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Abstract: This paper evaluates the state estimation performance for process-
ing nonlinear/non-Gaussian systems using the cubature particle �lter (CPF),
which is an estimation algorithm that combines the cubature Kalman �l-
ter (CKF) and the particle �lter (PF). The CPF is essentially a realization
of PF where the third-degree cubature rule based on numerical integration
method is adopted to approximate the proposal distribution. It is bene�cial
where the CKF is used to generate the importance density function in the
PF framework for effectively resolving the nonlinear/non-Gaussian problems.
Based on the spherical-radial transformation to generate an even number of
equally weighted cubature points, the CKF uses cubature points with the same
weights through the spherical-radial integration rule and employs an analyti-
cal probability density function (pdf) to capture the mean and covariance of
the posterior distribution using the total probability theorem and subsequently
uses the measurement to update with Bayes’ rule. It is capable of acquiring a
maximum a posteriori probability estimate of the nonlinear system, and thus
the importance density function can be used to approximate the true posterior
density distribution. In Bayesian �ltering, the nonlinear �lter performs well
when all conditional densities are assumed Gaussian. When applied to the
nonlinear/non-Gaussian distribution systems, the CPF algorithm can remark-
ably improve the estimation accuracy as compared to the other particle �lter-
based approaches, such as the extended particle �lter (EPF), and unscented
particle �lter (UPF), and also the Kalman �lter (KF)-type approaches, such as
the extended Kalman �lter (EKF), unscented Kalman �lter (UKF) and CKF.
Two illustrative examples are presented showing that the CPF achieves better
performance as compared to the other approaches.
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1 Introduction

State estimation for the dynamic system [1] using a sequence of noisy observations made
on the system has been an important issue in engineering science, statistical signal processing,
and econometrics. The estimation problem is to sequentially estimate the state of the dynamic
system using noisy observations of the system made up to that time. Linear states estimation deals
with the dynamic system of linear process and measurement models. General methods to optimal
nonlinear �ltering can be interpreted in a uni�ed way using the recursive Bayesian estimation. One
dif�culty of the application of the Bayesian estimation theory in practical applications is that the
realistic dynamic systems are often nonlinear and/or non-Gaussian [2].

The nonlinear state-space method is convenient for handing multivariate data and
nonlinear/non-Gaussian processes, and it provides a signi�cant advantage over time-series
approach for state estimation problems [3], where some examples illustrating the applications of
nonlinear/non-Gaussian state space models are given. The Bayesian method provides a rigorous
framework for dynamic state estimation. For the Bayesian �ltering, the posterior probability
density function (pdf) of the state space of a dynamic system is constructed based on all the
available information. For the linear Gaussian models, the value of the pdf remains Gaussian and
the state equations propagate and update the mean and covariance of the distribution. In general,
for nonlinear and/or non-Gaussian models, there is no simple way to proceed for the required pdf.

One example of the several approximate methods that have been proposed is the extended
Kamlan �lter (EKF) [1,2], which assumes a Gaussian posterior density and relies on the �rst order
linearization of the system model to provide local approximation of the mean and covariance
of the state. EKF is sensitive to system nonlinearity in the measurements, and is likely to yield
poor performance if the measurements involve non-Gaussian distributed noises. In practice, the
EKF may diverge where the state equations are highly nonlinear and the posterior density is non
Gaussian. The unscented Kalman �lter (UKF) [4–10] was �rst proposed by Julier et al. to address
nonlinear state estimation problems, which uses a �nite number of sigma points to propagate the
probability of state distribution through the nonlinear dynamics of system. Unlike the EKF where
the linearization process is involved, the UKF performs a Gaussian approximation with a limited
number of points (sigma points) using the unscented transform (UT), which is a method for
calculating the statistics of a random variable which undergoes a nonlinear transformation. The
sigma points are propagated through the true nonlinear system to capture the posterior mean and
covariance of transformed distribution. It is based on the principle that it is easier to approximate
a Gaussian distribution than to approximate an arbitrary nonlinear function. The possible negative
weights can be avoided through tuning the parameters with �exibility [5].

Nevertheless, the UKF-calculated estimation covariance matrix is not always guaranteed to
be positive de�nite, and thus decomposition of the covariance matrix is sometimes unavailable.
The UKF is likely to become unstable due to the possible negative weights on the center point
for high-dimensional nonlinear systems. To overcome these limitations, a nonlinear �lter based on
the Bayesian framework, commonly referred to as the cubature Kalman �lter (CKF) proposed
by Arasaratnam et al. [11], is potentially useful [10–18]. As a general approach to approximating
the Bayesian solution, the CKF has gained increasing interest in the development of nonlinear
Bayesian �lters. The spherical-radial cubature rule employed in CKF is a special case of the
quadrature rules involved in UKF. The CKF is in general considered to be more accurate and
stable than the UKF without additional tuning on parameters in nonlinear �ltering realization and
has been used in many engineering applications [10,15]. The standard CKF utilizes a third-degree
spherical-radial cubature rule to solve the integration in Bayesian �ltering problem for numerically
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computing the multivariate moment integrals encountered in the nonlinear �ltering framework. It
is based on the spherical-radial transformation and generates an even number of equally weighted
cubature points. In the spherical-radial cubature rule, the desired integral is composed of spherical
and radial integrals, where the spherical integral is approximated using spherical cubature rule
and the radial integral is approximated using the Gauss-Laguerre quadrature rule, respectively.
CKE can be furtherly extended using numerical approximation methods providing a higher-order
approximation to the spherical and radial integrals [16–18].

