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Abstract: Diabetes is a metabolic disorder that results in a retinal complication
called diabetic retinopathy (DR) which is one of the four main reasons for
sightlessness all over the globe. DR usually has no clear symptoms before the
onset, thus making disease identi�cation a challenging task. The healthcare
industry may face unfavorable consequences if the gap in identifying DR is not
�lled with effective automation. Thus, our objective is to develop an automatic
and cost-effective method for classifying DR samples. In this work, we present
a custom Faster-RCNN technique for the recognition and classi�cation of
DR lesions from retinal images. After pre-processing, we generate the anno-
tations of the dataset which is required for model training. Then, introduce
DenseNet-65 at the feature extraction level of Faster-RCNN to compute
the representative set of key points. Finally, the Faster-RCNN localizes and
classi�es the input sample into �ve classes. Rigorous experiments performed
on a Kaggle dataset comprising of 88,704 images show that the introduced
methodology outperforms with an accuracy of 97.2%. We have compared our
technique with state-of-the-art approaches to show its robustness in term of
DR localization and classi�cation. Additionally, we performed cross-dataset
validation on the Kaggle and APTOS datasets and achieved remarkable results
on both training and testing phases.

Keywords: Deep learning; medical informatics; diabetic retinopathy;
healthcare; computer vision

1 Introduction

Diabetes, scienti�cally known as diabetes mellitus is an imbalance of metabolism that pre-
cedes to increase in the level of glucose in the bloodstream. According to an estimate provided
in [1] about 415 million people are victimized by this sickness. Prolonged diabetes causes retinal
complications which results in a medical condition called DR, which is one of the 4 main reasons
for sightlessness all over the globe. More than 80% of people who are exposed to diabetes for a
long time suffer from this medical condition [2]. The high level of glucose in circulating blood
causes blood leaks and an increased supply of glucose to the retina. This often leads to abnormal
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lesions i.e., microaneurysms, hard exudates, cotton wool spots, and hemorrhages in the retina, thus
causing vision impairment [3]. DR usually has no clear symptoms before the onset. The most
common screening tool used for the detection of DR is retinal (fundus) photography.

For treatment purposes and avoiding vision impairment, the DR is classi�ed in different levels
concerning the severity of the disorder. According to the research of the early treatment of DR
and international clinical DR, there are �ve levels of DR severity. In the zeroth level of DR
severity, there is no abnormality. The �rst, second, third, and fourth levels are identi�ed as the
presence of mild- aneurysms, moderate non-proliferative Diabetic Retinopathy (NPDR), severe
NPDR, and proliferative DR, respectively. Tab. 1 summarizes the �ve levels of DR severity with
their respective fundoscopy observations.

Table 1: Severity levels of DR

DR type Visual observations using fundoscopy Severity level

Type 0 No observable abnormalities No DR
Type 1 Observable micro-aneurysms Mild NP DR
Type 2 Observable micro-aneurysms OR retinal dots and hemorrhages

OR hard exudates OR cotton wool spots
Moderate NPDR

Type 3 Observable beading in 2 or more quadrants OR intra-retinal
microvascular abnormality (IRMA) in 5 or more quadrants
OR intra-retinal hemorrhages (more than 20) in each of the
4 quadrants

Severe NPDR

Type 4 Observable Neo-vascularization OR pre-retinal hemorrhages Proliferative DR

For computerized identi�cation of DR, initially, hand-coded key points were used to detect
the lesions of DR [4–14]. However, these approaches exhibit low performance due to a huge
change in color, size, intra-class variations, size, bright regions, and high variations among different
classes. Moreover, the little signs other than microaneurysms, medical rule marks, and objects
also contribute to the unpromising results of CAD solutions. Another reason for the degraded
performance of automated DR, detection system is the involvement of non-affected regions with
the affected area, which in turn gives a weak set of features. To achieve the promising performance
of computer-based Diabetic retinal disease detection solutions, there must be an ef�cient set
of key-points.

