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Abstract: Smart healthcare integrates an advanced wave of information tech-
nology using smart devices to collect health-related medical science data. Such
data usually exist in unstructured, noisy, incomplete, and heterogeneous forms.
Annotating these limitations remains an open challenge in deep learning to
classify health conditions. In this paper, a long short-term memory (LSTM)
based health condition prediction framework is proposed to rectify imbal-
anced and noisy data and transform it into a useful form to predict accurate
health conditions. The imbalanced and scarce data is normalized through
coding to gain consistency for accurate results using synthetic minority over-
sampling technique. The proposed model is optimized and �ne-tuned in an
end to end manner to select ideal parameters using tree parzen estimator to
build a probabilistic model. The patient’s medication is pigeonholed to plot the
diabetic condition’s risk factor through an algorithm to classify blood glucose
metrics using a modern surveillance error grid method. The proposed model
can ef�ciently train, validate, and test noisy data by obtaining consistent results
around 90% over the state of the art machine and deep learning techniques
and overcoming the insuf�ciency in training data through transfer learning.
The overall results of the proposed model are further tested with secondary
datasets to verify model sustainability.

Keywords: Recurrent neural network; long short-term memory; deep
learning; Bayesian optimization; surveillance error grid; hyperparameter

1 Introduction

Advanced healthcare is an open technological facet providing multidisciplinary telemedicine
treatments from basic sprains to complex chronic disease at the industry level. The vast range of
eHealth innovations and applications such as interactive websites, web-portals, telehealth, e-mail,
voice recognition, online health groups, and gaming are swiftly challenging the old conventional
approaches [1]. The healthcare industry has tailored large scale interventions to provide affordable
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medical clarity through fast, reliable, robust, and recursive diagnostic techniques. Smart health-
care, therefore, falls under vertical industry areas such as very large-scale integrations, embedded
systems, big data, cloud computing, and machine learning (ML) [2].

In addition to its vast scope, little attention is paid to data variance, noise, broad and scarce
data in the literature. Deep learning (DL) is often rarely used with transfer learning (TL) for
health related conditions. The current research proposals are consistent with ML conventional
approaches, simple datasets, long delays, and open-loop problems, particularly with regard to
control algorithms [3]. Subsequently, data normalization is either done manually or through
conventional approaches, and nonlinear regression models are used through linear and dynamic
approaches. Nevertheless, neural networks are ideal for modelling blood glucose levels using
multilayer perceptrons and generative architecture DL techniques [4]. The discriminant architecture
of DL embedded into TL is currently infrequent to �nd, especially for a diabetes prognosis.
This research focuses on predicting health related issues and conditions such as diabetes and its
associated diseases.

Diabetes Mellitus (DM), a dreadful disease, has affected one out of eleven adult populations
globally, and up till now, it is not treated seriously. World Health Organization (WHO) depicts
that the alarming �gure of 463 m may rise to 578 m by 2030 and 700 m by 2045. The WHO
cautions that such huge �gures bring a direct �nancial global impact to 760b in 2019 to 823b
by 2030 and 845b in 2045. Moreover, 232 m people live with this infection in undiagnosed form
and have so far caused 4.2 m global deaths making it a fourth major mortality epidemic disease.
Diabetes invites diverse effects on children and adults’ health, such as renal dysfunctions, cardio-
vascular, neuropathy, micro/macrovascular diseases, retinopathy, gums, dental, sexual, bladder, and
vessels [5]. There are three different known diabetes BG states such as normal state between 80
to 130 mg/dL, hypoglycemia below 80 mg/dL, and hyperglycemia above 180 mg/dL [6]. Common
symptoms of both hyperglycemia and hypoglycemia are shown in Fig. 1.