When the non-linearity and non-Gaussianity are highly prominent, the Kalman �lter (KF)-
type approaches (e.g., EKF, UKF and CKF discussed in this paper) assume the noise to be
Gaussian distribution, which does not provide a good approximation to the posterior distribu-
tion. Proposed to approximate the posterior distribution of states through sequential importance
sampling (SIS), the particle �lter (PF) is a non-parametric �lter and hence can easily deal with
nonlinear and/or non-Gaussian state estimation [19–27]. However, the PF suffers from two prob-
lems: sample degeneracy and impoverishment. Since the traditional PF adopts the state transition
prior distribution function which is lack of measurement information as an importance density
function to approximate the posterior density function. There is a great deviation between the
samples from the importance of sampling density and the true posterior probability density, which
can lead to degeneracy phenomenon and possibly �lter divergence [21,23]. To solve the degeneracy
problem, one strategy is to choose the proper proposal distribution that can approximate the
posterior distribution reasonably well. The particle �lter-based approaches, including the extended
particle �lter (EPF) and unscented particle �lter (UPF) were proposed for which the EKF and
UKF, respectively, were used to generate the proposal distributions. Their combination has demon-
strated improved performance in terms of accuracy and robustness. However, it suffers from the
computational load and numerical instability. For improving the estimation accuracy and �ltering
performance, a novel version of PF, referred to as the cubature particle �lter (CPF) was proposed.
In the CPF, the CKF is used to generate the proposal distribution for acquiring a maximum
a posteriori probability estimate of the nonlinear system, and the importance density function
can approximate the true posterior density distribution. The use of the importance proposal
distribution integrates the latest observation into system state transition density, so as to properly
match the posteriori density. Performance comparison for the CPF, UPF, and EPF approaches
had been presented in the literatures, e.g., [28–30].

This paper is organized as follows. In Section 2, preliminary background on the Kalman
�lter-type approaches is brie�y reviewed and successively presents the Bayesian solution for
nonlinear/non-Gaussian state estimation problems. The various types of particle �lters including
the EPF, UPF and CPF are discussed in Section 3. In Section 4, two illustrative examples are
presented for assessment of nonlinear/non-Gaussian state estimation capabilities using the CPF
algorithm in comparison to those by to the relatively conventional approaches. Conclusions are
given in Section 5.

2 The Kalman Filter-Type Approaches

The well-known KF is an optimal closed-form solution in linear systems with Gaussian
process and measurement noises. In nonlinear systems, the optimal estimation solution to the
recursive Bayesian �ltering problem is in�nite dimensional and computationally intractable. The
most widely used approximate nonlinear �lter is the EKF.
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The nonlinear system governed by the stochastic difference equations can be written as:

xk+1 = f (xk,k)+wk (1a)

zk = h (xk,k)+ vk (1b)

where the state vector xk ∈ <n, process noise vector wk ∈ <
n, measurement vector zk ∈ <m, and

measurement noise vector vk ∈<m. The vectors wk and vk are zero mean Gaussian white sequences
having zero cross-correlation with each other:

E
[
wkwT

i

]
=

{
Qk, i= k

0, i 6= k
; E

[
vkvT

i

]
=

{
Rk, i= k

0, i 6= k
E
[
wkvT

i

]
= 0 for all i and k (2)

where Qk is the process noise covariance matrix, Rk is the measurement noise covariance matrix.

From the Bayesian perspective, the state estimation problem is required to construct the
probability density function p (xk | z1: k), given the measurement z1: k up to time k. Then, the
p (xk | z1: k) may be obtained recursively in two steps, namely, (1) time update based on Eqs. (3a);
and (2) measurement update based on Eq. (3b).

p
(
xk+1 | z1: k

)
=

∫
<n
p
(
xk+1 | xk

)
p (xk | z1: k)dxk (3a)

p (xk | z1: k)=
p (zk | xk)p

(
xk | z1: k−1

)
p
(
zk | z1: k−1

) (3b)

These equations can be derived using the Markov property and Bayes’ rule from
probability theory.