Object detection and classi�cation in images using various machine learning techniques have
been a focus of the research community [15,16]. Especially with the advent of CNN, various
models have been proposed to accomplish the tasks of object detection and classi�cation in the
areas of computer vision (CV), speech recognition, natural language processing (NLP), robotics,
and medicine [17–21]. Similarly, there are various examples of deep learning (DL) use in biomed-
ical applications [22,23]. In this work, we have introduced the technique that covers the Data
preparation, Recognition, and classi�cation of DR from retinal images. In the �rst step, we have
prepared our dataset with the help of ground truths. For detection and feature extraction, we
have proposed a CNN algorithm named DenseNet-65 for images of size 340 × 240 pixels. We
also present the performance comparison of our models in terms of accuracy with DenseNet-
121, ResNet-50, and Ef�cientNet-B5. Moreover, we have compared our approach against the most
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recent techniques. Our analysis reveals that the introduced technique has the potential to correctly
classify the images. The following are the main contributions of our work:

• The development of the annotations of the large dataset having images with a total of
88,704 images.
• We have introduced a customized Faster-RCNN with DenseNet-65 at the feature extrac-

tion level which can accurately increase the performance to locate the small objects while
decreasing both training and testing time complexity. By removing the unnecessary layers,
the Densenet-65 minimizes the loss of the bottom-level high-resolution key points and saves
the data of small targeted regions, which are lost by repeated key points.
• To develop a technique for classifying DR images using DenseNet-65 architecture instead

of hand-engineered features and reduce cost-effectiveness and the need for face-to-face
consultations and diagnosis.
• Furthermore, we have compared the classi�cation accuracy of the presented framework

with other algorithms like AlexNet, VGG, GoogleNet, and ResNet-11. The results pre-
sented in this work show that DenseNet architecture performs well in comparison to the
latest approaches.

The remaining manuscript is arranged as follows: In Section 2, we present the related work.
This includes the work on the classi�cation of DR images using handcrafted features and DL
approaches. In Section 3, we present the proposed methodology of DR image classi�cation using
Custom Faster-RCNN. In Section 4, we present the results and evaluations of the introduced
work. Finally, in Section 5 we conclude our work.

2 Related Work

In history, several approaches have been introduced to correctly classify the images of normal
retina and retina with DR. In [24], the authors propose a technique that uses mixture-models
to dynamically threshold the images for differentiating exudates from the background. Afterward,
edge detection is applied to classify cotton wool spots from the background texture. The proposed
work presents a sensitivity of 100% and speci�city of 90%. Authors in [25] present an algo-
rithm that performs 2-step classi�cation by combining four machine learning techniques, namely,
k-nearest neighbors (KNN) [26] Gaussian mixture models (GMM) [27] support vector machines
(SVM) [28], and the AdaBoost algorithm [29]. The authors report the sensitivity and speci�city
of 100% and 53.16%, respectively. Priya et al. [30] proposes a framework to categorize fundus
samples into two classes: proliferative DR and non-proliferative DR. The proposed technique �rst
extracts hand-engineered features of DR abnormalities, for instance, hemorrhages, hard exudates,
and swollen blood vessels. These hand-engineered features are then used to train a hybrid model of
probabilistic neural networks (PNN), SVM, and Bayesian classi�ers. The accuracy of each model
is computed separately, i.e., 89.6%, 94.4%, and 97.6% for PNN, SVM, and Bayesian classi�ers,
respectively. In [31], the authors propose a technique that is designed using the idea of a visual
descriptor word bag. The proposed algorithm in the initial stage detects the points of interest
based on hand-engineered features. Secondly, the feature vectors of these detected points are
consumed to construct the dictionary. Finally, the algorithm classi�es whether the input image of
the human retina contains hard exudates using SVM.

With the introduction of DL, a focus is on introducing methods for classifying DR images
through employing deep neural networks as a replacement for hand-coded key points. The
related work of approaches to categorizing normal and DR retinas utilizing DL methodologies is
discussed in Tab. 2.
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Table 2: A comparison of the diabetic retinopathy severity levels

Reference Methodology Findings Gaps identi�ed

Xu et al. [32] Deep CNN-based technique to
correctly classify DR using fundus
samples. The presented network is
based on the most fundamental
architecture of CNN.

