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Abstract: In this paper we propose an ef�cient process of physiological artifact
elimination methodology from brain waves (BW), which are also commonly
known as electroencephalogram (EEG) signal. In a clinical environment dur-
ing the acquisition of BW several artifacts contaminates the actual BW
component. This leads to inaccurate and ambiguous diagnosis. As the sta-
tistical nature of the EEG signal is more non-stationery, adaptive �ltering is
the more promising method for the process of artifact elimination. In clinical
conditions, the conventional adaptive techniques require many numbers of
computational operations and leads to data samples overlapping and instabil-
ity of the algorithm used. This causes delay in diagnosis and decision making.
To overcome this problem in our work we propose to set a threshold value
to diminish the problem of round off error. The resultant adaptive algorithm
based on this strategy is Non-linear Least mean square (NL2MS) algorithm.
Again, to improve this algorithm in terms of �ltering capability we perform
data normalization, using this algorithm several hybrid versions are developed
to improve �ltering and reduce computational operations. Using the method,
a new signal enhancement unit (SEU) is realized and performance of various
hybrid versions of algorithms examined using real EEG signals recorded from
the subject. The ability of the proposed schemes is measured in terms of con-
vergence, enhancement and multiplications required. Among various SEUs,
the MCN2L2MS algorithm achieves 14.6734, 12.8732, 10.9257, 15.7790 dB
during the artifact removal of RA, EMG, CSA and EBA components with
only two multiplications. Hence, this algorithm seems to be better candidate
for artifact elimination.

Keywords: Adaptive algorithms; artifacts; brain waves; clipped algorithms;
signal enhancement unit; wireless EEG monitoring

1 Introduction

Electroencephalogram (EEG) is the key tool to illustrates the functionality of various seg-
ments of the brain. Any physiological abnormality in the brain results abnormalities in the
biopotentials generated in the neurons and causes medical ill conditions in the patient. As per the
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surveys of world health organization reported in [1–4] brain wave disorders responsible majority
of mortality during nowadays. Hence, high resolution EEG signals are needed in the diagnosis
of several deceases. During the acquisition of brain waves, various physiological components
like respiration artifact, muscle potential, cardiac activity and potential due to eye blink will
contaminates the brain wave component. In clinical scenario these un-wanted components are
considered as respiration artifacts (RA), Electro Muscle Artifact (EMA), Cardiac signal arti-
fact (CSA) and Eyeblink artifact (EBA). These artifacts contaminate the signal quality, which
is required for abnormality identi�cation. Therefore, in remote EEG monitoring as well as in
automatic EEG monitoring systems an important task is artifact removal. Since the artifacts
masks the tiny features of brain wave, it is highly desirable to eliminate these artifacts and to
facilitate high resolution brain wave for analysis and diagnosis. Among the various techniques
of artifact removal, the adaptive artifact elimination is a promising method. This is because
adaptive techniques are able to vary the weights based on input noisy signal. Also, among various
physiological signals, the brain wave has a very non-stationary pattern. Thus, conventional �ltering
techniques are not suitable for artifact elimination in brain waves. Hence, adaptive FIR �lters are
the best solution in this process. Several adaptive �ltering techniques are developed to eliminate
artifacts from physiological signals. These are presented in several contributions like [5–10]. In the
presence of artifacts, the brain waves are ambiguous and needed to be eliminated. Due to tech-
nological developments in the brain wave analysis several techniques like brain computer interface
(BCI), source localization, remote health care monitoring, machine learning, etc., also needs pre-
processing of brain waves to facilitate high resolution EEG components for diagnosis. Several such
contributions are found in the literature [11–14]. Therefore, a typical remote health monitoring
network consists of signal recording machine, telemetry link, brain computer interface and control
station. Another important aspect of a remote brain care system is computational complexity.