2.1 The Extended Kaman Filter and Unscented Kalman Filter
The EKF is an approximate nonlinear �lter which linearizes the dynamic system and mea-

surement equations about a single sample point with the assumption that the a priori distributions
are Gaussian. The state distribution of the EKF is approximated by a Gaussian random variable
(GRV), which is then propagated analytically through the linearization of the nonlinear system.
The EKF might suffer from the performance degradation and divergence problem due to the
linearization process for the system nonlinearity. To better treat the nonlinearity, other �lters such
as the UKF were proposed. Unlike the EKF with �rst-order accuracy where the linearization
process using the Jacobian matrices is involved, the UKF employs a minimal set of sigma points
(weighted samples) by deterministic sampling approach and at least the second order accuracy of
the posterior mean and covariance can be captured.

Consider an n dimensional random variable x, having the mean x̂ and covariance P, and
suppose that it propagates through an arbitrary nonlinear function f. The UT creates 2n+1 sigma
vectors X (a capital letter) and weighted points W , given by

X(0) = x̂ (4)

X(i) = x̂+
(√
(n+ λ)P

)T
i

, i= 1, . . . ,n (5)

X(i+n) = x̂−
(√
(n+ λ)P

)T
i

, i= 1, . . . ,n (6)
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where (
√
(n+ λ)P)i is the ith row of the matrix square root.

√
(n+ λ)P can be obtained from the

lower-triangular matrix of the Cholesky factorization; λ = α2 (n+ κ)− n is a scaling parameter;
α determines the spread of the sigma points around Ax; κ is a secondly scaling parameter; β is

used to incorporate prior knowledge of the distribution of x. W (m)
i is the weight for the mean

associated with the ith point; and W (c)
i is the weigh for the covariance associated with the ith

point, as follows:

W (m)
0 =

λ

(n+ λ)
; W (c)

0 =W
(m)
0 +

(
1−α2

+β
)

; W (m)
i =W (c)

i =
1

2 (n+ λ)
, i= 1, . . . , 2n (7)

The �rst step in the UKF is to sample the prior state distribution by generating the sigma
points through the UT. A set of weighted samples (sigma points) are deterministically chosen to
adequately capture the true mean and covariance of the random variable. The basic premise is
that to approximate a probability distribution is easier than to approximate an arbitrary nonlinear
transformation. The samples are propagated through true nonlinear equations, and the lineariza-
tion of the model is not required. The UKF requires less computational cost due to deterministic
sampling of the sigma points as opposed to the randomly generated particles in the particle �lter.
Appendix A provides the algorithm for implementation of the UKF.

2.2 The Cubature Kaman Filter
Not guaranteed always to be positive de�nite, the decomposition of the covariance matrix in

the UKF is sometimes unavailable. Proposed by Arasaratnam et al. [11], the CKF is a general
approach to approximate the Bayesian solution. The CKF is another type of nonlinear �ltering
approach without linearization of the nonlinear model. To develop the CKF, it is assumed that
the predictive density of the joint state-measurement random variable is Gaussian. The CKF uses
cubature points with the same weights through spherical-radial criterion, which employs analytical
probability density function to capture the mean and covariance of the posterior distribution using
the total probability theorem and subsequently uses the measurement to update with Bayes’ rule.

From the perspective of numerical analysis, the third-degree spherical-radial cubature rule
can be viewed as an UT of special form with better numerical stability. The CKF is known
as the approximate �lter in the sense of completely preserving second-order information due to
the maximum entropy principle and thus provides an ef�cient solution even for high-dimensional
nonlinear �ltering problems. For improving numerical accuracy in nonlinear system, the CKF is
reformulated to propagate the square roots of the error-covariance matrices, and hence it avoids
computing numerically sensitive matrix calculations. In contrast to UKF, the CKF follows directly
from the cubature rule for numerically computing Gaussian-weighted integrals whose important
property is that it does not entail any free parameters, whereas the UKF introduces a nonzero
scaling parameter.

The CKF algorithm involves the following stages: Firstly, it approximates the mean and
variance of the probability distribution through a set of 2n (where n is the dimension of the
system model) cubature points with the same weight, propagates the cubature points through
the nonlinear functions, and then calculates the mean and variance of the current approximate
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Gaussian distribution by the propagated cubature points. A set of 2n cubature points are given
by [ξi, wi], where ξi is the ith cubature point and wi is the corresponding weight:

ξi =

{√
n [1]i i= 1, 2, . . . ,n,

−
√
n [1]i−n , i= n+ 1,n+ 2, . . . , 2n

(8)

wi =
1

2n
, i= 1, 2, . . . , 2n (9)

where [1]i ∈<
n denotes the ith column vector of the identity matrix In×n.

The CKF also involves a two stage procedure comprising of prediction step and update step.
Under the assumption that the posterior density at time k − 1 is known, the steps involved in
the time and measurement updates of the CKF are summarized in Appendix B. Although the
CKF solves the nonlinear approximation issue in a different way from UKF and EKF, it does
not suf�ciently provide tolerance to the non-Gaussian estimation problem. Development of robust
demand for non-Gaussian Bayesian �ltering framework is sometimes required.