The proposed method can
accurately categorize 94.5%
of the color DR images.

The architecture of CNN
can be modi�ed for
achieving better results, such
as training time,
and accuracy.

Li et al. [33] Fine-tuning based CNN classi�er
design, that is applied to all the
layers of the pre-trained CNN and
then applied only on selected layers
of the pre-trained network. Also, an
alternative CNN method is
proposed to compute key points and
then trains SVM for classifying the
DR images.

The CNN �ne-tuning of the
speci�c layers performed the
best as compared to the
method in which all the
layers are �ne-tuned and the
SVM methods. The former
method results in an
accuracy of 92.01%.

The classi�cation results can
be improved by carefully
�ne-tuning an advanced
architecture of CNN.

Zhang
et al. [34]

Deeply supervised ResNet for the
classi�cation of DR severity level.
ResNet architecture has been
modi�ed by the addition of 3 sets of
side-output layers in the hidden
layer of 11-layer ResNet.

The 11-layer ResNet
achieves a classi�cation
accuracy of 81.0%.

The accuracy can be
improved by either making
ResNet deeper or using
different architectures.

Wang
et al. [3]

Using various CNN frameworks for
the severity level classi�cation of
DR. The authors use AlexNet,
VGG16, and InceptionNet-V3 for
the classi�cation of DR samples.

The proposed algorithms for
DR classi�cation provide an
accuracy of 37.43%, 50.03%,
and 63.23% for AlexNet,
VGG16, and InceptionNet-
V3, respectively.

The accuracy of the
proposed work is very low.
Modi�cation in architecture
can lead to better accuracy.

Wan
et al. [35]

Hyper-parameter tunings of various
CNN frameworks, like AlexNet,
VGG16, GoogleNet, and ResNet for
the classi�cation of DR images

The �ne-tuned CNN
architectures provided a
classi�cation accuracy of
89.75%, 95.68%, 93.36%,
and 90.40% for AlexNet,
VGG, GoogleNet, and
ResNet, respectively.

The accuracy of the
algorithms can be
further improved.

Zhang
et al. [36]

The authors propose a system called
DeepDR for the automatic
recognition of DR images and their
severity level using transfer learning
and ensemble learning.

The proposed DeepDR has
the sensitivity and speci�city
of 97.5% and
97.7%, respectively.

The accuracy can be
improved, and the
complexity of the model can
be lowered.

Bodapati
et al. [37]

DLL based automated DR
identi�cation network using fundus
images. The author computes deep
features by employing VGG16-fc1,
CGG16-fc2, and Xception networks.
Based on the obtained set of hybrid
features, a DNN model was used to
specify the DR severity level.

The introduced framework
has achieved an accuracy
of 80.96%.

The prediction accuracy of
the technique can be
further enhanced.

(Continued)
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Table 2: Continued

Reference Methodology Findings Gaps identi�ed

Kathiresan
et al. [38]

This work presents an automated
DL based approach to categorize
the DR fundus samples. After
preprocessing, the histogram-based
segmentation approach was
employed to compute the important
information from the images, on
which Synergic Deep Learning
(SDL) framework was utilized
for classi�cation.

The presented framework
has exhibited an accuracy
value of 99.28% along with
98.54% sensitivity and 99.38
speci�city values.

The classi�cation results of
the introduced method can
be further enhanced via
hyperparameters tuning.

Torre
et al. [39]

A DL based solution was proposed
for classifying the DR images and
determining the disease severity
level. This technique could estimate
the predicted class and allocate
values to each pixel to show their
signi�cance over all samples. The
allocated score was utilized to give a
concluding classi�cation result.

The presented DL approach
attained beyond 90% of
sensitivity and
speci�city results.

The detection accuracy of
the introduced technique
can be enhanced with
signi�cant measures.

Li et al. [40] A new database for fundus images
named DDR was proposed on
which �ve DR classi�cation models
(VGG-16, ResNet-18, GoogLeNet,
DenseNet-121, and
SE-BN-Inception), two
segmentation models (DeepLab-v3+
and HED), and three DR
localization techniques
were evaluated.