In this research, we present a complete framework by proposing a recurrent neural network
(RNN) based long short-term memory (LSTM) model to predict the patient’s past, present, and
future sickness status. The proposed model has been tested for the challenging and noisy dataset
(dataset-I), which is normalized to �nd suitable parameters for high accuracy using advanced
optimization and hyperparameter (HPM) tuning. The results obtained are assessed by a surveil-
lance error grid (SEG) to chalk out blood glucose (BG) metric. Two secondary datasets have also
been trained and tested to validate the results by comparing with state of the art ML and DL
techniques. We contribute to:

• Improve the accuracy rate of the predictive model and making it suitable for arbitrary
nature datasets.
• Use pre-processing procedures to �nd �ne-tuned and optimal weights for accurate results.
• Propose an easy method to train challenging data by feature engineering to increase

prediction accuracy.
• Design a model that ef�ciently predicts illness status from the past, present, and future

data relating to medication categorization, normalization, hyperparameter tuning, and
accurate prediction.

The rest of the paper is organized in the following manner. Section 2 gives a recent literature
review with its limitations. Section 3 has a complete methodology approach. Section 4 gives results
and discussion. Finally, Section 5 concludes with future directions and limitations of this research.
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Figure 1: Common glycemic symptoms

2 Literature Review

Despite many efforts and achievements in the health industry, clean digital medical data
remains an important and dif�cult challenge to obtain. Predicting accurate and productive risk
factor has always been an important subject attracting many researchers’ interests. The relevant
topical work is discussed below.

The authors in [7] proposed an arti�cial neural network (ANN) using the backpropagation
and apriori algorithm to detect diabetes. An online manual system exploiting chain rule for
frequent mining itemsets is proposed to detect diabetes condition. However, besides manual inputs,
a simple dataset is tested to negate the involvement of doctors. No data normalization, BG
metric, and TL are observed. An advanced approach is seen in [8] by proposing a DL restricted
Boltzmann machine based framework to detect diabetes. The proposed work can differentiate
between Type-I and Type-II diabetes by classi�cation and recognition using decision tree ML
method. Their proposed model is manual and independent between layers using a likelihood
approach. However, data is input through top-down feedback with low performance and high
time complexity. Three hundred data samples are selected with no clear picture of the source.
Additionally, data scarcity and imbalances are not addressed. No BG metric and TL are observed.

The authors in [9] proposed a DL approach, namely GRU-D, to recover missing data for
successful imputation and improved prediction. Gated recurrent unit, GRU-D is built using RNN
to exploit masking and time interval in two representations of missing patterns and incorporate
deep model architecture. Missing values are estimated to achieve prediction results. However,
MIMIC-III dataset is selected for research with no diabetes taxonomy and cataloging, TL, and
grid classi�cation. Collaborative �ltering-enhanced DL (CFDL) is proposed by [10] to build a
reference system to predict future based behavior patterns. The model �nds an incomplete input to
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predict patient readmission. However, data incompleteness and noise are addressed by ML using
a traditional normalization approach. Also, no BG metric and TL are observed.

The authors in [11] proposed a model to utilize distributed and parallel computation using
multiple GPU’s through DL. A large dataset of Type-2 DM is used to observe hardware and
software computation complexity. However, no data optimization, categorization, TL, and error
grid is seen. Decent research is observed in [12], where the authors offered RNN based LSTM
with embedded TL. A Gaussian kernel is exploited using six-month continuous glucose monitoring
(CGM) data of 26 participants. However, the dataset is small, and also, the error grid approach
is outdated, and diabetes categorization is not observed. Another decent work is observed in [13],
where authors used RNN based LSTM to estimate BG level using root mean square error
(RMSE) and univariate Gaussian distribution over the output. Future forecasting is done by using
the history of BG levels. However, the proposed research uses a single dataset with no trace of
TL and diabetes medication categorization.

3 Methodology

Machine learning entails high-quality training that directly depends on the quality of input
data, which is not easy. The accuracy of such data can be regulated by deriving a training
dataset (to predict model), test dataset (to determine the future performance of the predictive
model), and validation dataset (to measure the predictive model’s adherence to a given quality
standard). Healthcare is essential for the growth of many benevolence opportunities, computing
�elds, strength, and con�dence in the health sector’s outcomes. Nevertheless, a dataset format
should retain the structure and individual values in syntactic integrity so that a health practitioner
may practice automated analysis.