3 The Particle Filter-Based Approaches

In contrast to KF-type approaches, the PF was presented for handling multimodal proba-
bility density functions and solving nonlinear non-Gaussian problems [24,25]. It is a sequential
importance sampling method based on Monte Carlo simulation and Bayesian estimation theory.
The Monte Carlo simulation technique is employed to approximate the non-Gaussian probability
distribution through a set of weighted samples called particles around the mean and covariance
of Gaussian random variable. Three important steps are involved for implementation of the PF:
(1) Sampling current value of each particle; (2) Evaluation of the recursive important weights
and (3) Resampling. The simulated particles are propagated through the nonlinear system model
yielding the prior probabilistic density which works as an importance density function. There-
after, the observation probability density function obtained from the predicted particles through
the nonlinear observation model is used to update the importance density particles. Finally, a
resampling step is applied to remove the samples with low weights and the posterior probability
is redistributed according to the new selected weights.

3.1 The Generic Particle Filter
The sequential importance sampling (SIS) is one of the methods which enable the Bayesian

estimation by Monte Carlo simulation. The principle of SIS uses the samples with weights to
approximate the posterior p (xk | zk). When the number of samples is in�nite, the approximation
approaches the true posterior density. The basic idea is to represent the required posterior density
function by a set of random samples with associated weights and to compute estimates based on
these samples and weights.

Let
{
xik, ωik

}N
i=1 denote a random measure that characterizes the joint posterior pdf p (xk | zk).

Here
{
xik, i= 1, . . . , N

}
is the particles with weights

{
ωik, i= 1, . . . , N

}
, which are normalized such

that
∑

i ω
i
k = 1. At time step k, the posterior density can be approximated as

p
(
xk−1 | z1: k−1

)
≈

N∑
i=1

ωikδ
(
xk−1− xik−1

)
(10)
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The recursive estimate for the importance weights of particleican be derived through:

ωik ∝ω
i
k−1

p
(
zk | xik

)
p
(

xik | x
i
k−1

)
q
(

xik | x
i
0: k−1, z1: k

) (11)

where p
(
zk | xik

)
is the likelihood function of the measurements zk, p

(
xik | x

i
k−1

)
is the prior and

q
(

xik | x
i
0: k−1, z1: k

)
is the importance density. After normalizing the importance weights:

ωik =
ωik∑N
i=1ω

i
k

(12)

the estimated state vector can then be approximated by

x̂k =
N∑
i=1

ωikxik (13)

P̂k =

N∑
i=1

ωik

(
xik− x̂k

) (
xik− x̂k

)T
(14)

In general, the PF relies on the sequential importance sampling and requires the design of
proposal distributions used to approximate the posterior distribution reasonably well. As can be
seen from Eqs. (10) and (11), PF involves recursive propagation of the weights and support points
as each measurement is received sequentially. Degeneracy problem is a common problem which
may degrade the accuracy of state estimation in the generic PF. One of the strategies to avoid the
degeneracy phenomenon of the particles is to increase the number of samples (i.e., particles) at
the expense of larger computational burden devoted. Furthermore, it is dif�cult to determine the
best number of particles. As an effective way to suppress degeneracy, the resampling process is
added on the basis of importance sampling to eliminate the particle with low weight and remain
the particle with high weight.

3.2 The Extended Particle Filter and Unscented Particle Filter
The importance density function is used in the SIS scheme, where the transition prior does

not take into consideration the most recent measurement data zk. Consequently, de�ciency may
arise in particle �lters, especially when there is little overlap between the importance density
function and the posterior pdf p (xk | zk). To avoid this problem that may arise from using the
transition prior as the importance density function, the �lter needs to incorporate the latest
measurement data into it. As for the resampling scheme, there are several selections currently
employed, such as multinomial resampling, residual resampling and systematic resampling. In the
systematic resampling method, the importance weights of the particles will be updated through
resampling. In the classical resampling framework, the particles can be generated by EKF or
UKF, respectively, for proposal distribution generation within a particle �lter framework, referred
to as the EPF and UPF, respectively. The basic idea is to use a separate EKF/UKF to generate
and propagate a Gaussian importance distribution for each particle:

q
(
xik | x

i
k−1, zk

)
≈N

(
xik, Pi

k

)
, i= 1, . . . ,N (15)
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where xk and Pk are estimates of the mean and covariance computed by EKF or UKF at time k
using measurement zk. The UKF-based importance density tends to move the particles xi towards
the high-likelihood regions by producing new particles xi with included knowledge about the
latest observation.

It should be noticed that the EKF tends to underestimates the true covariance of the state in
highly nonlinear systems. This violates the distribution support requirement for the proposal distri-
bution and may lead to poor performance and even �lter divergence. It provides a good alternative
for propagating the mean and covariance of the Gaussian approximation to the state distribution.