For HED and
DeepLab-v3+, the mAP
values are .1587 and .3010
while for SSD, YOLO, and
Faster-RCNN the mAP
score is 0.001515, 0.003045,
and 0.000900 respectively.

The segmentation
techniques perform poorly
on the introduced dataset.

3 Proposed Methodology

The presented work comprises of two main parts. The �rst is ‘dataset preparation’ and the
second is Custom ‘Faster-RCNN builder’ for localization and classi�cation.

The �rst module develops the annotations for DR lesions to locate the exact region of the
lesion. While the second Component of the introduced framework builds a new type of Faster-
RCNN. This module comprises two sub-modules in which the �rst one is a CNN framework and
the other is the training component, which performs training of Faster-RCNN through employing
the key points computed from the CNN model. Faster-RCNN accepts two types of input, image
sample and location of the lesion in the input image. Fig. 1 shows the functionality of the
presented technique. At �rst, an input sample along with the annotation’s bounding box (bbox) is
passed to the nominated CNN model. The bbox recognizes the region of interest (ROI) in CNN
key points. With these bboxes, reserved key points from training samples are nominated. Based on
the computed features, the Faster-RCNN trains a classi�er and generate a regressor estimator for
given regions. The Classi�er modules assign predicted class to object and the regressor component
learns to determine the coordinates of potential bbox to locate the location of the lesion in each
image. Finally, accurateness is estimated for each unit as per metrics employed in the CV �eld.
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Figure 1: Architecture of custom faster-RCNN model

3.1 Preprocessing
Like any other real-world dataset, our data contains various artifacts, such as noise, out of

focus images, underexposed or overexposed images. This may lead to poor classi�cation results.
Therefore, we perform data pre-processing on the samples beforehand inputting them to CNNs.

G (x, y)=
1

2πσ 2 exp−
x2
+y2

2σ2 (1)

where σ represents the variance, x and y represent the distance from the origin in the horizontal
and vertical axes. G(x, y) is the output of Gaussian �lter. Afterward, we subtract the local average
color from the blurred image using Eq. (2).

I ′ (x, y)= I (x, y)− (G (x, y) ∗ I (x, y)) (2)

where, I′ (x, y), I(x, y), and (G(x, y) ∗ I(x, y)) represent the contrast corrected image, the original
image and original image convolved with Gaussian �lter, respectively.

Second, the removal of regions which have no information. In the original dataset, there are
certain areas in the image that if removed do not affect the output. Therefore, we crop these
regions from the input image. The process of cropping images not only enhances the performance
of the classi�cation but also assist in reducing the computations.

3.2 Annotations
The location of DR lesions of every sample is necessary to detect the diseased area for the

training procedure. In this work, we have used the LabelImg tool to generate the annotations of
the retinal samples and have manually created a bbox of every sample. The dimensions of the
bbox and associated class for each object are stored in XML �les, i.e., xmin, ymin, xmax, ymax,
width, and height. The XML �les are utilized to generate the CSV �le, train. record �le is created
from the CSV �le which is later employed in the training procedure.

3.3 Faster-RCNN
Faster-RCNN [19] algorithm is an extended form to already existing approaches, i.e.,

R-CNN [21] and Fast-RCNN [20] which employed Edge Boxes [41] technique to generate region
proposals for possible object areas. However, the functionality of Faster-RCNN is changed
from [21] as it utilizes Region Proposal Network (RPN) to create region proposals directly as part
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of the framework. It means that Faster-RCNN uses RPN as an alternative to the Edge Boxes
algorithm. The computational complexity of Faster-RCNN for producing region proposals is
considerably less than the edge box technique. Concisely, the ranking of anchor boxes is �nalized
by RPN which shows the most expected anchor boxes containing regions of interest (ROIs). So,
in Faster-RCNN, region proposal generation is quick and is better attuned to input samples.
Two types of outputs are generated by the Faster-RCNN: (i) Classi�cation that shows the class
associated with each object (ii) Coordinates of bbox.