3.1 Dataset
Over twenty datasets of diabetes and their associated disease are downloaded, discussed,

evaluated, and analyzed. Three datasets from the UCI ML repository are selected; a primary
dataset (Dataset-1) [14] and two secondary datasets (Dataset-2, Dataset-3) [15]. The challenging
and noisy dataset-I is grouped into medicinal, peculiar information, and diagnoses with a total of
101,766 instances and 50 attributes, including 47,055 male, 54,708 females, and 3 unknown gen-
ders. Simultaneously, the attributes of secondary datasets are grouped into personal information,
medical tests, and keystone habits.

The primary dataset requires a detailed transformation to invoke DL abilities because insuf-
�cient information leads to inef�cient models. The dataset-1 features are grouped into three
categories such as patient demographic information (race, gender, age, weight, etc.), hospital
metrics (number of procedures, insulin levels, number of lab procedures, H1A1c test, etc.), and
diabetes medication (metformin, repaglinide, glimepiride, chlorpropamide, etc.). The extracted
information and correlation between attributes are given in Fig. 2. The primary dataset contains
errors, missing values, and anomalies. Preprocessing is required to gain consistency in data to
prevent over�tting. The sparse properties are eliminated by auto-normalization as most �elds do
not have usable values, and little predictive information, as shown in Fig. 3.
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Figure 2: Pearson’s correlation coef�cient (r) heatmap shows a high relationship between
encounter_id and patient_nbr, time_hospital with num_medi and lab_procedure, and num_proce-
dure with num_medi

Figure 3: Weight, payer_code, and medical_specialty have high missing values

3.2 Imbalanced and Missing Values
Imbalanced data usually arise when the data is dominated by a majority class and ignoring

a minority class. Hence, the dataset-I classi�er routine on the minority is insuf�cient compared
to the majority. To deal with such imbalanced data, either use the under-sampling method to
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balance the class and eliminate some portion of the majority class or use synthetic minority
methods to increase the number of minority class instances. Synthetic minority oversampling
technique (SMOTE) is preferred to create new instances rather than replicating the existing [16].
In the selected dataset, attributes having more than 50% missing values are dropped because of
no signi�cance in �lling those values, as shown in Fig. 3.

3.3 Value Mapping
Data transformation is performed to �nd and map useful information f : Rn

→R in the form
of [0,1], as shown in Tab. 1. The age variable is de�ned by mean age interval and translated to a
numeric value.

Table 1: Value mapping in dataset-I

Title Value mapping

0 1 2 3

Gender Female Male – –
Insulin, Metformin etc. (all medicine) No Steady Up Down
A1Cresult None Normal >7 >8
Max_glu_serum None Normal >200 >300
Change No Ch – –
DiabetesMed No Yes – –

Figure 4: Diabetes medication in their standard class



CMC, 2021, vol.67, no.2 2469

3.4 Proposed Algorithm
The primary dataset includes twenty-three different medicines, which is ordered into medicinal

class, as shown in Fig. 4. The categorization and classi�cation are being carried out in consultation
with medical specialists and endocrinologists for diabetic culture, current treatment trends, and
diabetes medicinal groups.

The training of a model requires a complete classi�cation of administered medicine at
home and during the hospital visit. The drug intake is added into the model, as illustrated in
Algorithm 1.

Algorithm 1: Categorization of a patient through their medication
Start
Load dataset and Normalize
1. Check patient_nbr, gender, age
2. Check admission_rate (number_outpatient, number_inpatient, number_emergency)
3. Evaluate admission_type_id and discharge_disposition_id

Count time_in_hospital and discharge_rate
Validate medical_speciality
Record num_lab_procedure, num_procedure, num_medication