3.3 The Cubature Particle Filter
The CPF introduces the CKF into the PF framework for generating the importance density

function, so as to closely match the true posterior density by integrating the latest observation
information. In other words, the CPF considers the recent measurement, such as the recent
capacity degradation data, to iteratively update the weights of the random particles used in the
PF framework.

To construct the proposed distribution function of the PF, the CPF uses the current measure-
ment information and cubature points to calculate the mean and the variance of the nonlinear
random function directly by setting a de�ned group of sample points and corresponding weights.
Theoretically, The CPF requires fewer cubature points than the UPF when generating the impor-
tance proposal distribution, thus requires less computational overheads. Furthermore, the CPF
uses the square root of the error covariance for iterating and possesses better stability and
accuracy performance. Implementation algorithm for the PF-based approaches: EPF, UPF, and
CPF, is provided in Appendix C.

4 Performance Evaluation and Discussion

To assess the ef�ciency of the state estimation using the CPF algorithm in comparison
with those of UPF, EPF and KF-type approaches, two illustrative examples are adopted for
demonstrating the effectiveness under nonlinear/non-Gaussian environments. The two examples
presented includes the univariate nonstationary growth model (UNGM) and the ballistic target
tracking. Both have signi�cant nonlinearity and have been extensively investigated in the literature
as the benchmark problems [7,8,10,26]. The root-mean-square error (RMSE) metrics is used to
perform the performance comparison of KF-type approaches and PF-based approaches.

4.1 Example 1-Univariate Nonstationary Growth Model
The UNGM is important in econometrics and has been used as a benchmark for validating

and comparing nonlinear �lters. Its high nonlinearity and bimodality makes �ltering a dif�cult
task. The UNGM dynamic process model is given by

xk = 0.5xk−1+ 25
xk−1

1+ x2
k−1

+ 8 cos (1.2 (k− 1))+wk−1 (16)

and the measurement equation is

zk =
x2
k

20
+ vk (17)

where the process noise wk−1 is a zero mean Gaussian random variable with variance Qk−1. The
likelihood p (zk | xk) has bimodal nature when zk > 0 and unimodal when zk < 0. The bimodality
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makes the problem more dif�cult to address using traditional methods. Then, vk is the zero-mean
random error that represents the probability density function (pdf) f (vk). It is assumed that the
measurement noise follows a Gaussian mixture distribution with pdf of the form

f (vk)=
(

1− ε

σ1
√

2π

)
exp

[
−

(
x2

2σ 2
1

)]
+

(
ε

σ2
√

2π

)
exp

[
−

(
x2

2σ 2
2

)]
(18a)

or equivalently,

vk ∼ (1− ε)N
(

0,σ 2
1

)
+ εN

(
0,σ 2

2

)
(18b)

where σ1 and σ2 are the standard deviations of the individual Gaussian distributions, and ε is
a perturbing parameter that represents error model contamination. In order to demonstrate the
validity of the performance of the nonlinear �ltering based methods in non-Gaussian distribu-
tions, the perturbed conditions ε= 0.7 (i.e., with 70% contamination), and σ2 = 8σ1 = 8 have been
used. The initial conditions were x̂0 = 0, P0 = 1. The parameters utilized are α = 1, β = 2, κ = 0 in
the UKF. The reference data were generated using x0 = 0.1 and the total number of measurements
N = 500, the total number of Monte Carlo simulation runs is 60. Fig. 1 shows the two Gaussian
pdf’s employed to generate the measurement errors for Example 1.
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Figure 1: The two Gaussian pdf’s employed to generate the Gaussian mixture model used in the
measurement errors—Example 1

Fig. 2 provides the absolute error based on EKF, UKF, and CKF, respectively, for Example 1.
Fig. 3 shows the RMSE of KF-type approaches across each of the 60 Monte Carlo runs. As
can be seen, the CKF outperforms the other two �lters, because the third-degree spherical-radial
cubature rule provides stability against deviations from Gaussian distribution assumption. The
estimation accuracy of the CKF depends on what third-degree cubature rule is used based on
numerical integration method to approximate the proposal distribution. The estimation errors of
the KF-type approaches in term of nonlinear/non-Gaussian state estimation is summarized in the
ascending order: EKF>UKF>CKF.
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Figure 2: Estimation errors for the Kalman type-approaches, EKF, UKF, and CKF for Example 1:
(a) EKF vs. UKF; (b) UKF vs. CKF
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Figure 3: RMSE of the Kalman �lter-type approaches across 60 random runs

Due to the errors induced by arithmetic operations performed on �nite word-length com-
puters, the basic properties of an error covariance matrix of UT, i.e., symmetry and positive
de�niteness, are not always guaranteed to hold. However, the cubature-based nonlinear �lter
essentially propagates the square-root of the predictive and posterior error covariance, which
possesses the ability to preserve symmetry and positive de�nite, and thereby improves the numer-
ical accuracy and stability. The result shows that the performance of CPF is superior to UPF
solutions when same numbers of particles are used, since the proposal distribution based on CKF
taken into approximate the true posterior distribution is more precise than UKF. The CKF is
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developed using the spherical-radial rule, which is more accurate than the Gaussian quadrature
rule involved in UT.