3.4 Custom Feature Faster-RCNN Builder
A CNN is a special type of NN that is essentially developed/evolved to perceive, recognize,

and detect visual attributes from 1D, 2D, or ND matrices. In the presented work, image pixels are
passed as input to the CNN framework. We have employed DenseNet-65 as a feature extractor
in the Faster-RCNN approach. DenseNet [42] is the latest presented approach of CNN, in
which the present layer relates to all preceding layers. DenseNet comprises a set of dense blocks
which are sequentially interlinked with each other with extra convolutional and pooling layers
among successive dense blocks. DenseNet can present the complex transformations which result in
improving the issue of the absence of the target’s position information for the top-level key points
to some degree. DenseNet minimizes the number of parameters which makes them cost-ef�cient.
Moreover, DenseNet assists the key points propagation process and encourages their reuse which
makes them more suitable for lesion/digit classi�cation. So, in this paper, we have utilized the
denseNet-65 as a feature extractor for Faster-RCNN. The architectural description of DenseNet
is given in Tab. 4 that demonstrates the name of layers through which the key points are selected
for advance processing by Faster-RCNN. It also represents the query sample size to be readjusted
before computing key points from the allocated layer. The training parameters for customized
Faster-RCNN are shown in Tab. 3. The detailed �ow of our presented approach is shown in
Algorithm 1.

Table 3: Training parameters of the proposed method

Network parameters Value

Epochs 20
Learning rate 0.001
IOU threshold 0.90
Matched threshold 0.5
Unmatched threshold 0.5

The main process of lesion classi�cation through Faster-RCNN can be divided into four steps.
Firstly, the input sample along with annotation is given to the denseNet-65 to compute the feature
map, then, the calculated key points are used as input to the RPN component to obtain the
features information of the region proposals. In the third step, the ROI pooling layer produces
the proposal feature maps by using the calculated feature map and proposals from convolutional
layers and the RPN unit, respectively. In the last step, the classi�er unit shows the class associated
with each lesion while the bbox generated by the bbox regression is used to show the �nal location
of the identi�ed lesion.
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The proposed method is assessed employing the Intersection over Union (IOU) as described
in Fig. 2a. X shows the ground truth rectangle and Y denotes the estimated rectangle with
Dr lesions.

The �rst decision for lesions being identi�ed when the value of IOU is greater than 0.5, or
not is determined when the value is less than 0.5. The Average Precision (AP) is mostly employed
in evaluating the precision of object detectors i.e., R-CNN, SSD, and YOLO, etc. The geometrical
explanation of precision is shown in Fig. 2b. In our framework of the detection of DR lesions,
AP depends upon the idea of IOU.

Algorithm 1: Steps for DR recognition through custom Fast-RCNN
START
INPUT: NI, annotation (position)
OUTPUT: Localized RoI, CFstDenseNet-65

NI: Total samples with DR lesions
annotation (position): bounding box coordinates lesion in samples
Localized RoI: lesions position
CFstDenseNet-65: Custom Faster-RCNN model based on DenseNe-65 keypoints

imageSize← [340 240]
α←AnchorsEstimation (NI, annotation)// Anchor box estimation
CFstDenseNet-65 ← ConstructCustom DenseNet-65 FasterRCNN (imageSize, α) // Custom
Faster RCNN
[tr, ts]← partitioning of the database into train and test set
// lesions Detection Training Module
For each sample i in→ tr

Extract DenseNet-65 keypoints→ ni
End For
Train Model CFstDenseNet-65 over ni, and measure training time t_dense
η_dense← PreLesionLoc(ni)
Ap_dense←Evaluate_AP (CFstDenseNet-65, η_dense)
For each I in→ ts

a) Compute keypoints using trained model €→µ I
b) [bounding_box, objectness_score, class]← Predict (µ I)
c) Display image along with bounding_box, class
d) �←� [bounding_box]

End For
Ap_€←Evaluate model € using �
FINISH.