4. If admission_rate> 5 then diabetic else not-diabetic
5. Return
6. Evaluate number_diagnose
7. If max_glu_serum> 200 and A1Cresult> 8 then diabetic
8. If metformin<= 0.5 and glipizide<= 0.5 then not-diabetic
9. If metformin<= 0.5 and chlorpropamide> 0.5 and nateglinide<= 0.5 then diabetic
10. If gilimepiride<= 0.5 and repaglinide> 0.5 and pioglitazone>= 0.5 then diabetic
11. If gilimepiride= 0.5 and rosiglitazone<= 0.5, patient was categorized as healthy.
12. If acetohexamide<= 0.5 and glipizide> 0.5 and glyburide<= 0.5 then not-diabetic
13. If rosiglitazone<= 0.5 and tolbutamide> 0.5 and acarbose<= 0.5 then diabetics
14. If miglitol> 0.5 and tolazamide> 0.5 and citoglipton> 0.5 then not-diabetic
15. If insulin> 0.5 then diabetic
16. If insulin<= 0.5 and metaformin (remaining all ranges) >= 0.5 then diabetic
17. Return
18. If diabetesMed yes then diabetic else not-diabetic
19. End
Output: Weights for prediction ML, DL, LSTM and LSTM-TR

3.5 Data Normalization
The dataset value range �uctuates widely. Thus, the learning algorithm’s output can be dom-

inated by features with higher values within a prede�ned limit (say Optimal Range) to retain
inherent details. The Optimal Range (OR) is a set of patterns used to predict the next sequence.
Min–max normalization is used to permit a con�gurable range to scale values in the datasets, as
depicted in Eqs. (1) and (2).

XNor =
(X −XMin)

(XMax−XMin)
(1)



2470 CMC, 2021, vol.67, no.2

XNormal =XNor (RMax−RMin)+RMin (2)

where XNor is the initial value feature interest, XMin shows minimum value, XMax is a maximum
value, and R denotes the optimal scaled features set [−1,1]. To generalize the whole procedure,
consider OR= 4 say p1, p2, p3, p4 to predict value r of p5 with units Q1, Q2, Q3. The �rst module
Q1 takes the input vector p1, p2, p3, . . . , pOR and the second module Q2 takes the input vector
p1, p2, p3, . . . , pOR with output of �rst module, and so on. The �nal module (Q3) will predict the
value rOR+3, as given in Eq. (3).

fOR =min

(
1
N

N∑
i=1

(
ŷi− yi

)2) (3)

Here N is the total number of samples for time instance i · ŷi and yi are the predicted
and actual values. To offer perception about the working of RNN, the network typically gross
an independent variable(s) X and a dependent variable y followed by the mapping and train-
ing between both X and y. The process sequence of values are (X1, X2, X3, . . . , X t+1, X t, X t−1).
So, X t has a sequence of data at time t and parameter state 2, which is equal to xt

=

f
(
X t−1,21,22,23, . . . ,2n

)
. State xt is dependent on the input parameter X t−1, which is a

previous timestamp of the model, as shown in the process model in Fig. 5.

Figure 5: Overall proposed RNN-LSTM model with TL

3.6 Model Classi�cation and Tuning
RNN is a linear memory architecture that maintains all previous information in the internal

state vector. Gradient approaches may fail when time dependencies become too long due to
exponential increase or decrease in values [17]. RNN suffers from gradient vanishing, exploding,
challenging training, and treating long sequencing. LSTM resolve RNN long-term dependency
problem by maintaining relevant information for more extended periods and forgetting irrelevant
information. LSTM also overcomes the back-�ow error problems and process large datasets by
keeping the cell’s information through structural gates. The proposed model uses three distinct

gates; forget gate f (t)i , input gate g(t)i , and output gate q(t)i , as shown in Eqs. (4)–(6). The forget
gate is responsible for deciding which input information from previous memory may be ignored.
The input gate is responsible for feeding certain cell information. The output gate generates

and updates the hidden vector h(t−1)
j . Additionally, LSTM allows a fourth gate called Input

Modulation Gate s(t)i , a subpart of the input gate, to reduce the learning time as a Zero-Mean
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for faster convergence, as shown in Eq. (7). The input gate exploits feedback weights from other
memory cells in order to store or access data on its memory cell.