In wireless EEG monitoring systems, the computational complexity is a major concern to
be concentrated. If the received �lter length is large, much time is required to perform the
�ltering operations, which are in terms of additions and multiplications. This cause overlapping
of data values at the input of the SEU. To achieve less computational complexity, we develop the
hybrid versions of MN2L2MS and clipped algorithms based on [15]. In [16] a methodology of
less computational operations is presented based on sign-based algorithms. During some serious
situation of the patient, some samples of EEG component becomes zero and undergo �uctuations,
cause weight variations and leads to ambiguities in abnormality identi�cation. To overcome such
ambiguities, we set a threshold to error value based on the frame work presented in [17–19]. By
introducing this threshold in conventional LMS, it is modi�ed as Non-Linear LMS (NL2MS). To
improve convergence speed and to improve �ltering capability we apply data normalization. The
normalization with respect to data vector of Non-Linear LMS is termed as Normalized Non-
Linear LMS (N2L2MS). This increase the number of computations of the denominator part of
the algorithm equal to tap length. To avoid this, we modi�ed the N2L2MS algorithm such that, the
normalization is performed with respect to maximum of the input vector instead of all the values
of the vector. As a result, the number of multiplication operations required in the denominator is
only one. This algorithm is termed as Modi�ed N2L2MS (M N2L2MS) algorithm. The resultant
algorithms are Modi�ed Clipped N2L2MS (MCN2L2MS) algorithm, Modi�ed Sign (MSN2L2MS)
algorithm and Modi�ed Sign Sign N2L2MS (MS2N2L2MS) algorithm. Using this adaptive FIR
frame work we develop a signal enhancement unit (SEU) to eliminate various physiological
components from brain wave in clinical scenario. The performance of various algorithms in SEU
are tested experimentally using real EEG signals.
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2 Hybrid Adaptive Filter for Brain Wave Enhancement

In the artifact elimination process the key element is the adaptive algorithm, which trains the
FIR �lter to change its coef�cients. Let us consider ‘L’ to be the length of FIR �lter. To facilitate
ability to alter coef�cients of �lter in accordance to the artifact component this FIR �lter is
associated with an adaptive algorithm initially. Based on this strategy and using the framework
of artifact elimination we develop an ef�cient adaptive artifact eliminator (AAE) which has better
convergence, �ltering ability, stability and less computational complexity. Fig. 1 shows a typical
schematic diagram of an AAE. Let E = e1 + a1, here, E is the recorded signal of EEG, which
combines the de�nite brain activity component (e1) and artifact component (a1).

Figure 1: Typical block diagram of signal enhancement unit for brain wave analysis

A random component a2 is taken as reference component. The weight coef�cient vector is
w(n) of the �lter in SEU, y(n) is the convolution between w(n) and a2. The adaptive algorithm
trains a2 , become close to a1, so that the summer performs the operation of e1 + a1 − a2. As
the number of iterations are going on, a1and a2 come close to each other and maximum of their
components get cancel with each other and actual brain wave component B(n) will come out
of SEU. The component f(n) is the feedback signal, it drives the adaptive algorithm as error
signal, based on this the weight updating process will be repeated. The mathematical expression
for the LMS driven SEU is given by, w (n+ 1)=w (n)+ s ·E (n) · f(n). In this expression, w(n+ 1)
is the next weight coef�cient of the �lter, w(n) is the present weight vector, ‘s’ is the step size
of the adaptation, E(n) is the input brain wave which is contaminated with physiological and
non-physiological artifacts, f(n) is the feedback signal. The major limitation of the conventional
LMS is gradient noise ampli�cation [20,21]. Normalized version of LMS (NLMS) achieves better
convergence and enhancement [22,23]. The mathematical recursion for this technique is written as,

w (n+ 1)=w (n)+ s (n)x (n) f (n) (1)

Here, the step size parameter is written as,

s (n)=
s

ε+‖E (n)‖2
(2)

In the next version of NLMS we normalize the step size with the maximum value of data
vector E(n). This minimizes the number of computations in the denominator of the weight update
recursion.

w (n+ 1)=w (n)+
s

ε+max‖E (n)‖2
E (n) f (n) (3)
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In physiological signal monitoring applications during critical conditions minute errors leads
ambiguity in diagnosis. During critical conditions the decision has to be make instantaneously.
To avoid this, a non-linear operation is combined with LMS algorithm, which results non-linear
LMS (NL2MS) and is able to eliminate the ambiguities of round-off errors [24,25]. We use this
property of NL2MS in the process of artifact elimination in EEG signals. This nonlinearity is
de�ned as,

g{e} =


e− d, e > d > 0

0, −d < e < d

e+ d, e <−d

 (4)

where d is threshold.