4.2 Example 2: The Ballistic Target Re-Entry Problem
In the second example, application of the nonlinear �lters to the target tracking problem

using the range measurement is performed. The altitude, velocity and constant ballistic coef�cient
of a vertically falling body are estimated. The geometry for the ballistic target tracking using
ground radar for the benchmark problem is illustrated in Fig. 4. The altitude of the body is
measured at discrete-time instants using radar capable of measuring range contaminated by non-
Gaussian noise.

Radar location

H

M

)(2 tx

Range

)(1 tx

Body

Altitude

γ (t)

Figure 4: The geometry for ballistic target tracking using ground radar

The dynamic process model of this nonlinear system is given by

ẋ1 (t)=−x2 (t)+w1 (t)

ẋ2 (t)=−e−γx1(t)x2
2 (t)x3 (t)+w2 (t) (19)

ẋ3 (t)=w3 (t)

where the sequence
[
w1 (t) w2 (t) w3 (t)

]T is white and Gaussian with associated process noise

covariance and γ = 5× 10−5 relates the air density with altitude. The range measurement from
the radar is given as

zk =
√
M2+

(
x1,k−H

)2
+ vk (20)
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where M = 105 ft is the horizontal range between the vertical body and radar and H = 105 ft
is the altitude of the radar. The measurement noise vk is assumed to follow a Gaussian mixture
distribution of the form as in Eq. (18). The parameters utilized are α = 10, β = 2, κ = 3 in the
UKF. Fig. 5 shows the two Gaussian pdf’s employed to generate the Gaussian mixture model used
in the measurement errors for Example 2. The true state at the initial time t = 0 of the system

was x0 =
[
3× 105, 2× 104, 10−3

]T
and the initial estimate is x̂0 =

[
3× 105, 2× 104, 3× 10−5

]T
with

covariance matrix.

P0 =

106 0 0

0 4× 106 0

0 0 10−4
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Figure 5: The two Gaussian pdf’s employed to generate the Gaussian mixture model used in the
measurement errors—Example 2

The results are shown from Figs. 6 to 9. Prior to incorporation of the PF framework, the
results for EKF, UKF and CKF are presented, shown in Fig. 6. The estimation accuracies based
on the conventional nonlinear approaches: EKF, UKF and CKF are presented, shown as in
Fig. 6, where the merits of the CKF have been shown. For all the three PF-based approaches,
100 particles were used. Fig. 7 shows the absolute error based on PF-based approaches. The
CPF utilizes the 100 particles generated by the CKF employed for generating and propagating an
importance density function. It can be seen that estimation accuracy was noticeably improved by
using the PF-based approaches, i.e., the EPF, UPF and CPF. The results presented in the Fig. 7
indicate that the performance of the CPF algorithm is superior to the UPF and EPF in case that
the same numbers of particles were used. This is due to the fact that the proposal distribution
based on CKF possesses better accuracy than the UKF and EKF methods. Meanwhile, the
square root of the variance for iterating in the CKF provides the merit of improved stability
and accuracy.
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Figure 6: Estimation errors for the three KF-type approaches: EKF, UKF, and CKF

Fig. 8 presents the RMSE for the two groups of estimators across 60 Monte Carlo simulation
runs. For constructing importance density function, the CPF algorithm takes the nonlinear/non-
Gaussian state estimates of updated measurement as a reference and optimizes the proposed
distribution to increase the diversity of effective particles through CKF-involved method. In
general, using more particles produce better approximation to the true posterior distribution. A
large number of particles are required to sample the high dimensional state space effectively, which
increases the computational load, leading to poor real-time performance. The CPF algorithm used
less cubature points than the UPF, and has less computational overheads. Tab. 1 summarizes the
execution time of various approaches.

The CKF demonstrates noticeable improvement over the EKF and UKF while the EPF
slightly outperforms the CKF. The particles degeneracy can be attributed to the measurement of
highly non-Gaussian noise. The measurement noise should have a relatively heavy tail so that it is
insensitive to the outliers. To determine the number of particles are important for the sequential
importance sampling, which depends on the importance distribution of particles. Therefore, an
importance density tuned for a particular problem will yield an appropriate trade-off between the
number of particles and the estimation accuracy.

