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Abstract: The contemporary evolution in healthcare technologies plays a con-
siderable and signi�cant role to improve medical services and save human
lives. Heart disease or cardiovascular disease is the most fatal and complex
disease which it is hardly to be detected through our naked eyes, as numerous
people have been suffering from this disease globally. Heart attacks occur when
the ranges of vital signs such as blood pressure, pulse rate, and body tem-
perature exceed their normal values. The ef�cient diagnosis of heart diseases
could play a substantial role in the �eld of cardiology, while diagnostic time
could be reduced. It has been a key challenge for researchers and medical
experts to diagnose heart diseases accurately and timely. Therefore, machine
learning-based techniques are used for the diagnosis with higher accuracy,
using datasets compiled from former medical patients’ reports. In recent years,
numerous studies have been presented in the literature propose machine learn-
ing techniques for diagnosing heart diseases. However, the existing techniques
have some limitations in terms of their accuracy. In this paper, a novel Sup-
port Vector Machine (SVM) based architecture for heart disease prediction,
empowered with a fuzzy based decision level fusion, is presented. The SVM-
based architecture has improved the accuracy signi�cantly as compared to
existing solutions, where 96.23% accuracy has been achieved.
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1 Introduction

Heart disease (HD) is a serious health issue around the world and numerous peoples are
affected by this disease [1]. The most common symptoms of HD are physical body weakness,
breath shortness, and swollen feet [2]. In recent years, many researchers present various machine
learning methods and techniques for early prediction of heart disease but the existing diagnostic
techniques for heart disease are not ef�cient and effective due to several reasons such as execution
time and accuracy of the machine learning models [3]. Due to the unavailability of a medical
expert and modern technology, the diagnosis and treatment of heart disease are dif�cult to be
carried out appropriately [4]. The life of numerous people can be saved by using effective and
accurate diagnostic technologies [5]. According to the European Society of Cardiology, there are
3.6 million people have diagnosed as HD patients annually around the world [6,7]. Most of the
people in the United States (US) are affected by HD [8]. Approximately 50% of heart patients that
are suffering from heart disease can survive within 1–2 years, and 3% of the �nancial healthcare
budget is used for the management of heart disease [9]. Traditionally, the physician use concerning
symptoms, patient medical history, and physical examination reports for the diagnosis of heart dis-
ease. The results obtained from these methods are not effective and accurate for the identi�cation
of HD patient. Moreover, these methods are computationally dif�cult and expensive [10].

The development of machine learning-based noninvasive diagnostic systems is needed for
effective diagnosis of HD [11–16]. Machine learning-based expert decision systems and applica-
tions of Arti�cial Fuzzy Logic (AFL) ef�ciently diagnose the heart disease patient that results
in the decreases in death ratio [17,18]. The Cleveland heart disease data set used by several
researchers [19–24] for the prediction of HD. The proper data are required by the predictive
machine learning models for their training and testing. The use of balanced data set for the
training and testing improves the performance machine learning model. Furthermore, the use of
proper and related features from the data set improves the predictive capabilities of the model.
Hence, features selection and data balancing are key parameters to improve the performance of
the model. In the literature, several machine learning-based diagnostic methods and techniques
such as Neuro Fuzzy, Arti�cial Neural Network (ANN), Support Vector Machine (SVM), Deci-
sion Tree (DT), Naïve Bayes (NB) etc. have been proposed by researchers, but these techniques
have some limitations that include lack of large training data, inconsistency accuracy, proper data
balancing, and so on. Furthermore, these techniques do not effectively diagnose heart disease.
The data standardization at the data processing layer also improves the predictive capabilities
of the machine learning models. Since more, some other preprocessing techniques that include
Min–Max Scalar, removal of missing features from the dataset, and standard scalar improve the
performance of the model [20]. Several features selection techniques such as Principle Component
Analysis (PCA), Local Learning-Based Features Selection (LLBFS), Greedy Algorithm (GA) etc.
are used for the selection of important parameters. Furthermore, several optimization techniques
that include Bacterial Foraging Optimization (BFO), Ant Colony Optimization (ACO) and so on
also used for the optimization of features before training of machine learning models [25].