When applied to the error signal, it converts the LMS update recursion equation to

w (n+ 1)=w (n)+ sg{e(n)}x (n) (5)

This is the mathematical recursion for NL2MS algorithm. To achieve better convergence and
enhancement we combine this NL2MS algorithm with NLMS and results normalized non-linear
LMS (N2L2MS). The mathematical expression for this algorithm is given as,

w (n+ 1)=w (n)+ s(n)g{e(n)}x (n) (6)

where s (n)=
s

ε+‖x (n)‖2

A generalized �ow diagram for the proposed SEU for brain wave enhancement is shown in
Fig. 2. As in remote patient care monitoring applications the computational complexity of the
processing techniques is a key element. If the number of multiplication operations for updating
the weight coef�cients increases the samples at the input port increases and overlap on each
other and causes information loss. To overcome this problem, the impulse response of the receiver
must be increased, but minimizing the number of computational operations of signal conditioning
technique is an optimum solution. So, we developed hybrid versions of adaptive algorithms
by combining the N2L2MS algorithm with sign-based algorithms. The three-familiar sign-based
algorithms are clipped algorithm, sign algorithm and sign sign algorithm. The hybrid versions
of N2L2MS and signed algorithms are named as, clipped N2L2MS algorithm (CN2L2MS), sign
N2L2MS (S N2L2MS), sign sign N2L2MS (S2N2L2MS) algorithms respectively. Again, these
normalized versions of the algorithms suffer with a problem of computational complexity due
to normalization. This is due to the normalization with respect to the input data vector of
length ‘L’. In this operation ‘L’ number of multiplications are needed. To avoid this problem
further N2L2MS is modi�ed such that in the data normalization operation, the normalization
is performed with respect to the maximum data value of the input vector. These versions of
the proposed algorithms are called modi�ed N2L2MS algorithm (MN2L2MS), modi�ed clipped
N2L2MS algorithm (MCN2L2MS), modi�ed sign N2L2MS algorithm (MS N2L2MS), modi�ed
sign N2L2MS algorithm (MS2 N2L2MS) respectively.

The weight update recursions for modi�ed N2L2MS algorithm is given as,

w (n+ 1)=w (n)+ms(n)g{e(n)}x (n) (7)

where ms (n)=
S

ε+ xmax ∗ xmax
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Figure 2: Flow chart of adaptive artifact cancellation algorithm for EEG analysis

Here, ms(n) is the modi�ed step size, which is the normalized version with respect to max-
imum value of data vector instead of normalization with respect to entire input data vector.
This minimized computational complexity in the denominator by an amount L − 1, only one
multiplication is needed for this maximum data normalization. Now we propose to combining
clipped algorithm with MN2L2MS algorithm we can minimize the number of computations for
performing the �ltering process. The theory and analysis of clipped algorithm is presented in [15].
The resultant algorithm is modi�ed clipped N2L2MS algorithm (MCN2L2MS). Its weight update
phenomenon mathematically can be written as,

w (n+ 1)=w (n)+ms(n)g{e(n)}sgn{x (n)} (8)

where sgn{ } is a clipping function and is represented as follows,

Sgn {x (n)} =


1: x (n) > 0

0: x (n)= 0

−1: x (n) < 0

 (9)
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Similarly, by combining Sign LMS (SLMS) and Sign Sign LMS (SSLMS) with MN2L2MS
results MSN2L2MS and MS2 N2L2MS algorithms respectively. The weight update mechanism for
these techniques can be written as,

w (n+ 1)=w (n)+ms(n)sgn{g[e (n)]}x (n) (10)

w (n+ 1)=w (n)+ms (n) sgn {g [e (n)]} sgn{x (n)} (11)

