-VEHICLES(VU)
7. Call FIND-VM-FOR-MIGRATION(VU, VMU, Vsrc, nfsv)
8. Call FIND-DESTINATION-VEHICLES(VU)

The Algorithm calls Procedure 1 to �nd a set of probable source vehicles. For this, it checks
sum of the utilization of VMs that are hosted by vehicles within a time window t. Note that
the sum of the utilization of the VMs should not exceed 100%. If the utilization value is above
a threshold (say, 70%) at any point of time and it is persistent, then the vehicle is a potential
candidate in the set of probable source vehicles (Lines 2–8 of Procedure 1). Note that the
threshold is determined based on the drastic change in energy consumption and �xed at 70% in
this paper as adopted in [19]. The determination of actual threshold is beyond the scope of this
work. It is noteworthy to mention that the vehicles, whose utilization are above 70% for a small
interval of time, are also potential candidates in the set of probable source vehicles. In order
to avoid this, Procedure 1 calls the Procedure 2 to check the suitability of the source vehicles
(Line 11).

Procedure 1: FIND-SOURCE-VEHICLES(VU)
1. Set npsv= 0, nfsv= 0, SPSV[ ]= 0 and Vsrc = 0
2. for i= 1, 2, 3, . . . , n do
3. for k= 1, 2, 3, . . . , t do
4. if VU[i, k]≥ 70 then
5. npsv+= 1; SPSV[npsv]= i
6. endif
7. endfor
8. endfor
9. if npsv> 0 then

10. for i= 1, 2, 3, . . . , npsv do
11. �ag=Call CHECK-SUITABILITY -OF-SOURCE-VEHICLES(SPSV [i], t)
12. if �ag==TRUE then
13. nfsv+= 1; Vsrc[nfsv]= i
14. endif
15. endfor
16. endif
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Procedure 2 checks the suitability of source vehicles by determining the rolling change in
utilization (Lines 2–8 of Procedure 2). The rolling change is calculated using the equation given in
Line 5. Note that it calculates the utilization for every instance of time and every duration of time.
Then the rolling change values are averaged (Line 7). Next, this procedure calculates the standard
deviation of average values and compares the product of standard deviation and 100 with the
product of standard deviation of utilization of vehicle and a system parameter, λ (Line 10). If the
later value is more, then the vehicle is suitable for a source vehicle (Line 11 of Procedure 2 and
Lines 12–14 of Procedure 1). Note that determination of actual value of the system parameter
is beyond the scope of this work. Otherwise, the vehicle is removed from the set of probable
source vehicles.

Procedure 2: CHECK-SUITABILITY-OF-SOURCE-VEHICLES (veh, t)
1. AVG[t]= 0
2. for k= 1, 2, 3, . . . , t− 1 do
3. temp= 0
4. for k′ = 1, 2, 3, . . . , t− 1 do

5. temp= temp+POWER

((
VU

[
veh, k+ k′

]
VU [veh, k′]

)
,

1
k

)
− 1

6. endfor
7. AVG [k]=

temp
t− k

8. endfor
9. stdroll= STD(AVG)

10. if (stdroll× 100) < (STD(VU[veh, 1]), VU[veh, 2], . . . , VU[veh, t])× λ) then
11. return TRUE
12. else
13. return FALSE
14. endif

Next, the algorithm calls Procedure 3 to �nd a suitable VM from the �nal set of source
vehicles (Line 7 of Algorithm 1). For this, it determines the standard deviation of VM utilization
(Lines 4–6 of Procedure 3) and arranging them in descending order of their standard deviation
(Line 7). Then it �nds the highest standard deviation and make that VM as a potential candidate
for VM migration (Lines 10–12). However, we have not used any elastic computing theory concept
to �nd the potential VM for migration. Next, the suitability of the same vehicle is further checked
(Lines 13–21). If the vehicle is still suitable, then another potential candidate is determined by
following the above process (Lines 9–22). Otherwise, the vehicle is removed from the set of �nal
source vehicles.