Furthermore, in recent years, several machine learning algorithms such as ANN, SVM,
K-Nearst Neighbour (KNN) etc. are used in the Internet of Things (IoT) based systems for
prediction and classi�cation [26]. The unsupervised machine learning algorithms are used to label
the data which is collected by the different IoT devices. The data which is labeled by the machine
learning algorithms gives more accurate results as compared to manual labeling.

Hence more, Neural Networks based tools achieved state-of-the-art performance for the pre-
diction of brain and heart diseases. In recent years, Carotid Artery Stenting (CAS) treatment
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is commonly used in the �eld of medicine. The CAS methods give an overview of the Major
Adverse Cardiovascular Events (MACE) of the HD patients at an early stage. The ANN produces
more accurate results as compared to the simple CAS method [27]. The proposed ANN-based
methods do not only combine posterior probabilities but also produce vales from multiple prede-
cessor techniques. The ANN-based methods achieved much better results as compared to existing
methods [28].

In this paper, supervised machine learning architecture empowered with fuzzy-based decision
level fusion medical expert system is proposed for the prediction of heart disease. The proposed
architecture consists of two phases: supervised machine learning phase and fuzzy-based decision
level fusion phase. The main objective of this proposed architecture is to improve the accuracy of
machine learning-based solution for the diagnosis of heart disease. Furthermore, in recent years,
many studies restrict the use of feature selection methods for the model. Therefore, the proposed
model working on the mechanism of parallel computation that allows us to use all the features
without any restriction of feature selection method at the pre-processing layer. The experiment
results show that the proposed architecture has effective results in terms of accuracy for the
diagnosis of heart disease as compared to existing machine learning methods.

The rest of the paper is organized as follows: Section 2 describes the related work. Section 3
presents the materials and methods for the diagnosis of heart disease. Section 4 discusses the
simulation results of the proposed architecture. Section 5 concludes the study.

2 Related Work

In the literature, numerous machine learning-based medical expert systems were designed by
the researchers for the diagnosis of heart disease. This paper gives an overview of some existing
machine learning-based diagnosis systems for heart disease and highlights the importance of
the proposed work. ANN-based diagnostics models give the highest prediction accuracy in the
domain of healthcare [27]. Similarly, Big Data and Optimal Arti�cial Neural Network (OANN)
based model is presented in [29] that achieved the 90.91% prediction accuracy. Kaggle and UCI
laboratory heart disease data sets have been used by the researchers to discover the patterns using
different machine learning algorithms such as DT, ANN, NB, and SVM. The hybrids methods
give more accuracy as compared with a single machine learning algorithm [30].

Furthermore, numerous machine learning-based noninvasive medical support systems such
as ANN, SVM, DT, NB, KNN, Logistic Regression (LR), Fuzzy logic (FL), Adaboost (AB)
are developed by the researchers in the recent years for the diagnosis of heart disease [18,31].
The use of machine learning-based medical expert systems for the diagnosis of heart disease
gradually increases which decreases the death ratio of heart patients [32]. Several machine
learning-based medical expert system for the diagnosis of HD has been reported in numerous
scienti�c research studies.

Support Vector Machine and Principal Component Analysis (SVM-PCA) based system is
present in [33] which achieved 88.24% classi�cation accuracy. Another SVM based model is
presented in [34] to predict the risk of heart disease and achieved 89.9% accuracy. In [35], ANN
and Neuro Fuzzy based predictive model for heart disease that obtained 87.04% accuracy was
presented. Olaniyi et al. [36] presented a three-phase ANN model to diagnose heart disease and
achieved 88.89% classi�cation accuracy and the proposed system easily deployed in health care
information systems. Another Ensemble-based ANN predictive model is also presented in [29]
which used statistical analysis technique for the diagnosis of heart disease and obtained 89.01%
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accuracy, 95.91% speci�city, and 80.09% sensitivity. Furthermore, ANN and Fuzzy Analytical
Hierarchical Processing (F-AHP) based integrated decision support medical system is presented
in [37] that achieved 91.10% classi�cation accuracy.

