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Abstract: In recent years, the application of a smart city in the healthcare
sector via loT systems has continued to grow exponentially and various
advanced network intrusions have emerged since these loT devices are being
connected. Previous studies focused on security threat detection and blocking
technologies that rely on testbed data obtained from a single medical IoT
device or simulation using a well-known dataset, such as the NSL-KDD
dataset. However, such approaches do not re�ect the features that exist in
real medical scenarios, leading to failure in potential threat detection. To
address this problem, we proposed a novel intrusion classi�cation architec-
ture known as a Multi-class Classi�cation based Intrusion Detection Model
(M-IDM), which typically relies on data collected by real devices and the use of
convolutional neural networks (i.e., it exhibits better performance compared
with conventional machine learning algorithms, such as naïve Bayes, support
vector machine (SVM)). Unlike existing studies, the proposed architecture
employs the actual healthcare IoT environment of National Cancer Center
in South Korea and actual network data from real medical devices, such as a
patient’s monitors (i.e., electrocardiogram and thermometers). The proposed
architecture classi�es the data into multiple classes: Critical, informal, major,
and minor, for intrusion detection. Further, we experimentally evaluated and
compared its performance with those of other conventional machine learn-
ing algorithms, including naïve Bayes, SVM, and logistic regression, using
neural networks.

Keywords: Smart city healthcare IoT; neural network; intrusion
classi�cation; machine learning

1 Introduction

Nowadays, information and communication technology is increasingly applied to the the
healthcare sector in smart city infrastructure, the foundation of which is network technology
for data transmission and reception. Network �ows in such infrastructure are also increasing in
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complexity owing to advanced technologies such as Internet of Things (IoT), cloud computing,
big data, mobile, arti�cial intelligence, and blockchain technologies [1].

Before the advent of IoT, interactions between patients and medical staff were limited to visits
and telephone calls. As such, it was impossible to monitor patients continuously. The application
of IoT has enhanced the connectivity of devices related to healthcare and has rede�ned the
interaction space of devices and people when medical services are provided, signi�cantly improving
the medical sector. With the emergence of IoT-applied medical services, all members in a city,
including healthy people, patients, medical staff, hospitals, and health insurance companies, can
now remotely monitor a person’s health status with no distinction between inside and outside a
medical institution. This capability has increased the ease and ef�ciency of interacting with medi-
cal staff. It not only shortens hospital stays and prevents re-hospitalization, but also substantially
reduces medical costs and improves treatment outcomes [2–4].

A vast amount of data in smart city healthcare �eld has been actively trasferred between
people through devices based on edge nodes or edge cloud. There are also various types of
connectivity-based equipment. Such an environment, however, contains either directly or indirectly
sensitive information, which potentially exposes personal information to attacks. Unlike other
�elds, healthcare cyberattacks in smart cities can cause physical and logical confusion to individu-
als and society. Therefore, it should be able to defend against interrupting service requests on the
network [2–4].

Previous studies mostly focused on security threat detection and blocking technology (based
on testbed data composed of a single medical IoT device or simulator) [5–12]. However, such
approaches lack re�ection of features that exist in the real world.

Therefore, in this study, machine learning technology was applied to classify network events
into four different classes (critical, informal, major, and minor) using data collected by real devices
in order to suf�ciently re�ect the complex network �ow and characteristics of the actual healthcare
IoT environment. We built real world data-based models using a neural network-based multi-class
intrusion classi�cation algorithm for these classes.

To address the above problems in healthcare IoT, we proposed a Multi-class classi�cation
based Intrusion Detection Model (M-IDM) for healthcare IoT in a smart city that relies on
machine learning techniques. The contributions of this paper are as follows:

• We proposed a novel intrusion classi�cation architecture based on machine learning tech-
niques to overcome problems related to the detection of unknown attacks in healthcare IoT.
• A service scenario is presented to classify the security event in the network as “normal” or

“anomaly (critical, major, minor)” based on various features.
• We experimentally evaluated and analyzed the proposed model architecture using a large

amount of data to demonstrate its practicability and feasibility.