Therefore, using these algorithms, namely, N2L2MS, MN2L2MS, MCN2L2MS, MSN2L2MS
and MS2N2L2MS we develop various signal enhancement units. The convergence curves for LMS
algorithm and its signed algorithms versions are shown Fig. 3. These illustrations are plotted
between MSE and iteration number. MSE is calculated using the relation, i.e., ξ=E{|e (n) |2} [21].
These curves are obtained during the Gaussian noise removal process to test the feasibility of
adaptive algorithms in the adaptation process. From Fig. 3 among the algorithms LMS outper-
forms, but the convergence characteristics of CLMS is just inferior than LMS. Fig. 4 con�rms
that maximum normalization strategy improves the convergence performance of the algorithms.
In this case, also the clipped version of MN2L2MS is just inferior than MN2L2MS.
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Figure 3: Convergence analysis curves for LMS and its signum variants

The computational complexity of the above-mentioned enhancement techniques is shown in
Tab. 1. In signal processing circuits, the signum based techniques require a smaller number of
multiplications than their counterparts because of clipping operations. So, we have used these
signum based hybrid versions in our realizations to minimize the computational burden of the pro-
posed SEU. Among the three sign-based algorithms MCN2L2MS, MSN2L2MS and MS2N2L2MS,
MS2N2L2MS has less computational complexity. But as the data vector and error component
are undergoing clipping results in the much quantity of information will be missed in the signal
enhancement operation. Hence, the �ltering ability of the technique is poor. This is also evident
form the �ltering ability presented in the next section. The MN2L2MS has the complexity in
terms of multiplications equal to MSN2L2MS, but due to error clipping its resolution is inferior
than MN2L2MS. So, MSN2L2MS is also not a good candidate for artifact elimination process.
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Whereas, in MCN2L2MS the data vector is clipped and its computational complexity is nearly
equal to conventional LMS in terms of multiplications with increased convergence characteristics.
Also, the number of multiplications required in the second part of the weight update recursion
is independent of �lter length. Therefore, based on the analysis of various algorithms in terms
of convergence characteristics and number of multiplications, the MCN2L2MS is seems to be a
better candidate for brain wave analysis in wireless EEG monitoring devices as well as in remote
health care monitoring systems.

0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

-30

-25

-20

-15

-10

-5

0

M
S

E

MNNLLMS
MCNNLLMS
MSNNLLMS
MSSNNLLMS

Figure 4: Convergence characteristics of N2L2MS and its hybrid versions

Table 1: Complexity of various adaptive algorithms for artifact elimination in brain waves

S.No. Algorithm Multiplications Additions ASC Divisions

1. LMS L+ 1 L+ 1 Nil Nil
2. N2L2MS 2L+ 1 2L+ 1 Nil 1
3. MN2L2MS L+ 2 L+ 1 Nil 1
4. MCN2L2MS 2 L+ 1 Nil 1
5. MSN2L2MS L+ 2 L+ 1 Nil 1
6. MS2N2L2MS Nil Nil L+ 1 1