3 Materials and Method

The section brie�y describes the research method and materials of the paper.

3.1 Dataset
Two different heart disease datasets are used in this paper to train the supervised machine

learning algorithm. The �rst “heart disease dataset 2019,” which is used by various researchers [13]
in recent years for the diagnosis of heart disease. The “heart disease dataset 2019” is also
publically available on the online Kaggle repository. The heart disease dataset has 1025 number
of samples, 13 features, and some missing values. The target output label has two classes that
represent the patient is normal or heart patient. The second “cardiovascular disease dataset 2019”
is also used in this paper. The cardiovascular disease dataset 2019 is also available on the online
Kaggle repository. The cardiovascular disease dataset 2019 has 70,000 number of patient samples,
11 unique features, and some missing values. The detailed description of these datasets is given
in Tabs. 1 and 2.

3.2 Experimental Design Setup
The supervised prediction experiment has been conducted to evaluate the performance of the

proposed architecture. First, we evaluate the performance of the Support vector machine (SVM)
on two different data sets. The K-fold cross-validation method is applied to split the data. To
access the performance of the architecture several performance evaluation metrics are computed.
All the computation experiment has been performed in Python 3.7 environment using several
machine learning libraries on an Intel® Core™ i3-3217U CPU@1.80 GHz PC.

3.3 Proposed System Model
The proposed supervised machine learning architecture empowered with fuzzy-based decision

level fusion is presented in Fig. 1. The data set which is generated by the Internet of Medical
Things (IoMT) enabled devices are used for the training of machine learning algorithms. The
proposed architecture consists of two phases: the supervised machine learning phase and the
fuzzy-based decision level fusion phase. The supervised machine learning phase has three distinct
layers that include the pre-processing layer, application layer, and performance layer. The pre-
processing layer receives raw data and maybe the raw data has some missing values and noise.
At the pre-processing layer, different methods such as mean, mode, and average are applied for
the prediction of missing values and remove the noise using normalization. Furthermore, the
application layer receives the processed data and the processed data is used to train the supervised
machine learning technique named SVM. The same mechanism is executed in parallel inside the
proposed architecture.

3.3.1 Preprocessing
In the proposed architecture, the preprocessing step includes handling missing values, moving

average, and normalization are describe as follows:

At the �rst step, the null and missing values are �lled in the data set, because they can lead
towards the wrong prediction of any machine learning model. In the proposed architecture, mean
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method is selected to impute the missing or null values because the mean method is bene�cial as
it impute continuous data without introducing outliers. The mean method is formulated as:

Q (x)=

{
mean (x) , if x= null/missed

x, otherwise

where x represents the instances of feature vectors that lies in n-dimensional space, x ∈R.

Table 1: Description of heart disease dataset 2019 with feature information

Sr # Feature name Feature code Description Type Value range
(min–max)

1 Age Age Age in years Numeric 29<age>77
2 Sex Sex 1=Male

0=Female
Nominal 1

0
3 Chest pain type Cp 1= atypical angina

2= typical angina
3= asymptomatic
4= nonanginal pain

Nominal 1
2
3
4

4 Resting blood
pressure

Trestbps In mm Hg on
admission to the
hospital

Numeric 94–200

5 Serum cholesterol Chol In mg/dl Numeric 126–564
6 Fasting blood sugar Fbs Fasting blood sugar

&gt; 120 mg/dl)
(1= true; 0= false)