Next, the algorithm calls Procedure 4 to �nd the destination vehicles so that the VM of
the source vehicle can be migrated to one of the destination vehicles. For this, it determines
the average utilization of all vehicles, excluding the vehicles that are present in the set of �nal
source vehicles and sort them in the ascending order of their average utilization (Lines 2–7 of
Procedure 4). Then the vehicle with lowest average utilization is selected as a destination vehicle
(Line 9) and the migration process is carried out (Line 11). The suitability of the selected vehicle
is checked to ensure that the destination vehicle should not become the source vehicle after the
successful migration (Lines 10–23).
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Procedure 3: FIND-VM-FOR-MIGRATION(VU, VMU, Vsrc)
1. VMmig[ ]= 0, ncvmm= 0
2. for i= 1, 2, 3, . . . , nfsv do
3. veh=Vsrc[i], STDVM[ ]= 0
4. for j= 1, 2, 3, . . . , M[i] do
5. STDVM[j]= STD(VMU[i, j, 1], VMU[i, j, 2], . . . , VMU[i, j, t])
6. endfor
7. ASTDVM= SORT(STDVM)

8. check= 1
9. while check== 1 do

10. ncvmm+= 1
11. VMmig[nvmm]=ASTDVM[M[i]]
12. M[i]−= 1
13. for k= 1, 2, 3, . . . , t do
14. if VU[veh, k]≥ 70 then
15. �ag=Call CHECK-SUITABILITY -OF-SOURCE-VEHICLES(veh, t)
16. break
17. endif
18. endfor
19. if �ag== FALSE then
20. check= 0
21. endif
22. endwhile
23. endfor

Procedure 4: FIND-DESTINATION-VEHICLES(VU)
1. Vdest[ ]= 0; npdv= 0; AVGUTI[ ]= 0; nvmm= 0
2. for i= 1, 2, 3, . . . , n do
3. if V [i] /∈Vsrc then

4. AVGUTI [i]=
1
t

t∑
k=1

VU [i, k]; npdv+= 1

5. endif
6. endfor
7. Vdest = SORT(AVGUTI)
8. for i= 1, 2, 3, . . . , npdv do
9. veh=Vdest[i]

10. for j= 1, 2, 3, . . . , ncvmm do
11. M[i]+= 1;nvmm+= 1
12. Vveh[M[i]]=VMmig[ncvmm]
13. for k= 1, 2, 3, . . . , t do
14. if VU [veh, k] ≥ 70 then

(Continued)
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15. �ag=Call CHECK-SUITABILITY -OF-SOURCE-VEHICLES(veh, t)
16. break
17. endif
18. endfor
19. if �ag==TRUE then
20. M[i]−= 1
21. break
22. endif
23. endfor
24. endfor

Illustration

We illustrate the proposed algorithm using four vehicles (i.e., V1, V2, V3, and V4) that is
present in a grid. Here, each vehicle can host one or more VMs. The proposed algorithm �rst
calculates the resource utilization of the VMs that are hosted by the vehicles. These values are
shown up to time instance t= 10 in Tab. 2, and their cumulative values with respect to vehicles
and time instances are shown in Fig. 3. Then the proposed algorithm calls Procedure 1 to �nd
the set of probable source vehicles. Here, vehicles V1, V2 and V3 are the set of probable source
vehicles as their resource utilization values exceed 70%.

Table 2: Resource utilization of the VMs

V1 V2 V3 V4

Time VM1 VM2 VM3 VM1 VM2 VM3 VM1 VM2 VM3 VM1

1 16 10 39 04 03 05 03 08 09 01
2 23 18 45 13 22 30 08 07 10 08
3 11 09 36 15 18 43 07 11 14 04
4 04 03 05 21 33 35 09 10 20 07
5 14 13 28 9 11 12 10 9 24 03
6 09 08 27 16 26 27 08 13 48 06
7 11 09 28 19 30 25 12 10 56 03
8 12 07 13 17 29 48 17 15 49 02
9 26 11 21 20 25 42 15 19 54 02
10 05 07 10 14 18 49 16 17 62 03

Figure 3: Resource utilization of vehicles
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Now, the algorithm calls Procedure 2 to check the suitability of the vehicles as source
vehicle(s). For example, let us check the suitability of the vehicle V3. For this, the algorithm
calculates the rolling change (RC) in the resource utilization. For V3, resource utilizations are 20,
25, 32, 39, 43, 69, 78, 81, 88 and 95 for time instance 1 to time instance 10, respectively. Suppose

k= 1 and k′ = 1, RC3 is calculated as
(

25
20

) 1
1

− 1= 0.2500. Note that RC is calculated for each

time instance k and these values are
(

32
25

) 1
1

− 1 = 0.2800,
(

39
32

) 1
1

− 1 = 0.2188, 0.1026, 0.6047,

0.1304, 0.0385, 0.0864 and 0.0795, respectively. Then these RC values are averaged as 0.1990 for

k = 1. Similarly, RC values are calculated for k = 2 (i.e.,
(

32
20

) 1
2

− 1 = 0.2649, 0.2490, 0.1592,

0.3301, 0.3468, 0.0835, 0.0622 and 0.0830) to k = 9 (i.e.,
(

95
20

) 1
9

− 1 = 0.1890), respectively and

the average values, for k = 2 to k = 9, are 0.1973, 0.1981, 0.2048, 0.2178, 0.2037, 0.1954, 0.1925
and 0.1890, respectively.