The structure of the rest of this paper is as follows. Section 2 discusses related works on
intrusion detection and machine learning. Section 3 proposes a prediction model using machine
learning algorithms for intelligent network intrusion detection. Section 4 provides analysis and
comparison of the existing and proposed models for network intrusion detection. Finally, Section
5 summarizes the main �ndings of this study and the concluding remarks.
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2 Related Work

2.1 Intrusion Classi�cation
This procedure is divided into the network intrusion detection system (NIDS) and host-based

intrusion detection system (HIDS) according to the detection location. The NIDS analyzes the
network traf�c, and the result is combined with other technologies to increase the performance
of the detection and prediction speed. In particular, arti�cial neural network-based intrusion
detection systems can recognize intrusion patterns more ef�ciently, which helps them analyze
large amounts of data. Meanwhile, the HIDS monitors important operating system �les and the
inbound and outbound packets of the device and also sends alerts in cases of a suspicious activity.

Classi�cation techniques can be divided into signature-based and anomaly-based methods.
Signature-based methods search for speci�c patterns, such as byte sequences of network traf�c or
sequences of known malicious instructions using malware. In contrast, anomaly-based methods
can easily detect known attacks but show poor detection performance in the case of new attacks
in which patterns cannot be used. Anomaly-based methods are primarily used to classify unknown
attacks due to the rapid development of a malicious code. Essentially, the machine learning
algorithm is used to create a reliable model, then, its operations are compared. Although unknown
attacks can be detected, this method may also result in false positives. An ef�cient feature selection
algorithm must be used to enhance the reliability of classi�cation [13–19].

2.2 Machine Learning
In theoretical terms, machine learning is a �eld of arti�cial intelligence in which algorithms

are developed that enable machines to learn and execute operations that are not speci�ed in codes.
Representation and generalization are the key elements among the many features that are involved
in machine learning. Representation refers to the evaluation of given data, whereas generalization
refers to processing of unknown data. In practice, the three key elements of machine learning are
the training set, model, and inference. The training set refers to data used for learning, the model
is the output obtained through the training set, and the inference is the training output prediction
based on input values through actual data [20,21]. Fig. 1 summarizes the above descriptions.

Figure 1: Work�ow of a machine learning-based model

In a conventional program, data are input and the program presents the results of process-
ing the input data. However, when machine learning processes the data, the model (algorithm)
developed from the training dataset provides the prediction results of the input values in the test
dataset. Hence, machine learning algorithms are suitable for solving problems where it is dif�cult
to explain the sequence or reasoning clearly [20].

The machine learning model was selected based on whether the data were labeled or not; if
the data are labeled, supervised learning models are used to perform classi�cation and prediction,
whereas if the data are unlabeled, unsupervised learning models are used to perform clustering.
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The two models are different, but when applying actual data to the model, a harmonized
methodology is used because labeled data are rare [20–22].

2.3 Existing Research
Kabir et al. [23] proposed an algorithm that selects representative samples from sub-groups

so that the samples faithfully re�ect the entire dataset. In the optimal allocation technique, least-
squares support vector machine (SVM) is applied to the extracted sample to detect intrusion after
generation based on the diversity of observations in the subgroup.

Wang et al. [24] proposed an effective intrusion detection framework with improved function-
ality based on SVMs, emphasizing that high-quality training data are important for enhancing
detection performance. In this framework, log marginal density ratio conversion is implemented
to achieve high-quality SVM detection.

Farnaaz et al. [25] constructed a model for an intrusion detection system using a random
forest (RF)-based classi�er. The RF algorithm is used to detect four types of attacks: denial
of service (DoS), probe, U2R, and R2L attacks. Cross-validation is adopted to achieve accurate
classi�cation, and a feature selection algorithm is applied to the dataset to remove redundant or
irrelevant features.

Swarnkar et al. [26] proposed a novel and ef�cient data structure called the probability tree
structure. If not found in the database in the test phase, or if the probability of packet occurrence
is not found in the training phase, then the short sequence is treated as an anomaly. The possibility
of an abnormal short sequence is used to generate the class label for the test packet. Some
intelligence algorithms are utilized to optimize the parameters of machine techniques for feature
selection or feature weighting in network intrusions. In this regard, Yang et al. [27] presented a
modi�ed naïve Bayes algorithm based on the arti�cial bee population algorithm.