f (t)i = σ
(

bf
i +6jm

f
i,jx

(t)
j +6jk

f
i,jh

(t−1)
j

)
(4)

g(t)i = σ
(

bg
i +6jm

g
i,jx

(t)
j +6jk

g
i,jh

(t−1)
j

)
(5)

qt
i = σ

(
bo

i +6jm0
i,jx

(t)
j +6jko

i,jh
(t−1)
j

)
(6)

s(t)i = f (t)i s(t−1)
i + g(t)i σ

(
bi+6jmi,jx

(t)
j +6jki,jh

(t−1)
j

)
(7)

where σ is a logistic sigmoid function to decide among [0,1] values to let it through, k is recurrent
weight, m is input weight, and b is bias value. The obtained feeding back performance of LSTM
is a layer at time t to the input of the same network layer at time t− 1. The complete process is
shown in a block diagram in Fig. 6, where information regulates using control gates kg, kf and
ko by internal state ‘c.’

Figure 6: LSTM vector ‘x’ (The Past) a single input to predict an output ‘y’ (The Future)

3.7 Hyperparameter Optimization
Selecting ideal parameters is the key difference between average and state-of-the-art perfor-

mance in a neural network because an algorithm highly depends on HPM. Various aspects, such
as memory utilization and computation complexity, depend on HPM tuning, which requires more
training time for signi�cant results. HPM optimization is de�ned as in Eq. (8).

x∗ = arg m
x∈X

f (x) (8)

Here x∗ is the minimum generated score value, m
x∈X

shows that x can assume any value in the

domain X and f (x) indicates the target score to reduce the validation set error. The overall goal
is to evaluate model HPM producing a high score on the validation set metric. Tuning of ML
algorithms is subject to trials and errors to �nd the optimal values, which could be either done
manually or automatically. For the purpose, an automated method such as Bayesian optimization
is designated to systematize �nding HPM in less time using an informed search technique and
assess values based on past trials. Bayesian optimization is a famous, simple, and collective
approach in DL to sequentially optimize an unlabeled objective function. Bayesian’s method
selection is preferred over random search optimization because the latter use long run times to
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assess doubtful areas of the search space [18]. Bayesian optimization allows fewer iterations to
achieve excellent performance by tuning the HPM on building, training, and validating versions.
Bayesian optimization is de�ned as in Eq. (9).

x∗ = arg max
x∈X

f (x), X ⊆RD (9)

Our proposed approach use three HPM such as dropout, number of LSTM neurons, and net-
work layer neurons. The parameter domain is de�ned using the hyperopt distribution function [19].
Hyperopt helps serial and parallel optimization over awkward search spaces, including real-valued,
discrete, and conditional dimensions. To achieve consistent hyperopt function results, we feed input
parameters to put forward to the objective function based on the Surrogate model engineering
function p(b | a). The surrogate act as an approximator of the objective function to propose
parameter using tree parzen estimator (TPE), Gaussian process aka GPyOpt, or random forest
regression through sequential model-based algorithm con�guration (SMAC). In this research, TPE
is preferred over the others to build a probabilistic model of the function at each step and choose
the most likewise parameters. The complete framework of the operation model, including the
Bayesian optimization process, is shown in Fig. 7.

Figure 7: Bayesian optimization works on top of the predictive model to �ne-tune HPM and
validate accuracy. However, the weights are chosen from the HPM constraint block based on the
values collected from accuracy validation

The algorithm creates a random starting point x∗ and calculates F(x∗). It uses trial history for
conditional probability model P(F | x). Select xi giving P(F | x), resulting in better F(xi). Calculate
the real value of the F(xi) and repeat steps 3 to 5 till one of the stop criteria is satis�ed, for
instance, i>max _eva. TPE put forward HPM by applying surrogate and selection functions. Both
combine to evaluate parameters that it believes bring/calculate high accuracy on the objective
function. The selection function cum TPE-Surrogate is illustrated in Eq. (10) [20]. Optimization
results of LGBMRegressor, Grid Search, Random Search, and Hpyeropt optimization results are
given in Tab. 2, and their comparison is given in Fig. 8.