The Densenet-65 has two potential difference from traditional DenseNet: (i) Densenet-65 has
less number of parameters from the actual model as instead of 64, it has 32 channels on the �rst
convolution layer, and the size of the kernel is 3× 3 instead of 7× 7 (ii) the number of layers
within each dense block is attuned to deal with the computational complexity. Tab. 4 describes
the structure of the proposed DenseNet-65 model.
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Table 4: Structure of DenseNet-65

Layer Densenet-65

Size Stride

Convolutional_layer_1 7× 7 conv 2
Pooling_layer_1 3× 3 max-pooling 2

Dense_block_1
[

1× 1 conv
3× 3 conv

]
× 6 1

Transition_layer Convolutional_layer_2 1× 1 conv 1
Pooling_layer_2 2× 2 avg_pooling 2

Dense_block_2
[

1× 1 conv
3× 3 conv

]
× 9 1

Transition_layer Convolutional_layer_3 1× 1 conv 1
Pooling_layer_3 2× 2 avg_pooling 2

Dense_block_3
[

1× 1 conv
3× 3 conv

]
× 9 1

Transition_layer Convolutional_layer_4 1× 1 conv 1
Pooling_layer_4 2× 2 avg_pooling 2

Dense_block_4
[

1× 1 conv
3× 3 conv

]
× 6 1

Classi�cation_layer 7× 7 avg_pooling
Fully connected layer
SoftMax

(a) (b)

Figure 2: (a) IOU venn diagram, (b) geometrical representation of precision

The Dense block is the important component of DenseNet-65 as shown in Fig. 3, in which
s× s× k0 represents the features maps (FPs) of the L− 1 layer. The size of the FPs is s and the
number of channels is denoted by k0. A non-linear transformation H(.), that contains the different
operations, i.e., Batch Normalization Layer (BN), Recti�ed linear unit (Relu) activation function,
a 1× 1 convolution layer (ConvL) used for the reduction of several channels, and 3× 3 ConvL
used for feature restructuring. The dense connection is represented by a long-dashed arrow that
joins the L− 1 layer to the L layer and creates concatenation with the results of H(.). Finally,
s× s× (k0+ 2k) is the output of the L+ 1 layer.
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Figure 3: Architecture of dense block

After multiple dense connections, the number of FPs will rise signi�cantly, the transition layer
(TL) is added to decrease the feature dimension from the preceding dense block. The structure
of TL is shown in Fig. 4, which comprises of BN and a 1× 1 ConvL (decreases the number of
channels to half) followed by a 2× 2 average pooling layer that decreases the size of FPs. Where
t shows the total channels and average pooling is denoted by the pool.

Figure 4: Architecture of transition layer

3.5 Detection Process
Faster-RCNN is a deep-learning-based technique which is not dependent on methods like the

selective search for its proposal generation. Therefore, the input sample with annotation is given
as input to the network, on which it directly computes the bbox to show the digit location and
associated class.
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4 Results and Discussion

4.1 Dataset
In this method, we employ the DR images database provided by Kaggle. There are two sets

of training images with a total of 88704 images. A label.csv �le is provided that contains the
information regarding the severity level of DR. The samples in the database are collected using
various cameras in multiple clinics, over time. The sample images of �ve classes from the Kaggle
database are shown in Fig. 5.

(a) (b) (c) (d) (e)

Figure 5: Sample images from Kaggle dataset; (a) no DR, (b) mild, (c) moderate, (d) severe, and
(e) proliferative

4.2 Evaluation of DenseNet-65 Model
The detection accuracy of proposed DenseNet-65 method is compared with base models, i.e.,

DenseNet-65, ResNet, Ef�cientNet-B5, AlexNet, VGG, and GoogleNet.