For the search strategy, Khammassi et al. [28] applied a wrapper method based on a genetic
algorithm, whereas for the learning algorithm for network intrusion detection, they used a method
that selects the best subset of functions by applying logistic regression.

Caminero et al. [29] �rst applied hostile reinforcement learning to intrusion detection and
proposed a novel technique that integrates the behavior of the environment into the learning
process of the modi�ed reinforcement learning algorithm. The researchers demonstrated that
the proposed algorithm is appropriate for supervised learning based on labeled datasets and
veri�ed its performance through comparisons with other well-known machine learning models for
two datasets.

To identify a variety of unauthorized use, misuse, and abuse of computer systems, Liu
et al. [30] proposed an adaptive network intrusion detection technique based on the selective
ensemble of a kernel extreme learning machine with random functions.

Handling redundant or irrelevant features in high-dimensional datasets has been a long-term
challenge in network anomaly detection. Removing these features through spectral information not
only speeds up the classi�cation process but also helps classi�ers make accurate decisions during
instances of attack recognition.

Salo et al. [31] proposed a new hybrid dimension reduction technique, namely the principal
component analysis–ensemble technique, using an ensemble classi�er based on information gain,
an SVM, an instance-based learning algorithm, and a multi-layer perceptron.



CMC, 2021, vol.67, no.2 1541

Divyasree et al. [32] proposed an ef�cient intrusion detection system using the ensemble core
vector machine (CVM) method. The CVM algorithm, which is based on the minimum enclosing
ball concept, detects attacks such as U2R, R2L, probe, and DoS attacks. CVM classi�ers are
modeled for each type of attack; chi-square tests are used to select the relevant function for each
attack, and the functions are weighted for dimension reduction.

Al-Jarrah et al. [33] presented a semi-supervised multi-layer clustering (SMLC) model for net-
work intrusion detection and prevention. SMLC, which achieves a detection performance similar
to that of the supervised ML-based intrusion detection system (IDS) intrusion prevention system
(IPS), performs learning using partially classi�ed data. SMLC’s performance is identical to those
of algorithms that make up the layers of the well-known semi-supervised model (tri-training) and
the supervised RF, bagging, and AdaboostM1 machine learning models.

Hady et al. [34] built a real-time testbed to monitor patient biometrics and collect network
�ow metrics. They combined network �ow data with a patient’s biometric data to improve system
performance and used it as a training dataset. The proposed system improved the area under
curve (AUC) by up to 25%. The aforementioned system used four machine learning methods: RF,
K-nearest neighbors, SVM, and arti�cial neural network.

Gao et al. [35] developed a feature set speci�cally for implanted medical devices and con-
ducted experiments to test the performance of different learning algorithms including decision tree,
SVM, and K-means algorithms. The study showed that decision-tree based algorithms achieved
the highest detection accuracy, low false-positive rate, and fast training and prediction speed com-
pared with other algorithms. In addition, several other researchers discussed intrusion detection
from different perspectives, including distributed DoS attacks, deep packet inspection, emotion
classi�cation, and network sub-slicing [36–39].

In this paper, we demonstrated that a model created using machine learning based on extract-
ing actual data from the hospital environment can respond to the security threats of IoT medical
devices, which are otherwise dif�cult to manage. Moreover, it is useful to classify detailed risks to
enable greater focus on serious events in an IoT medical device mass produced from heterogeneous
medical devices, as it shows that it is possible to classify threats of four labels beyond simple
binary classi�cation with high accuracy.

In summary, existing studies demonstrated that machine learning is a good approach to
support network intrusion detection in communication and distributed infrastructure. Thus, this
paper presents an M-IDM to respond to the security threats of IoT medical devices, which
are dif�cult to manage, through a model trained by extracting actual data from the hospital
environment. The proposed model shows that it is possible to classify threats of four labels beyond
simple binary classi�cation with high accuracy.