EIy∗ (x)=
γ y∗l (x)− l (x)

∫ y∗

−∞
p (y)dy

γ l (x)+ (1− γ )g(x)
∝

(
γ +

g(x)
l(x)

(1− γ )
)−1

(10)
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Table 2: Comparison of search methods

Optimizer MSE Param evaluation Best iteration Total time (ms) Test score

LGBM regressor 10878.64 8539 6343 1840.6 0.78
Grid search 10591.72 5347 3744 1742 0.80
Random search 9769.071 4467 2647 1211 0.83
Hpyeropt 9461.931 3514 1817 934 0.89

Figure 8: Optimization bar chart. The test score1= 10,000

3.8 LSTM Output
LSTM can bridge time intervals and approximate noisy data to generalize over problem

domains, distributed representations, and continuous values. It overcomes error back-�ow prob-
lems to ensure neither exploding nor vanishing using specialized units’ internal state to reduce the
input/output weight con�ict. LSTM layer accompanies a dropout layer to prevent over�tting and
a selected number of neurons for optimal training. In this research, the LSTM network has 512
hidden neurons and 256 neurons with an imposed dropout rate of 0.2 and 0.3 to refrain the model
from over-�tting. The optimized input HPM is evaluated for 43 iterations until no improvements
are seen. The output performance metrics considered are accuracy, precision, and recall to track
LSTM predictive response as de�ned in Eqs. (11)–(13).

accuracy=
TP+TN

TP+FP+TN+FN
(11)

precesion=
TP

TP+FP
(12)

recall =
TP

TP+FN
(13)
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4 Results and Discussion

This research aims to build an optimized and user-friendly system that can process challenging
datasets with dependent and independent variables. The optimization in autonomous mode dig
deeper and draw optimal HPM for higher accuracy. More than twenty diabetes datasets are
downloaded from the UCI repository having a variety of information, among which three datasets
associated with each other are selected. The primary dataset is very challenging due to variation,
noisy and incomplete data. To comply with data performance and accuracy, we test state of the
art ML methods, as shown in Figs. 11–13. We also de�ne two DL testing and validation methods
based on straight LSTM and embedded LSTM Transfer Learning (LSTM-TL).

The RNN based LSTM is preferred because it is capable of giving more control-ability and
better results. It uses extended, long multiple and parallel sequences to produce accurate results
on the dataset by learning and remembering input from direct raw time series data. Additionally,
43 random seeds are trained for each HPM between 512 and 256 LSTM units; however, we
went with 256 units to lower the complexity. The reason is that LSTM is a process hungry
and time-consuming technique that requires error and trial approach for best suitable inputs.
The proposed model is initially validated to 512 LSTM units, which consume extra operating
cost and time. However, it is later on limited to 256 units for low complexity and processing.
Moreover, the nature of datasets has a signi�cant role in model performance by digging the valid
inputs for dataset-I, whereas dataset-II and dataset-III are comparatively straight forward with
low complexity, processing time, and operating cost.

4.1 Surveillance Error Grid
An evaluation standard is required to de�ne the role of the proposed model for medical

practitioners. To quantify patients’ clinical accuracy, few error grid analyses are used to edge the
threat of indecent future forecasts of the monitored BG levels. Previously, clarke error grid (CEG)
was a standard, famous, and old technique to evaluate BG levels in clinical practices. However, it
faces limitations of (i) Lack of difference between type-1 and type-2 diabetes, (ii) Discontinuous
transition between Zone-B and Zone-E, and (iii) A small number of diabetes experts introduced
it. A successor, namely parkes error grid (PEG), is introduced to chalk out risk zones and
declare thresholds for both types of diabetes. However, PEG has no integration to the smart
technology and has required a vital need to review the odd approaches w.r.t. Type-1 patient
insulin pump therapy, Type-2 insulin injections, and CGM insulin injections. Henceforth, it leads
us to surveillance error grid (SEG) [21]. The bilinear interpolation criterion of SEG is given as
under [13].