3 Experimental Results and Analysis

To demonstrate the ability of the signal enhancement scheme in health care monitoring
contest we have recorded several brain waves in various physiological scenarios using the Emotive
EPOC brain wave acquisition headset [24]. These electrodes are arranged according to a grid as
per the international 10–20 system, these are designated as per the method presented in [25].
By utilizing brain computer interface method, we collected brain waves from 5 different subjects
with both physiological and non-physiological artifacts. The EPOC acquisition system samples
the channels at a rate of 128 PPS, all these pulses are in the 4-byte �oating-point format
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corresponding to the bio-potential for individual electrode. In these experiments, we have collected
10,000 samples of EEG signal from the subject. To facilitate a high-resolution signal, we have
shown 1000 samples of the brain data. The performance of various SEUs in the process of
signal conditioning is measured in terms of signal to noise ratio improvement (SNRI), excess
mean square error (EMSE), misadjustment (MSD) and correlation. The SNRI is de�ned as the
difference in the signal to noise ratio before the operation of artifact removal and after the
operation of artifact removal. It is the excess amount of the error than the minimum mean square
error of the adaptive process. Whereas minimum mean square error is the minimum amount of
error obtained by an optimum �lter. It is a dominant parameter to compare different adaptive
algorithms. Correlation is the similarity between the �ltering signal and a clean signal without
any artifacts. These performance measures are measured in ten experiments on individual data
and averaged. These results are shown in Tabs. 2 and 3. Also, these performance measures are
illustrated in Figs. 9–12. A Gaussian noise with 0.01 variances from the mean of the brain wave
data is added to resemble channel noise in a wireless EEG system, the step size parameter is
taken as 0.01. In our work, we used �ve diversi�ed samples of brain data, the data set consists
of �ve samples namely, EEG1, EEG2, EEG3, EEG4 and EEG5 to obtain consistent results
from SEUs. To perform experiments using the recorded data, we developed various SEUs using
LMS, N2L2MS, MN2L2MS, MCN2L2MS, MSN2L2MS, MS2N2L2MS algorithms. A typical noise
generator is used in the experiments to facilitate reference signal to the signal enhancement
unit. The �lter length is chosen as 5. As the �lter length increases the �ltering process will be
accelerated but excess mean square error also increases. This in turn decreases the signal to noise
ratio. So, we have chosen �lter length as 5. The experimental �ndings of artifact elimination are
described case by case in the following sub-sections.

3.1 Adaptive Artifact Elimination of Respiration Artifacts (RA) From EEG Signals
This experiment proves the RA elimination process from EEG component. The raw brain

wave component is taken as input to the SEU as shown in Fig. 1, this input component is
a combination of actual brain action potential and non-physiological noise contamination, it is
designated as e1 + a1. The reference signal given to the adaptive FIR �lter is a2. The adaptive
algorithm trains the FIR �lter coef�cients, such that a2 becomes closer to a1. The experimental
results after artifact elimination is shown in Fig. 5. From this �gure, it is depicted that Figs. 5e
and 5f are showing high-resolution brain wave components than other subplots. These are results
are obtained due to SEUs based on N2L2MS and its signum based variants. Again, by examine
the performance measures in terms of convergence rate, SNR, excess mean square error, misadjust-
ment, among the various algorithms N2L2MS based SEU achieves highest performance measures.
But, among all the algorithms MCN2L2MS based SEU requires less amount of computational
complexity in terms of multiplications by an amount of �lter length, in this case it is ‘L’, shown
in Tab. 1. However, in terms of other performance measures MCN2L2MS is little bit inferior than
N2L2MS algorithm based SEU. This fact is depicted by examine Fig. 5, Tabs. 2 and 3. Therefore,
as a tradeoff the little bit inferior performance of MCN2L2MS based SEU could be tolerated than
SEU based on N2L2MS, as MCN2L2MS needs lesser number of multiplications by an amount
‘L’, which is �lter length in this case. Hence, MCN2L2MS based SEU is suitable for elimination
of artifacts from brain waves for EEG analysis in remote health care monitoring applications.
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Table 2: Performance measures in terms of SNRI for signal enhancement process (in dBs)

Artifacttype Sample No. SNRI due to various signal enhancement techniques
LMS N2L2MS MN2L2MS MCN2L2MS MSN2L2MS MS2N2L2MS

RA EEG1 7.8476 16.3562 15.7870 14.6734 12.7342 10.6472
EEG2 7.2387 16.2794 15.5632 14.1979 12. 0637 10. 6422
EEG3 7.1343 16.1133 15.3254 14.0256 12. 0364 10. 6241
EEG4 7.5372 16.3511 15.6334 14.6232 12. 6523 10. 6456
EEG5 7.9362 16.7231 15.9343 14.9454 12. 9342 10. 7643
Average 7.5388 16.3646 15.6487 14.4931 12.7342 10.6472