In this part, we show the simulation results of the ResNet, DenseNet-65, and Ef�cientNet-
B5. The results are presented in terms of accuracy for DR image classi�cation. Tab. 5 presents
the comparison of the 3 models used in this work for the classi�cation of DR images in terms
of trainable parameters, total parameters, loss, and model accuracy. As presented in Tab. 5,
DenseNet-65 has a signi�cantly small number of total parameters, whereas the Ef�cientNet-B5
has the highest number of model parameters. This is because the architecture of DenseNet does
not solely rely on the power of very deep and wide networks, rather, they make ef�cient reuse
of model parameters, i.e., no need to compute redundant feature maps. Therefore, resulting in a
signi�cantly small number of total model parameters. For instance, the architecture of DenseNet
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under consideration in this work is DenseNet-65, i.e., 65 layers deep. Similarly, the ResNet used
in this work has 50 layers, however, the number of parameters is still signi�cantly higher than
that of DenseNet-65.

Table 5: Comparison table of various characteristics of the 3 methods used in our work for the
classi�cation of DR images. Please note that Densenet-65 is the best choice in terms of trainable
parameters and classi�cation accuracy

Evaluation parameter DenseNet-65 (proposed) Ef�cientNet-B5 ResNet

Total parameters 7,042,600 28,178,299 25,691,013
Trainable parameters 6,958,900 28,178,299 25,637,893
Non-trainable parameters 83,640 0 53,120
Test loss 0.11 0.216 0.19
Test accuracy 0.972 0.7998 0.94

The number of trainable parameters of DenseNet-65 is small, i.e., 6, 958, 900, as compared
to the trainable parameters of ResNet and E�cientNet-B5. Consequently, the training time for the
former deep network, i.e., DenseNet-65, is short as compared to the later methods, i.e., ResNet
and Ef�cientNet-B5.

Our analysis reveals that the classi�cation performance of the DenseNet-65 is higher than
the other methods as shown in Tab. 6. DenseNet-65 correctly classi�es 95.6% of the images
that represent the human retinas suffering from DR. Contrary, the classi�cation accuracy of the
ResNet and Ef�cientNet-B5 is 90.4% and 94.5%, respectively. Moreover, the techniques in [36] and
[43] are economically complex and may not perform well under the presence of bright regions,
noise, or light variations in retinal images. Our method has overcome the existing problems by
employing an ef�cient network for feature computation and can show complex transformations
that make it robust to post-processing attacks.

Table 6: Comparison table of our work with several approaches using different architectures
presented in the history for the classi�cation of DR images

Network architecture Accuracy (%)

AlexNet [37] 89.75
VGG [37] 95.6
GoogleNet [37] 93.36
ResNet [37] 90.40
DenseNet-121 [37] 92.39
Ef�cientNet-B5 [43] 94.5
DenseNet-65 (proposed) 97.2

4.3 Localization of DR Lesions Using Custom Faster-RCNN
For localization of the DR signs, the diseased areas are declared a positive example while

the remaining healthy parts are known as a negative example. The correlated area is categorized
by a threshold score IOU, which was set to 0.5, less than this score, considering the area as
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background or negative. Likewise, the value of IOU more than 0.5 the areas are classi�ed as
lesions. The localization outcome of Custom Faster-RCNN as shown in Fig. 6 having to evaluate
retinal samples over a con�dence value. The evaluation results exhibit a greater value which is
higher than 0.89 and up to 0.99.

The presented methodology results are analyzed by employing the mean IOU and precision
over all samples of the test database. Tab. 7 demonstrates that the introduced framework achieved
average values of mean IOU as 0.969 and a precision of 0.974. Our presented method exhibits
better results because of the precise localization of lesions by utilizing Custom Faster RCNN
based on DenseNet-65.

Figure 6: Test results of custom Faster-RCNN for detection of DR lesions

Table 7: Performance of proposed method over Kaggle database

DR lesions Mean IOU Precision

Hard exudates 0.990 0.99
Soft exudates 0.970 0.961
Micro aneurysms 0.989 0.85
Hemorrhages 0.928 0.96



1346 CMC, 2021, vol.67, no.2

4.4 Stage Wise Performance
The stage-wise results of the introduced framework are analyzed through the experiments.

Faster-RCNN precisely localized and classify the lesions of the DR. The classi�cation results
of DR in terms of accuracy, precision, recall, F1-score, and error-rate are presented in Tab. 8.
According to the results, it can be determined that the introduced methodology attained remark-
able results in terms of accuracy, precision, recall, and F1-score and shown a lower error rate.
The presented technique attained an average value of accuracy, precision, recall, F1-score, and
the error rate is 0.972, 0.974, 0.96, 0.966, and 0.034 respectively. The correctness of DenseNet-
65 keypoints computation that shows each class in a viable manner is the reason for good
classi�cation. Moreover, a little association among the No and Mild DR classes is found, however,
still, both are recognizable. So, because of ef�cient keypoints computation, our method shows the
latest DR classi�cation performance that exhibits the robustness of the presented network. The
confusion metrix is shown in Fig. 7.