SEG=
1
T

T∑
t=1

e(yt, ŷt) (14)

Where {ŷt|t ∈ (1, . . . , T)} are predictive values of a patient at time t and {yt|t ∈ (1, . . . , T)} are the
actual values. SEG has �ve identi�ed zones to discriminate emergency levels lie in each zone and
eight color-de�ned absolute values starting from none to extreme values. Zone-1 is dedicated to
emergency treatments; Zone-2 relates to oral glucose intakes; Zone-3, where no action is needed;
Zone-4 shows insulin administration, and Zone-5 declares emergency treatment. The model notes
that a system with ≥97% inside the SEG will lie in the no-risk ‘green’ zone. It would meet the
requirements of ≤5% data pairs, outside the 15 mg/dL (0.83 mmol/L), over 15% standard limits.
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The SEG model evaluated a total of 768 samples to diagnose the BG readings (BGM) and
reference values (REF) in the range of 20 to 580 mg/dl. Details are given in Tab. 3.

Table 3: Risk grade of evaluated samples in light of SEG

Zone ID Risk grade Pair %age Risk factor

3 C—moderate lower 369 48 >1.0–2.0
2 B—slight higher 191 24.9 >0.5–1.0
4 D—moderate higher 110 14.3 >2.0–3.0
1 A—slight lower 94 12.2 0–0.5
5 E—sever lower 4 0.5 >3.0

The risk factor in above mentioned table is the difference between BGM and REF as percent
of REF> 100 mg/dL and in mg/dL for REF<= 100 mg/dL. The distribution of dataset samples
that lie in various zones of the SEG plot is shown in Fig. 9.

Figure 9: SEG plot showing sample risk factor
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4.2 Performance Evaluation
DL is a data-hungry technique to understand the hidden data patterns, resulting in high data

dependency. The scale and size of a data model are in a linear relationship that shows the model’s
expressive space is large enough to discover the hidden patterns under the data [22]. The proposed
model performed well by a margin of signi�cance with three input dimensions of samples, time
steps, and features. An acceptable error tolerance threshold is obvious to iterate the model to reach
convergence until no further improvement is seen. A 40-epochs stoppage policy is assigned to stop
the validation process if no improvement is observed. Complete details of the LSTM model is
given in Fig. 10.

Figure 10: Param (total trainable: 367,585, non-trainable: 0)

The batch-size of LSTM output (batch-size, timespan, input) plays a vital role with a learning
rate. The batch-size gradually enhanced from 128 to 768 for accurate results. The dataset distri-
bution is set up to 60% for �nal training, 20% testing, and 20% validation. A maximum of 5000
epochs and 500 enforced stoppage epochs are endorsed if no improvement is observed. In order
to reuse the pre-trained data on imbalanced datasets, TL is used to �t a previously unseen dataset.

The transfer learning takes up a model trained data and utilizes it on a second related
task, saving time and gives better performance. TL recovers an imbalanced dataset to eliminate
classi�cation problems where several observations per class are not equally distributed. TL takes
the previously trained model and freezes them. It adds additional training layers to the top of the
frozen layers and trains the �nal model. In other words, it allows the freedom not to train the
model in a target domain from scratch, which signi�cantly lessens the demand for training data
and training time [22]. However, gaps in the data lead to missing predictions. Therefore, to �ll
the missing values, it is not clear how much bias it would introduce. So, we propose to create
the (a, b) pairs with a given history a and regression target b for a given prediction horizon.
The proposed approach help to train and predict utilizing maximum data. Performance evaluation
for this research is based on accuracy, area under the curve (AUC), and recall metrics, whereas
precision is a supporting metric as illustrated in Figs. 11–13, respectively.
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Figure 11: Performance comparison of the classi�ers of DM dataset-I