EMG EEG1 6.2187 15.9572 13.9448 12.8732 10.9245 8.8421
EEG2 6.3654 15.7810 13.8437 12.5742 10.8920 8.6433
EEG3 6.7382 15.5631 13.5351 12.4265 10.6342 8.4531
EEG4 6.8365 15.5372 13.4523 12.3721 10.2755 8.1791
EEG5 6.8436 15.0863 13.4437 12.0728 10.0264 8.1257
Average 6.6005 15.5850 13.6439 12.4638 10.5505 8.4487

CSA EEG1 4.9953 13.9872 12.9196 10.9257 9.8647 7.7742
EEG2 4.9643 13.7995 12.8743 10.8430 9.8270 7.5631
EEG3 4.5218 13.7436 12.6319 10.7341 9.6036 7.4972
EEG4 4.3142 13.2432 12.5871 10.5631 9.5542 7.3268
EEG5 4.0402 13.1151 12.4537 10.1547 9.0564 7.0146
Average 4.5672 13.5777 12.6933 10.6441 9.5812 7.4352

EBA EEG1 8.7531 18.7536 16.9114 15.7790 14.8749 11.8321
EEG2 8.6563 18.7091 16.8542 15.6972 14.5967 11.7127
EEG3 8.5546 18.5896 16.5826 15.5411 14.5163 11.5937
EEG4 8.2761 18.4342 16.2745 15.3380 14.3164 11.4741
EEG5 8.1598 18.3592 16.2531 15.1917 14.2364 11.1414
Average 8.4800 18.5691 16.5752 15.5094 14.5081 11.5508

Table 3: Performance measures in terms of EMSE [dBs], MSD [dimension less] and CHO
[dimension less] for signal enhancement process

Noise Measure LMS N2L2MS MN2L2MS MCN2L2MS MSN2L2MS MS2N2L2MS

RA Excess MSE −17.7383 −36.8376 −34.6194 −32.5537 −30.0053 −27.9637
Misadjustment 0.1868 0.08649 0.0975 0.1063 0.1366 0.1649
Coherence 0.5687 0.9694 0.9248 0.8785 0.6003 0.5951

EMG Excess MSE −16.5456 −32.5791 −30.1873 −29.3341 −28.8792 −26.6649
Misadjustment 0.7456 0.1137 0.2434 0.3438 0.4582 0.5342
Coherence 0.4562 0.8872 0.8464 0.7982 0.5478 0.4864

CSA Excess MSE −15.3754 −29.5742 −27.8467 −26.7591 −25.7539 −23.1586
Misadjustment 0.8945 0.1554 0.3564 0.4627 0.5225 0.6847
Coherence 0.5478 0.8295 0.7946 0.7727 0.6651 0.5975

EBA Excess MSE −18.4268 −39.3572 −37.8524 −35.1866 −32.7841 −30.1379
Misadjustment 0.6196 0.1452 0.2392 0.3315 0.4287 0.5205
Coherence 0.6573 0.9349 0.8974 0.8659 0.7579 0.6876
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Figure 5: Adaptive artifact cancellation of RA from EEG signals: (a) noisy raw EEG component,
(b) sample of RA component, (c) output from LMS based SEU, (d) output from N2L2MS based
SEU, (e) output from MN2L2MS based SEU, (f) output from MCN2L2MS based SEU, (g) output
from MSN2L2MS based SEU, (h) output from MS2N2L2MS based SEU (data values are shown
on x-axis; signal amplitudes are shown on y-axis signal)