The UKF introduces a non-zero scaling parameter, which de�nes the non-zero center point
and is often associated with a set of weighted samples higher than that of the minimal set
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of sigma points. The CKF follows directly from the spherical-radial cubature rule for numeri-
cally computing Gaussian-weighted integrals with the property without entailing free parameters.
Although additional tuning on parameters in UKF provides �exibility, one can �x them as their
default values or just exclude the center point and the CKF is automatically obtained, if bothering
to tune them. The CKF in this work is based on the third-degree spherical-radial cubature rule
to propagate the cubature points through the nonlinear functions, so as to solve the integra-
tion in Bayesian �ltering problem for numerically computing the multivariate moment integrals,
which are numerically computed by the spherical cubature rule and the Gaussian quadrature
rule, respectively.
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Figure 7: Estimation errors for the three PF-based approaches: EPF, UPF, and CPF

The �ltering performance of the PF-based approaches (namely CPF, UPF and EPF) out-
performs the KF-type approaches (namely CKF, UKF, and EKF) due to consideration of the
latest observations. Fig. 9 presents comparisons of altitude and velocity RMSE among six �lters,
showing that the corresponding estimation errors are in the following ascending order: EKF >
UKF> CKF≈ EPF>UPF> CPF. The CPF algorithm outperforms the other nonlinear �lters.
The result shows that when the measurements are contaminated with non-Gaussian errors, the
CKF can adequately capture the non-Gaussianity and demonstrate noticeably better performance.
The performance of CPF is in general superior to UPF solutions when same numbers of particles
used, since the proposal distribution based on CKF taken into approximate the true posterior
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Figure 8: RMSEs for the two groups of �lters across 60 random runs: KF-type approaches (3
subplots on the left side); PF-based approaches (3 subplots on the right side)
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distribution is more precise than UKF, without additional tuning on parameters. The results are
based on numerical simulation and can be served as a general guide. These profound insights
will be helpful for choosing the appropriate nonlinear �lters in speci�c applications when certain
trade-off is necessary.

Table 1: Comparison of execution times for various �ltering approaches

Filter Execution time (s)

EKF 0.01033
UKF 0.07916
CKF 0.04517
EPF 4.09327
UPF 12.77373
CPF 10.30431

Altitude Velocity
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Figure 9: Comparison of altitude and velocity RMSE (in units of m and m/s, respectively)
among �lters

5 Conclusions

This paper provides profound insight into the estimation performance of CPF for
nonlinear/non-Gaussian processes. Assessment of the nonlinear �ltering approaches to the
nonlinear/non-Gaussian state estimation performance has been carried out. The CPF algorithm
possesses the merits of the PF framework to handle non-Gaussian errors and the CKF can deal
with the nonlinearity with better numerical stability to improve the estimation accuracy. In a CPF,
the CKF is used to generate the importance proposal distribution of the PF. The CKF employs
third-degree spherical-radial cubature rule to solve the integration in Bayesian �ltering problem for
numerically computing the multivariate moment integrals encountered. By integrating the latest
observation information and approximating the posterior distribution, the CKF performance is
improved. Furthermore, the CKF will facilitate selection of importance sampling in practice that
is useful to effectively alleviate the degeneracy and impoverishment problems in the PF.
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To improve the stability of the nonlinear �lter, the CKF can effectively avoid round-off errors
of numerical computation, and possesses better stability than the UKF and EKF. The spherical-
radial cubature rule employed in CKF is a special case of the quadrature rules involved in UKF.
Namely, if the parameters of the UPF are well-tuned, the estimation performance of the UPF
and the CPF will be similar or identical. Although the CKF can be treated as a special case
of the UKF, CKF is, in general, considered to be more accurate and stable than the UKF in
nonlinear �ltering realization without additional tuning on parameters as in the UKF. The result
shows that the performance of CPF is superior to UPF solutions when same numbers of particles
are used, since the proposal distribution based on CKF taken into approximate the true posterior
distribution is more precise than UKF.

To assess the performance of various estimation algorithms, two illustrative examples are
presented, especially for the cases under nonlinear/non-Gaussian environments. Performance com-
parisons on the KF-type approaches: EKF, UKF, CKF and PF-based approaches: EPF, UPF,
CPF have been presented. Simulation results show that the CPF algorithm possesses superior
performance than the KF-type approaches and other PF-based approaches, among which the CPF
algorithm shows superior estimation accuracy with less computational cost than the UPF. The
performance in terms of estimation accuracy, numerical stability and computational costs can be
improved. Developed to deal with nonlinear and/or non-Gaussian distribution assumptions, the
CPF algorithm possesses good potential as the alternative for the nonlinear and/or non-Gaussian
state estimation.
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Appendix A. Implementation algorithm for the unscented Kalman �lter

—Initialization: Initialize state vector x̂0|0 and state covariance matrix P0|0
—Time update
(1) The transformed set is given by instantiating each point through the process model