Nominal 1
0

7 Resting
electrocardiographic
results

Rest ECG 0= normal
1= having ST-T
2= hypertrophy

Nominal 0
1
2

8 Maximum heart rate
achieved

Thalach Not mention Numeric 77–202

9 Exercise-induced
angina

Exang 1= yes
0= no

Nominal 1
0

10 Old peak= ST
depression induced
by exercise relative
to rest

oldpeak Not mention Numeric 0–6.2

11 Slope of the peak
exercise ST segment

slope 1= up sloping
2= �at
3= down sloping

Nominal 1
2
3

12 Number of major
vessels (0–3) colored
by �uoroscopy

Ca Not mention Nominal 1
2
3

13 Thallium scan Thal 3= normal
6= �xed defect
7= reversible defect

Nominal 3
6
7



2486 CMC, 2021, vol.67, no.2

Table 2: Description of cardiovascular disease dataset 2019 with feature information

Sr # Feature name Feature code Description Type Value range
(min–max)

1 Age Age In days Numeric 10798<day>23713
2 Gender Gender 1=women

2=men
Nominal 1

2
3 Height Height In cm Numeric 55–250
4 Weight Weight In Kg Numeric 10–200
5 Systolic blood

pressure
ap_hi Not mention Numeric −150–16020

6 Diastolic blood
pressure

ap_lo Not mention Numeric −70–11000

7 Cholesterol Cholesterol 1= normal
2= above normal
3=well above
normal

Nominal 1
2
3

8 Glucose Gluc 1= normal
2= above normal
3=well above
normal

Nominal 1
2
3

9 Smoke Smoke Whether patient
1= smoke
0= not smoke

Nominal 1
0

10 Alcohol intake Alco whether patient take
1= take alcohol
0= not take alcohol

Nominal 1
0

11 Physical activity Active whether physical
active
1= active
0= not active

Nominal 1
0

In Moving average (MA), to reduce the noise from the data set, a series of averages is
computed of different subsets using full data set. Arithmetic mean of given set of values is taken
to calculate the moving average. The moving average is formulated as:

MA=
x1+ x2+ x3+ . . .+ xn

N

where x1, x2, x3, . . . , xn represents instances of the feature vector and N represents total number
of attributes.

In normalization, standardization or Z-score normalization techniques is used to rescale the
values of attributes. The standardization method normalize the distribution of data with zero
mean and also reduce the skewness of the data distribution. The standardization is formulated as:

R (x)=
x− x

σ
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where x is the instances of feature vectors with n-dimensional space, x ∈ Rn. x and σ represent
mean and standard deviation of attributes respectively.

Figure 1: The systematic diagram of proposed supervised machine learning architecture empow-
ered with fuzzy based decision level fusion

3.3.2 K-Fold Cross Validation
The K-fold cross validation method is widely used by the researchers for the selection of

machine learning model and estimation of classi�ers error [28]. In the proposed architecture, 5-
fold cross-validation is used to split the data set for the training and testing of SVM. The fold-1
is used to train and �ne-tune of hyper-parameters in inner loop where grid search algorithm is
employed [29]. In outer loop (k times), the performance of the model is evaluated using test data.
Since more, the data sets which are used for the training and testing of proposed architecture
has imbalanced negative and positive samples. The strati�ed KCV is used to preserve the ratio
of each class. The �nal performance of the model is evaluated by using the following formula:

M =
1
K
×

K∑
n=1

Pn±

√√√√√ K∑
n=1

(
Pn−P

)2

K − 1
where M denotes the �nal performance metric for the classi�ers

and Pn ∈R, n= 1, 2, 3, . . . , K represents the performance metric for each fold.
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3.3.3 Support Vector Machine
SVM algorithm is used for regression and classi�cation. In SVM based models, the data

points are categorized into groups, represent on the space and the points which have similar
properties falls in same group. In linear SVM, the p-dimensional vector is considered for the given
data and separated by maximum of p− 1 planes that are known as hyper planes. These planes
are used to separate the data space among different data groups to regression and classi�cation.
The mathematical representation of SVM is formulated as:

The equation of the line is described as:

a1 = a2x+ b (1)

In Eq. (1) ‘x’ is the slope of the line and ‘b’ is intersect, so

a1− a2x+ b= 0

Let a= (a1, a2)
T, and z= (x, −1) so the above equation can be written as

z · a+ b= 0 (2)

The Eq. (2) is derived from 2-dimensional vectors. The above equation is also applicable for
any number of dimensions. The Eq. (2) is also called the hyper lane equation.