3.2 Adaptive Artifact Elimination of Electro-Myo-Gram (EMG) and EEG Signals
This experiment proves the respiration artifact elimination process from EEG signal. The raw

brain wave component is taken as input to the SEU as shown in Fig. 1, this input component
is a combination of actual brain action potential and non-physiological noise contamination, it
is designated as e1+ a1. The reference signal given to the adaptive FIR �lter is a2. The adaptive
algorithm trains the FIR �lter coef�cients, such that a2 becomes closer to a1. The experimental
results after artifact elimination is shown in Fig. 6. From this �gure, it is depicted that Figs. 6e
and 6f are showing high-resolution brain wave components than other subplots. These are results
are obtained due to SEUs based on N2L2MS and its variants. Again, by examine the performance
measures in terms of convergence rate, SNR, excess mean square error, misadjustment, among
the various algorithms N2L2MS based SEU achieves highest performance measures. But, among
all the algorithms MCN2L2MS based SEU requires less amount of computational complexity in
terms of multiplications by an amount of �lter length, in this case it is ‘L’, shown in Tab. 1.
However, in terms of other performance measures MCN2L2MS is little bit inferior than N2L2MS
algorithm based SEU. This fact is depicted by examine Fig. 6, Tabs. 2 and 3. Therefore, as a
tradeoff the little bit inferior performance of MCN2L2MS based SEU could be tolerated than
SEU based on N2L2MS, as MCN2L2MS needs lesser number of multiplications by an amount
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‘L’, which is �lter length in this case. Hence, MCN2L2MS based SEU is suitable for elimination
of artifacts from brain waves for EEG analysis in remote health care monitoring applications.
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Figure 6: Adaptive artifact cancellation of EMG from EEG signals: (a) noisy raw EEG compo-
nent, (b) sample of EMG component, (c) output from LMS based SEU, (d) output from N2L2MS
based SEU, (e) output from MN2L2MS based SEU, (f) output from MCN2L2MS based SEU, (g)
output from MSN2L2MS based SEU, (h) output from MS2N2L2MS based SEU (data values are
shown on x-axis; signal amplitudes are shown on y-axis signal)

3.3 Adaptive Artifact Elimination of Cardiac Signal Artifact (CSA) and EEG Signals
This experiment proves the cardiac signa artifact elimination process from EEG component.

The raw brain wave component is taken as input to the SEU as shown in Fig. 1, this input
component is a combination of actual brain action potential and non-physiological noise con-
tamination, it is designated as e1+ a1. The reference signal given to the adaptive FIR �lter is a2.
The adaptive algorithm trains the FIR �lter coef�cients, such that a2 becomes closer to a1. The
experimental results after artifact elimination is shown in Fig. 7. From this �gure, it is depicted
that Figs. 7e and 7f are showing high-resolution brain wave components than other sub plots.
These are results are obtained due to SEUs based on N2L2MS and MCN2L2MS algorithms.
Again, by examine the performance measures in terms of convergence rate, SNR, excess mean
square error, misadjustment, among the various algorithms N2L2MS based SEU achieves highest
performance measures. But, among all the algorithms MC N2L2MS based SEU requires less
amount of computational complexity in terms of multiplications by an amount of �lter length, in
this case it is ‘L’, shown in Tab. 1. However, in terms of other performance measures MCN2L2MS
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is little bit inferior than N2L2MS algorithm based SEU. This fact is depicted by examine Fig. 7,
Tabs. 2 and 3. Therefore, as a tradeoff the little bit inferior performance of MCN2L2MS based
SEU could be tolerated than SEU based on N2L2MS, as MCN2L2MS needs lesser number of
multiplications by an amount ‘L’, which is �lter length in this case. Hence, MC N2L2MS based
SEU is suitable for elimination of artifacts from brain waves for EEG analysis in remote health
care monitoring applications.
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Figure 7: Adaptive artifact cancellation of CSA from EEG signals: (a) noisy raw EEG component,
(b) sample of CSA component, (c) output from LMS based SEU, (d) output from N2L2MS based
SEU, (e) output from MN2L2MS based SEU, (f) output from MCN2L2MS based SEU, (g) output
from MSN2L2MS based SEU, (h) output from MS2N2L2MS based SEU (data values are shown
on x-axis; signal amplitudes are shown on y-axis signal)