3 Multi-Class Intrusion Classi�cation Model (M-IDM)

The proposed security model M-IDM relies on the concept of intrusion classi�cation in which
a machine learning model is trained over the baseline dataset to classify the anomaly behaviors
from legitimate ones. Unlike existing studies, the proposed M-IDM uses the actual healthcare
IoT environment of the National Cancer Center, South Korea, and actual network data from
real medical devices, such as a patient’s monitor, including electrocardiogram and thermometers.
Moreover, it employs convolutional neural network (CNN), which exhibits better performance
compared with conventional machine learning algorithms such as naïve Bayes and SVM, to
classify the data into multiple classes (critical, informal, major, and minor) for intrusion detection.
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This section describes the architectural design overview of the M-IDM, including major module
data description, data preprocessing, and service scenario.

3.1 Proposed Model Architecture
The architectural design overview of the proposed M-IDM is shown in Fig. 2. It consists of

�ve stages: Input data, preprocessing, feature extraction, classi�cation, and output.

During the input stage, raw data is accumulated, which includes network traf�c, logs, scan
from internal medical sources, vulnerability database, threat feeds from technical sources, social
media, forums, and dark web from human sources. Preprocessing eliminates some inappropriate,
multifunctional, or noisy data that might be present in subsequent raw data. The feature extraction
component provides extraction and speci�cation of the relevant features, including network secu-
rity event data such as the IP, port, protocol, and severity from heterogeneous medical devices to
support security threat classi�cation in the healthcare IoT environment. The classi�cation module
is responsible for creating a trained model with relevant features from the preprocessed data. It
uses various machine learning algorithms for classi�cation purposes.

Here, the processed data is divided into training and test data. The classi�cation model is
trained using only the training data. The trained model is then repeatedly validated using the
validation data. The process either proceeds to the next stage or corrects the parameters, learning
method, etc., based on the validation results, and training is repeated. The model is completed
through this process. In the output stage, the actual values are input into the model completed
in the previous stage to con�rm the classi�cation. The classes are normal and anomaly (critical,
major, minor).

Figure 2: Overview of proposed model architecture
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3.2 Data Description
The proposed M-IDM architecture uses the actual healthcare IoT environment of National

Cancer Center, South Korea, and actual network data from real medical devices, unlike previous
studies. The dataset was collected from a total of six medical devices with the same IP band, such
as a patient’s monitor, an electrocardiogram, a thermometer, a sphygmomanometer, a hygrometer,
and a fall prevention bed with an alarm watch, which is used in an isolated internal-medical-
device-only wireless network. There is a network tab device con�gured using the mirror method
for transmitting and receiving all traf�c between the medical IoT device and gateway. We obtained
monthly logs of all traf�c going through this �rewall to the gateway. Out of the 300,000 cases
collected (12 months), 100,000 cases (4 months, approximately 833/day) were selected in an even
distribution. For the data label, four risk labels de�ned in the �rewall were used: Normal, critical,
major, and minor.

The network event data consists of 11 features: one target variable and ten explanatory
variables for machine learning, as listed in Tab. 1. The target variable is the severity classi�cation
value of each event, that is, normal, critical, major, and minor. The type of source/destination IP
refers to the type of IP that attempts to access or receive access from the device, that is, private-
internal, public-external. The date variable was recorded as year, month, day, hour, and second
based on when the event was created. Flag is used in the TCP �ag, that is, URG, ACK, PSH,
RST, SYN, and FIN.