ζi,k|k−1 = f
(
Xi,k−1

)
, i= 0, . . . , 2n

(2) Predicted mean

x̂k|k−1 =

2n∑
i=0

W (m)
i ζi,k|k−1

(3) Predicted covariance

Pk|k−1 =

2n∑
i=0

W (c)
i

[
ζi,k|k−1− x̂k|k−1

] [
ζi,k|k−1− x̂k|k−1

]T
+Qk−1

(4) Instantiate each of the prediction points through observation model

Zi,k|k−1 = h
(
ζi,k|k−1

)
(5) Predicted observation

ẑk|k−1 =

2n∑
i=0

W (m)
i Zi,k|k−1

—Measurement update
(6) Innovation covariance

Pzz =

2n∑
i=0

W (c)
i

[
Zi,k|k−1− ẑk|k−1

] [
Zi,k|k−1− ẑk|k−1

]T
+Rk

(7) Cross covariance

Pxz =

2n∑
i=0

W (c)
i

[
ζi,k|k−1− x̂k|k−1

] [
Zi,k|k−1− ẑk|k−1

]T
(8) Performing update

Kk =PxzP−1
zz

x̂k|k = x̂k|k−1+Kk
(
zk− ẑk|k−1

)
Pk|k =Pk|k−1−KkPzzKT

k
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Appendix B. Implementation algorithm for the cubature Kalman �lter

—Initialization: Initialize state vector x̂0|0 and state covariance matrix P0|0
—Time update
(1) Factorize the covariance

Pk−1|k−1 = Sk−1|k−1STk−1|k−1

(2) Evaluate the cubature points

Xi,k−1|k−1 = Sk−1|k−1ξi+ x̂k−1|k−1

(3) Evaluate the propagated cubature points through the process model

X∗i,k|k−1 = f
(
Xi,k−1|k−1

)
(4) Estimate the predicted mean

x̂k|k−1 =

2n∑
i=1

ωiX∗i,k|k−1

(5) Estimate the predicted error covariance

Pk|k−1 =

2n∑
i=1

ωiX∗i,k|k−1X∗
T

i,k|k−1− x̂k|k−1x̂Tk|k−1+Qk−1

—Measurement update
(6) Factorize the covariance

Pk|k−1 = Sk|k−1STk|k−1

(7) Evaluate the cubature points

Xi,k|k−1 = Sk|k−1ξi+ x̂k|k−1

(8) Evaluate the propagated cubature points through observation model

Zi,k|k−1 = h
(
Xi,k|k−1

)
(9) Evaluate the propagated observation

ẑk|k−1 =

2n∑
i=1

ωiZi,k|k−1

(10) Estimate the innovation covariance

Pzz =

2n∑
i=1

ωiZi,k|k−1ZT
i,k|k−1− ẑk|k−1ẑTk|k−1+Rk

(11) Estimate the cross-covariance

Pxz =

2n∑
i=1

ωiXi,k|k−1ZT
i,k|k−1− x̂k|k−1ẑTk|k−1

(12) Perform update state vector x̂k|k and its covariance matrix Pk|k

Kk =PxzP−1
zz

x̂k|k = x̂k|k−1+Kk
(
zk− ẑk|k−1

)
Pk|k =Pk|k−1−KkPzzKT

k
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Appendix C. Implementation algorithm for the PF-based approaches: EPF, UPF, and CPF

—Initialization
Suppose N particles are sampled. For i= 1, . . . ,N, sample the particle

{
xi0
}N
i=1 according to prior

distribution p (x0). Assume
{
xi0
}N
i=1 be a set of particles sampled from the prior xi0 ∼ p (x0) at

k= 0 and set

x̂i0 =E
[
xi0
]

; Pi
0 =E

[(
xi0− x̂i0

) (
xi0− x̂i0

)T]
ωi0 = 1/N, i= 1, . . . ,N

—Importance sampling

(1) Update each particle with the EKF/UKF/CKF to obtain mean xik and covariance Pi
k.

(2) Re-generate particles from

x̂ik ∼ q
(
xik | x

i
k−1, zk

)
∼=N

(
xik, Pi

k

)
where xik and Pi

k are the estimation of mean and covariance of EKF/UKF/CKF, respec-
tively.

(3) Evaluate the recursive estimate for the importance weights by Eq. (11)

ωik ∝ω
i
k−1

p
(
zk | xik

)
p
(

xik | x
i
k−1

)
q
(

xik | x
i
0: k−1, z1: k

)
(4) Normalized the importance weights by Eq. (12)

ωik =
ωik∑N
i=1ω

i
k

—Systematic sampling
Minimized the discrepancy using the following method

xj =
πj−1+ u

N
, u∼U [0, 1) , j= 0, . . . ,N− 1

—Output
Evaluate the estimation state vector and covariance matrix

x̂k =
N∑
i=1

ωikxik

P̂k =

N∑
i=1

ωik

(
xik− x̂k

) (
xik− x̂k

)T