Next, the algorithm �nds standard deviation of all the averaged values as 0.0084 (i.e., SDarc)
and standard deviation of the utilization as 14.0500 (i.e., SDru) of the vehicle V3. As (SDru×λ=

14.0500×0.5000 (Let)= 7.0250) > (SDarc×100= 0.0084×100= 0.8400), the vehicle V3 is suitable
for a source vehicle. Note that λ is a system parameter and it is set as 0.5 for this illustration.

The vehicle V3 hosts three VMs (i.e., VM31, VM32 and VM33). Now, the algorithm �nds the
suitable VM(s) that is hosted on vehicle V3 by taking the standard deviation of VM utilization
and arranging them in descending order of their standard deviation. The standard deviation of
VM31, VM32 and VM33 is 4.4500, 3.9800 and 21.0400, respectively. As VM33 contains the highest
standard deviation, it is the potential candidate for VM migration. Once the successful migration
of VM33 is over, vehicle V3 is no more suitable for a source vehicle to carry out further migration.

Now, the algorithm �nds a destination vehicle to migrate VM33. For this, it �nds the average
utilization of all vehicles, excluding the vehicles that are present in the set of �nal source vehicles
and sort those vehicles in the ascending order of their average utilization. In this illustration, V4
is only available. Note that VM33 can be migrated to vehicle V4 if the utilization of vehicle V4
after accommodating VM33 should not be a potential candidate for the set of probable source
vehicles. Here, VM33 is migrated to vehicle V4 and vehicle V3 is removed from the set of �nal
source vehicles after this successful migration. As a result, the total number of VM candidates is
one, i.e., VM33.

From the set of probable source vehicles (refer Fig. 3), it is clearly visible that the change
in utilization for vehicle V3 is stable, but change in utilization for vehicle V1 and vehicle V2 is
not stable. In this illustration, our proposed algorithm RU-VMM �nds vehicle V3 as a source
vehicle. Note that apart from vehicle V3, other vehicles, that are present in set of probable source
vehicles, are not suitable for migration. We run the same illustration for the existing threshold-
based algorithm [15,19–21] and CUSUM algorithm [14]. Here, threshold-based algorithm �nds
VM1, VM2 and VM3 as source vehicles and CUSUM algorithm �nds VM2 and VM3 as source
vehicles. The detailed comparison of proposed and existing algorithms is given in the Tab. 3.
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Table 3: Comparison of Comparison of number of source vehicles and percentage of success-
ful/dropped migration for RU-VMM, threshold and CUSUM algorithms

Performance metrics RU-VMM Threshold [15,19] CUSUM [14]

Number of �nal source vehicles 1 3 2
Percentage of successful VM migration 100.00 33.33 50.00
Percentage of dropped VM migration 00.00 66.66 50.00

5 Performance Metrics

In this section, we present three performance metrics to compare the proposed and existing
algorithms. Their de�nitions are presented in the following subsections.

5.1 Number of Final Source Vehicles
The number of �nal source vehicles (nfsv) is the total number of suitable vehicles that are

selected as potential candidates to carry out the process of migration.

5.2 Percentage of Successful VMMigration
The percentage of successful VM migration (psvmm) is the ration between the number of VMs

that are successfully placed at the destination vehicle and the total number of VM candidates.

5.3 Percentage of Dropped Migration
The percentage of dropped VM migration (pdvmm) is the ration between the number of VMs

that are not successfully placed and the total number of VM candidates.

6 Simulation Results

We create a virtual environment using MATLAB R2017a (version 9.2), on a computer system
with Intel(R) core(TM) i7-4790 CPU@3.60 GHz 3.60 GHz, 8 GB RAM, 64-bit Windows 10
operating system for the simulation of the proposed algorithm RU-VMM. We also use MATLAB
R2017a to generate nine datasets by considering three different types of situation, namely low
congestion, medium congestion and high congestion of vehicles. Note that these datasets are
named using the total number of vehicles in a grid (e.g., 500, 1000, 1500, 5000 etc.). Each dataset
further contains three instances of same size. We follow the Monte–Carlo simulation method and
uniform distribution to generate the datasets [5,13]. The resource utilization is collected for one
hour and the average resource utilization is determined in each �ve minutes for the simplicity
of simulation. The detail of the parameters and their respective values is shown in Tab. 4. In
addition, we use simulation of urban mobility (SUMO) traf�c simulator 1.6.0 to generate the
parameters, such as timestamp, lane, position, speed, vehicle acceleration/deceleration and vehicle
length, and network simulator OMNeT++. We also use IEEE 802.11p with ITS band of 5.9
GHz to exchange the data between the vehicles and/or the RSUs [30]. This band enables wireless
access in vehicular environments. We use a open source hybrid simulation framework, called Veins,
which uses IEEE 802.11p for communication and to integrate two simulators, namely SUMO and
OMNeT++ using traf�c control interface (TraCI) [31]. In the simulation process, we consider a
city map (Bhubaneswar, Odisha) as shown in Fig. 4, which consists of a set of lanes. The other
con�guration parameters are shown in Tab. 5.
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Table 4: Parameters and their respective values