3.4 Adaptive Artifact Elimination of Eye Blink Artifact (EBA) from Brain Waves
This experiment proves the EBA elimination process from brain wave component. The raw

brain wave component is taken as input to the SEU as shown in Fig. 1, this input component
is a combination of actual brain action potential and non-physiological noise contamination, it
is designated as e1+ a1. The reference signal given to the adaptive FIR �lter is a2. The adaptive
algorithm trains the FIR �lter coef�cients, such that a2 becomes closer to a1. The experimental
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results after artifact elimination is shown in Fig. 8. From this �gure, it is depicted that Fig. 8e
and 8f are showing high-resolution brain wave components than other subplots. These are results
are obtained due to SEUs based on N2L2MS and its variant algorithms. Again, by examine the
performance measures in terms of convergence rate, SNR, excess mean square error, misadjust-
ment, among the various algorithms N2L2MS based SEU achieves highest performance measures.
But, among all the algorithms MCN2L2MS based SEU requires less amount of computational
complexity in terms of multiplications by an amount of �lter length, in this case it is ‘L’, shown
in Tab. 1. However, in terms of other performance measures MCN2L2MS is little bit inferior than
N2L2MS algorithm based SEU. This fact is depicted by examine Fig. 8, Tabs. 2 and 3. Therefore,
as a tradeoff the little bit inferior performance of MCN2L2MS based SEU could be tolerated than
SEU based on N2L2MS, as MCN2L2MS needs lesser number of multiplications by an amount
‘L’, which is �lter length in this case. Hence, MCN2L2MS based SEU is suitable for elimination
of artifacts from brain waves for EEG analysis in remote health care monitoring applications.
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Figure 8: Adaptive artifact cancellation of EBA from EEG signals: (a) noisy raw EEG component,
(b) sample of EBA component, (c) output from LMS based SEU, (d) output from N2L2MS based
SEU, (e) output from MN2L2MS based SEU, (f) output from MCN2L2MS based SEU, (g) output
from MSN2L2MS based SEU, (h) output from MS2N2L2MS based SEU (data values are shown
on x-axis; signal amplitudes are shown on y-axis signal)
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Figure 9: Bar diagram illustrating the SNRI calculated using various SEUs
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Figure 10: Bar diagram illustrating the EMAE calculated using various SEUs
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Figure 11: Bar diagram illustrating the MSD calculated using various SEUs
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Figure 12: Bar diagram illustrating coherence calculated using various SEUs

4 Conclusion

This research demonstrates a new method for developing adaptive artifact eliminator to
facilitate high-resolution brain waves for wireless EEG monitoring, remote health care monitoring
applications in the contest of BCI. The proposed N2L2MS based SEUs achieved good �ltering
ability, convergence rate, less computational complexity of the adaptive algorithms. To examine
these characteristics various SEUs based on N2L2MS, MN2L2MS, MCN2L2MS, MSN2L2MS,
MS2N2L2MS algorithms are developed and demonstrated the brain wave enhancement. These
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implementations are compared with the performance of SEUs based on conventional LMS algo-
rithm. Among these implementations N2L2MS based SEU achieved highest values of performance
measures like SNR, EMSE, misadjustment, convergence, except computational complexity. This is
evident from Figs. 9–12, Tabs. 1–3. From the experimental results among LMS, N2L2MS and M
N2L2MS based SEUs the N2L2MS out performs. Again, when comparing N2L2MS and its hybrid
versions of sign algorithms the performance of MS2N2L2MS, diverges more than MN2L2MS due
to error clipping, data error clipping. When we compare the performance measures of N2L2MS
and MCN2L2MS based SEUs in terms of SNR, EMSE, misadjustemnt convergence rate, the
performance of MCN2L2MS is little inferior than N2L2MS. But, the computational complexity
of MCN2L2MS is ‘L’ times less than N2L2MS. Hence, it becomes more attractive for wireless and
remote health care monitoring applications.
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