Table 1: Variable descriptions

Type Variable type Attributes Data type

Severity Target Normal, critical,
major, minor

Nominal

Working hour Explanatory Day: 09:00–18:00
Night: 18:00–09:00

Binary

Date 2017-01-01 00:00:00 Rede�ne to working hour
Type of source/destination IP Private, public Binary
Source/destination IP 000.000.000.000 Rede�ne to type of

source/destination IP
Source/destination port 1–65535 Numeric
Protocol dns, kerberos, http,

https, ssh, telnet,
imap, smtp, pop3,
tftp, ftp, smb, smb2,
icmp, ntp, tcp, udp

Nominal

Flag URG, ACK, PSH,
RST, SYN, FIN,
N/A

Nominal

3.3 Data Preprocessing
There are two types of dataset attributes in the proposed M-IDM: Symbolic and numeric.

The data set attribute is numeric. However, the data of symbolic properties cannot be directly
processed. Thus, it is necessary to convert symbolic data to numeric data. Tab. 2 lists symbolic
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attributes and their associated values. In the table, the two rede�ned attributes “Working hour”
and “Type of source/destination IP” have a value of 0 or 1; in this case, these can be processed
in the same way as the numeric attribute. Furthermore, “Protocol” and “Flag” attributes were
converted as a sequence of integers, that is, Protocol: 1–17, Flag: 1–6, after being represented as
on-hot vector.

Table 2: Symbolic attributes and their associated values

Symbolic attributes Symbolic values Number of distinct values

Working hour 1 and 0 2
Type of source/destination IP 1 and 0 2
Protocol dns, kerberos, http, https, ssh,

telnet, imap, smtp, pop3, tftp, ftp,
smb, smb2, icmp, ntp, tcp, udp

17

Flag URG, ACK, PSH, RST, SYN,
FIN, N/A

6

The protocol attribute has 17 unique values; similarly, the �ag attribute is de�ned with 6
unique values. Many approaches have been proposed for handling symbolic attributes. In an exper-
iment conducted as part of this study, we employed a method that uses conditional probability
and dummy indicator variables to process protocol and �ag properties [40,41]. However, using only
this method increases the dimension of the dataset; thus, we clustered similar types in symbolic
attributes. In Tabs. 2 and 3, it can be observed that the dimension is reduced by clustering into
different classes for different protocol properties. The study in [42] also performed clustering into
a similar type of symbolic attribute. Then, we converted these classes into indicator variables as
presented in Tabs. 3 and 4. Data scaling was performed because normalized data is required to
perform classi�cation.

Table 3: Clustering of protocol attribute

Symbolic attributes Protocol type Description

PR1 dns Service belongs to names server
PR2 kerberos Service belongs to authentication
PR3 http, https, . . . Service belongs to web applications
PR4 ssh, telnet, . . . Service for remote access to other machines
PR5 imap, smtp Service for mail transfer
PR6 tftp, ftp, smb Service for �le transfer
PR7 Remaining protocols All other services

In this experimental evaluation of the proposed M-IDM architecture, the selected data (i.e.,
100,000 cases or instances) were randomly sampled and divided into training or labeled data and
testing or unlabeled data. The ratio of training and testing dataset was 90:10, where 90% (i.e.,
90,000 instances) is training data and the remaining 10% (i.e., 10,000) is testing data.
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Table 4: Clustering of �ag attribute

Symbolic attributes Flag type Description

FL1 SYN Connection request and in TCP
FL2 ACK Response in TCP
FL3 RST Connection reset in TCP
FL4 PSH Message push in TCP
FL5 URG Urgent message in TCP
FL6 FIN Connection termination in TCP
FL7 N/A All other �ags or blank

3.4 Service Scenario
This section describes the service scenario of the proposed M-IDM, which classi�es the

security event data into classes of “normal” or “anomaly (critical, major, minor).” Fig. 3 shows a
schematic diagram of the service scenario for the proposed model. This section describes details
of the procedures for each stage from � to �.

Figure 3: Service scenario of proposed M-IDM model

The details of the service scenario are as follows:

� Data separation: All security event data collected on the healthcare network are randomly
sampled and divided into training and test data. The separated data are used to generate
the model through learning and to validate the reliability of the model.� Model training: The learning algorithm is selected considering various conditions; then,
the parameters are adjusted according to the algorithm and learning is performed using
only the training data from the data separated in �. After assessing the precision of the
learning model using the test data, this process is repeated by applying different parameters
and algorithms and other methods until the desired result is obtained. The processes in� and � are performed in batch form.� Real-time classi�cation 1: The model generated in � is applied to the classi�er; then, the
real IoT medical devices network security event data (the real data do not overlap with
the data in �) are input in real-time. The input data are �rst classi�ed as “normal” or
“anomaly” using a trained model that is not based on rules.
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� Real-time classi�cation 2: The IoT medical devices security event data classi�ed as
“anomaly” in � are further classi�ed as “critical,” “major,” or “minor.” The processes in� and � are performed in real-time.