Table 8: Stage-wise performance of the presented methodology

Stages Accuracy Precision Recall F1-score Error-rate

No DR 0.97 0.923 0.917 1 0
Mild 0.928 0.987 0.939 0.921 0.079
Moderate 0.99 0.979 1 0.993 0.007
Severe 0.992 0.989 0.954 0.954 0.046
Proliferative 0.981 0.993 0.99 0.962 0.038

Figure 7: Test results of custom faster
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4.5 Comparative Analysis
In the present work, we reported results by running a computer simulation 10 times. In each

run, we randomly selected data with a ratio of 70% to 30% for training and testing, respectively.
The average results in form of performance evaluation metrics were then considered.

In Tab. 9, we present an evaluation of the proposed approaches for DR classi�cation with
the methods presented in Xu et al. [32], Li et al. [33], Zhang et al. [36], Li et al. [40] and Wu
et al. [44] and Pratt et al. [45], and these techniques are capable to classify DR from retinal images.
However, requires intense training and exhibits lower accuracy for training samples with the class
imbalance problem. Our method has acquired the highest average accuracy of 97.2% that signi�es
the reliability of the introduced solution against other approaches.

The proposed method achieved the average accuracy of 97.2%, while the comparative
approaches attained the average accuracy of 84.735%, we can say that our technique gave a
12.46% performance gain. Furthermore, the presented approach can simply be adopted or run-on
CPU or GPU based systems and every sample test time is 0.9 s which is faster than the other
method’s time. Our analysis shows that the proposed technique can correctly classify the images.

Table 9: Comparison of the introduced framework with the latest approaches

Network architecture Accuracy (%)

Xu et al. [32] 94.50
Li et al. [33] 92.01
Zhang et al. [36] 81.00
Li et al. [40] 82.80
Wu et al. [44] 83.10
Pratt et al. [45] 75.00
Proposed 97.20

4.6 Cross-Dataset Validation
To more assess the presented approach, we present the validation of the cross dataset, which

means we trained our method on the Kaggle database, and testing is performed on the APTOS-
2019 dataset [46] by “Asia Paci�c Tele-Ophthalmology Society.” The dataset contains 3662 retinal
samples combined from several clinics under diverse image capturing environments utilizing fundus
photography from Aravind Eye Hospital in India. This dataset consists of �ve classes same as in
the Kaggle dataset.

We have plotted the box plot for evaluation of cross dataset in Fig. 8, the accuracy of test and
train is spreading across the number line into quartiles, median, whisker, and outliers. According
to the �gure, we attained an average accuracy of 0.981% for training and 0.975% for testing which
exhibits that our proposed work outperforms the unknown samples as well. Therefore, it can be
concluded that the introduced framework is robust to DR localization and classi�cation.
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Figure 8: Cross dataset validation results: Train over Kaggle dataset and test over APTOS-2019

5 Conclusions

In this work, we introduced a novel approach to accurately identify the different levels of
the DR by using a custom Faster-RCNN framework and have presented an application for lesion
classi�cation as well. More precisely, we utilized DenseNet-65 for computing the deep features
from the given sample on which Faster-RCNN is trained for DR recognition. The proposed
approach can ef�ciently localize retinal images into �ve classes. Moreover, our method is robust
to various artifacts, i.e., blurring, scale and rotational variations, intensity changes, and contrast
variations. Reported results have con�rmed that our technique outperforms the latest approaches.
In the future, we plan to enhance our technique to other eye-related diseases.
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