Parameter Values

# of Vehicles Low: [500, 1000, 1500]
Medium: [5000, 10000, 15000]
High: [50000, 100000, 500000]

# of VMs [3∼1] VMs per vehicle
Duration 1 h
Resource utilization of VMs [1∼99]

Figure 4: A city map

Table 5: Parameters and their respective values in SUMO and OMNeT++

Parameter Values Parameter Values

Area 1500× 1500 m2 Number of lanes 2×Direction
Speed of vehicles 25 m/s Vehicle acceleration 3.0 m/s2

Vehicle deceleration 6.0 m/s2 Number of vehicles 500∼5000
Length of vehicles 3.5 and 4.5 m Simulation time 3600 s
Number of simulations 3 Bitrate 5 Mbps
Communication range of vehicles 250 m

The simulation results of the proposed algorithm, RU-VMM and two existing algorithms,
threshold and CUSUM are compared in terms of number of �nal source vehicles and percentage
of successful/dropped VM migration as shown in Figs. 5 and 6, respectively. Note that we present
the average of three instances per dataset for the comparison of the proposed and existing algo-
rithms. The simulation results show the better performance of the proposed algorithm RU-VMM
in comparison to the existing algorithms. RU-VMM algorithm improves 16.91% than the CUSUM
algorithm and 71.59% than the threshold algorithm in terms of nfsv, and 20.62% than the
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CUSUM algorithm and 275.34% than the threshold algorithms in terms of psvmm. The simulation
results are also carried out using SUMO and OMNeT++, and compared in terms of percentage
of dropped VM migration as shown in Fig. 7. Here also, the proposed algorithm outperforms
the existing algorithms. The rationality behind this better performance is as follows. (1) The
proposed algorithm �nds the RC of set of probable vehicles to determine continuous increase
in utilization. (2) The proposed algorithm uses standard deviation to monitor the abrupt change
of VMs. (3) The proposed algorithm restricts the VM candidates by continuously monitoring the
utilization after each successful migration.

Figure 5: Graphical comparison of nfsv for RU-VMM, threshold and CUSUM algorithms

Figure 6: Graphical comparison of psvmm for RU-VMM, threshold and CUSUM algorithms

Figure 7: Graphical comparison of pdvmm for RU-VMM, threshold and CUSUM algorithms

7 Conclusion

In this paper, we have presented a novel algorithm RU-VMM for VM migration in vehicular
cloud computing. The objective of the proposed algorithm is to migrate the load from the
overloaded vehicles to the under loaded vehicles. For this, RU-VMM creates a set of probable
sources vehicles and monitors the rolling change in resource utilization to select the �nal source
vehicles. Then it �nds a destination vehicle to migrate the VM by continuously monitoring the
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resource utilization of the destination vehicle and the source vehicle. The proposed algorithm
has been simulated using MATLAB and compared with two existing algorithms, threshold and
CUSUM using twenty-seven instances of nine dataset. The comparison has been shown in terms
of three performance metrics, namely number of �nal source vehicles, percentage of successful
migration(s) and percentage of dropped migration(s). The comparison of simulation results has
shown that the proposed algorithm RU-VMM outperforms the two existing algorithms in terms
of three performance metrics.

The proposed algorithm has not considered the bandwidth and delay associated with VM
migration, which can be considered as a future work. Moreover, determining an appropriate
threshold to prepare a set of probable source vehicles is very much interesting and beyond the
scope of this paper. It can be further investigated to develop more ef�cient algorithm. We have
not considered the parameters associated with driving strategies, such as speed, acceleration, path
and many more, which can be considered as a future work. We have also not considered the
road accident and emergency scenarios in our proposed model and algorithm, and not tested the
proposed algorithm in the actual environment. The congestion scenarios can be generated using
SUMO by taking the number of vehicles and speed of the vehicles with respect to the traf�c
routes. We will extend our work by incorporating these scenarios in our future work.
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