4 Experiment and Performance Evaluation

In this study, we experimentally evaluated the performance of the proposed M-IDM, which
was developed by employing CNN algorithms in Python 3.7.0 environment with orange. We
selected a CNN by validating its classi�cation performance and those of conventional machine
learning algorithms such as naïve Bayes and SVM. The CNN has the structure: Input →
Conv → Maxpool → Fully Connected → Output, where the weights and bias parameters are
w1 = (10, 1, 3, 3) and b1 = (10, 1) for the Conv layer, w2 = (1960, 128) and b2 = (1, 128) for the
fully connected layer, and w2 = (128, 10) and b2 = (1, 10) for the output layer. We set other
training parameters (i.e., learning rate, no. of epochs, number of iterations) as 0.5, 1, and
1500, respectively.

The speci�cations of the PC used for the experimental setup are as follows: CPU i7-8700
3.2 GHz, memory 8 GB, and graphic card RTX 2060 4 GB. Several standard measures, such
as precision, recall, area under the receiver operating characteristic curve (AUC), and F1-score
were used.

4.1 Effect of Number of Instances
To achieve an objective comparison of the proposed algorithm against existing conventional

algorithms, the precision, recall, AUC, and F1-score [43–45] were investigated for different number
of instances. When using the same data (sampling type: 10-fold cross-validation, target class:
average over classes), the CNN exhibited the best performance in all items for all the number of
instances, as presented in Tab. 5.

Table 5: Performance of machine learning methods for different number of instances

Number of instances Method AUC F1 Precision Recall

N = 10,000 M-IDM 0.965 0.890 0.911 0.844
Naïve Bayes 0.957 0.881 0.906 0.886
Logistic regression 0.947 0.871 0.900 0.875

N = 50,000 M-IDM 0.967 0.937 0.947 0.946
Naïve Bayes 0.957 0.863 0.940 0.815
Logistic regression 0.929 0.865 0.894 0.901

N = 100,000 M-IDM 0.967 0.937 0.947 0.946
Naïve Bayes 0.957 0.869 0.939 0.827
Logistic regression 0.932 0.897 0.915 0.923

∗Constraints.

—M-IDM (activation: ReLu, hidden layer: 100, maximal number of iterations: 200, regula-
tion α: 0.0001, optimizer: Adam)

—Logistic regression (regulation type: ridge, strength: C= 1)
—SVM (cost: 1.0, regression loss epsilon: 0.1, iteration limit: 100).
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Excluding the SVM in which the precision was signi�cantly reduced, the naïve Bayes and
logistic regression approaches (N= 100,000) both yielded AUCs of at least 0.932. Tab. 6 presents
the detailed classi�cation results for each class. The prediction rate for each class of the M-IDM,
which exhibited the best performance (N = 100,000), was con�rmed using a confusion matrix.
According to the results, the “major” class had a relatively low prediction rate of 87.7% compared
with the other classes (with prediction rates of 94.3%–98.8%).

Table 6: Proportions of predictions obtained using M-IDM

Type of classes Predicted

Critical (%) Informal (%) Major (%) Minor (%)

Actual
Critical 98.8 2.4 0.0 1.4
Informal 0.3 94.3 5.3 1.2
Major 0.2 0.3 87.7 0.1
Minor 0.6 3.0 7.0 97.4

Figs. 4 and 5 also show the AUC for each machine learning method for the same data (N=
100,000). Compared with other ML methods, the proposed method showed better performance
for each class. In particular, the SVM showed a large deviation of 0.5 (more or less) for each
label. The threshold for each method and label was set to 0.5.