Figure 12: Performance comparison of the classi�ers of renal disease dataset-II

4.3 Discussion
In this study, a DL framework is proposed to assess noisy, challenging, and incomplete data

through high-end optimization and diabetes patients’ evaluation. To objective our study, the data
is cleaned and transformed autonomously by converting the string into numeric, categorizing
�elds as per their relevancy, remove data scarcity, �lling empty cells, and molding medication
dosage. The autonomous method is an innovative dataset experiment to improve the HPM of
the proposed DL model with minimal effort. An expert level scenario is also constructed in
consultation with medical specialists and endocrinologists to achieve the research objective. The
dose/level of the administered medicine is classi�ed to distinguish between normal and diabetic
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patients. An algorithm is designed to leverage diabetic patient data to indicate their condition
and predict their future status. The objective is to develop an RNN based LSTM model to
train, validate, and test data with an in-depth exploration of dynamic changes to predict BG
levels. We tried to normalize the scarce dataset and equated the readings through SEG, a modern
metric, for clinical risk assessments. The BG errors give the data a unique risk score compared
with a reference value, which helps evaluate the risk facing by diabetic patients by successfully
categorizing the samples in the speci�ed risk zones. We hope that the obtained results will improve
the clinical accuracy and further experiments, such as data points falling into custom-de�ned
risk zones.

Figure 13: Performance comparison of the classi�ers of cardiovascular disease dataset-III

Previous studies concentrate on predicting BG levels, diabetic/non-diabetic status, arti�cial
pancreas readings, glycemic control, and physiological prototypical. Keeping in view, the results of
the proposed model are initially tested with state-of-the-art ML baseline models, including logistic
regression, random forest, decision tree, k-nearest neighbors, naïve bayes, and linear support vector
classi�er. All the baseline models reveal a good and constant accuracy around 89% except for
the bernoulli naïve bayes (85%), which is also an encouraging result. The overall objective is to
develop a method that can guide diabetic patients to choose their healthy lifestyle according to
their diabetic condition. Nutritious food and physical activity are essential elements of a healthy
lifestyle. However, it is optimistic about changing lifestyles drastically, but changes come steadily.

4.4 Transfer Learning
The numerical results show that integrating TL provides better predictive accuracy, particu-

larly when the available dataset is noisy and incomplete. It reveals signi�cant �ndings in sparse
data with complex trends, missing and imputed values. Before training, data is normalized and
optimized to create the TL dataset to pre-train a global LSTM model. The regulated data
is trained to the RNN-LSTM DL model and tested to 20% of a dataset, which is always a
reasonable percentage between maintaining model accuracy and avoiding over�tting. Here, our
LSTM layer(s) did all the work to transform the input to predict the desired output.
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5 Conclusion

To conclude, DL systems need data to provide dif�cult interpretations to effectively diagnose
health conditions to improve clinical decision-making uncertainty. In this paper, the RNN-LSTM
model is proposed to test and forecast diabetic patients’ disease status from the demanding real-
world challenging dataset with scarcity, missing/imbalanced values, incomplete, and noisy data.
The data is normalized autonomously via standard procedures and value mapping. The normal-
ized data is �ne-tuned by Bayesian optimization to chalk out interstitial HPM values. The data
normalization, HPM tuning, and medicinal categorizing are customized according to the proposed
model, which through state of the art ML and DL methods, provide a high and consistent level
of accuracy.

An algorithm speci�es the primary dataset with twenty-three medicinal attributes for a dose-
based patient prediction. LSTM con�guration is effectively optimized for accurate input, LSTM
units, and output synchronization via trial and error basis. Finally, TL is integrated into LSTM to
repair imbalances and feed-forward the training data for stable prediction and higher accuracy. To
validate the model’s performance, two secondary datasets are tested to ensure model consistency,
reliability, and accurate performance.

5.1 Future Work
The initial idea was to obtain a local dataset from the health regulatory bodies, hospitals,

and laboratories for this research. However, the current COVID-19 emergency led us to use a
readymade dataset for testing our proposed model. In a pilot investigation, we �nd that this
work has signi�cant implications for future research using a local dataset. In the future, we will
collect data from local sources and prepare a pilot project by embedding sensor technology such
as body area networks and generate a dataset. A complete framework will collect health data
through customized software. The collected data will be normalized for accurate forecasting and
bind aggregated readings with medical professionals for on-site expert advice.

5.2 Research Limitations
1. Increasing LSTM units leads to more complexity, processing time, and operating cost
2. Old datasets. Whereas dataset-I has missing �elds of Age and Weight
3. Low test precessions
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