Figure 4: Machine learning method-speci�c AUC for four labels (normal, critical)



1548 CMC, 2021, vol.67, no.2

Figure 5: Machine learning method-speci�c AUC for four labels (major, minor)

4.2 Impact of Class
This section describes the effect of the number of labels on the prediction. The same data

and conditions were used in these tests as those used for the M-IDM algorithm (N = 100,000),
which exhibited the best performance, as presented in Section 4.1. The accuracy for each label
was con�rmed as the number of labels was increased from two to four. Fig. 6 shows the accuracy
of each algorithm in terms of predicting a certain label based on the number of classes.

Figure 6: Prediction rate by label



CMC, 2021, vol.67, no.2 1549

The following rates were observed: Anomaly 99.3% and normal 94.4% at two classes; critical
93.5%, major+minor 85.3%, and informal 95.9% at three classes; and critical 98.6%, major 87.7%,
minor 97.7%, and informal 94.3% at four classes.

All the algorithms showed good accuracy of 85.3%–99.3%. At four classes, the accuracy
by class ranged from 87.7% to 98.6%, where “major” had a relatively low accuracy of 87.7%
compared with the other classes.

4.3 Analysis of M-IDM
We compared the �ndings of this study with those obtained in existing studies based on vari-

ous aspects. Tab. 7 summarizes the result of the comparison based on 10 aspects of methodology,
number of feature/record/class/hidden layers, minimum/maximum AUC, veri�cation, data source,
number of device types, and detection range. In Tab. 7, “Methodology” indicates the main method
used in this study, and “Number of feature/record/class/hidden layers” indicates basic information
of data or learning model. Furthermore, “Min/Max AUC” denotes the method used to perform
model learning. “Validation” is a job con�rming that the result of a learning model have enough
�delity. “Data source” is the environment from which the data was extracted, and “Number of
device types” is the number of devices used to generate training data. “Detection range” indicates
the range of detection from sensor to server.

In existing studies, binary classi�cation is mainly used and only simple classi�cation is possi-
ble. Moreover, because the number of devices used for data acquisition and generation is from a
testbed, it is dif�cult to re�ect the characteristics that occur in a mixed environment of heteroge-
neous devices. However, this study classi�es various classes while considering the constraints of the
IoT environment by acquiring traf�c logs that multiple actual IoT medical devices communicate
with and learning from the data an environment in which heterogeneous IoT medical devices
are mixed.

Table 7: Method comparison

Type Hady et al. [34] Gao et al. [35] Alrashdi et al. [36] This work

Methodology NN Decision tree Random forest NN
Number of
Features 34 7 12 10
Records 16,000 7,000 257,673 100,000
Classes 2 2 2 2 4
Hidden layer 100 – – 100 100
Min/max AUC 91.45–93.42 87.7–90.37 98 94.3–99.4 87.7–98.6
Validation 10-fold – – 10-fold
Data source Testbed data Testbed data UNSW-NB15 Real-world data
Number of device
types

1 1 – 6

Detection range
(sensor–gateway–
server)

Gateway–server Gateway–server Gateway–server Sensor–gateway
(edge node)
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4.4 Computational Complexity
We evaluated the complexity across the proposed model. As shown in Fig. 7, we observed the

average of the calculation resources (CPU and memory) for each data size. As the data volume
increased, more average calculation resources were required. Additionally, the ratio of data growth
and computational resource use was compared. When the volume of data doubled, the average
computational resource usage increased by up to a factor of 1.3, and when the data volume
increased by �ve times, it increased by up to a factor of 1.8. Therefore, it can be observed that
the computational overhead of the proposed model is not a signi�cant problem.
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Figure 7: Computational complexity of the proposed model

5 Conclusion

In this study, we proposed a multi-class security event classi�cation model based on machine
learning. The proposed model was built using real-world data and neural network-based multi-
class intrusion classi�cation algorithm for four classes. This work suf�ciently re�ects the complex
network �ow and characteristics of a real healthcare IoT environment, and machine learning
technology was applied using data from real devices to classify network events into four different
classes. In future work, more meaningful features should be found in security event data before
re�ning to enhance the performance of the proposed approach, and methods should be developed
to improve the somewhat low accuracy for rare classes to address the problem of data imbalance
between the classes.
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