Vector direction a= (a1, a2)
T is written in the form of z and de�ned as:

z=
a1

‖a‖
+

a2

‖a‖
(3)

where

‖a‖ =
√

a2
1+a2

2+a2
3+ . . .a

2
n

As we know that

cos (θ1)=
a1

‖a‖
and cos (θ2)=

a2

‖a‖

So, Eq. (3) can also be written as

z= (cos (θ1) , cos (θ2))

z · a= ‖z‖‖a‖ cos (θ)

θ= θ1− θ2

cos (θ)= cos(θ1− θ2)= cos (θ1) cos (θ2)+ sin (θ1) sin (θ2)

=
z1

‖z‖
a1

‖a‖
+

z2

‖z‖
a2

‖a‖

=
z1a1+ z2a2

‖z‖‖a‖
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z · a= ‖z‖‖a‖
[

z1a1+ z2a2

‖z‖‖a‖

]

z · a=
n∑

i=1

ziai

For n-dimensional vectors, the dot product of the above equation is computed as:

Let, f = y(z · a+ b)

If sign (f) > 0 mean the classi�cation is correct and sign (f) < 0 mean the classi�cation is
incorrect. If D is given dataset, then f is computed on a training dataset

fi = yi(z · a+ b) (4)

We also compute the functional margin (F) of a dataset as:

F= min
i=1...m

fi

Through the comparison of hyperplanes, the hyperplane which has the largest F will be
selected. Where F is known as the geometric mean of the dataset. We need to �nd the optimal
values of z and b for the selection of optimal hyperplane.

The Lagrangian function is

L (z, b,α)=
1
2

z · z−
m∑

i=1

αi [y : (z · a+ b)− 1]

∇zL (z, b,α)= z−
m∑

i=1

αiyiai = 0 (5)

∇bL (z, b,α)=−
m∑

i=1

αiyi = 0 (6)

By using Eqs. (5) and (6) we get

z=
m∑

i=1

αiyiai and
m∑

i=1

αiyi = 0 (7)

After the substitution of Lagrangian function L we get

z (α, b)=
m∑

i=1

αi−
1
2

m∑
i=1

m∑
j=1

αiαjyiyjaiaj

Thus,

max
α

m∑
i=1

αi−
1
2

m∑
i=1

m∑
j=1

αiαjyiyjaiaj (8)
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Subject to

αi ≥ 0, i= 1 . . .m,
m∑

i=1

αiyi = 0

Due to the inequality of constraints, the Lagrangian function can be extended to Karush-
kuhn-tucker (KKT) conditions. Eq. (9) describes the complementary conditions of KKT.

αi
[
yi
(
zi.a
∗
+ b

)
− 1

]
= 0 (9)

where a∗ is the optimal point and α is a positive value. For other points, the value of α is ≈0

So,

yi
((

zi.a
∗
+ b

)
− 1

)
= 0. (10)

Eq. (10) describe the support vectors which are closest points to the hyperplane.

z−
m∑

i=1

αiyiai = 0

z=
m∑

i=1

αiyiai (11)

The value of b is computed as

yi
((

zi.a
∗
+ b

)
− 1

)
= 0 (12)

Multiply by y on both sides of Eq. (12)

y2
i

((
zi · a

∗
+ b

)
− yi

)
= 0, where y2

i = 1((
zi · a

∗
+ b

)
− yi

)
= 0

b= yi− zi · a
∗ (13)

Then

b=
1
S

s∑
i=1

(yi− z · a) (14)

In Eq. (14) ‘s’ represents the number of support vectors. These support vectors make the
hyperplanes and then hyperplanes are used for prediction.

The hypothesis function is described as:

h (zi)=

[
+1 if z · a+ b≥ 0

−1 if z · a+ b< 0

]
(15)
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If the point is above the hyperplane then it will be classi�ed as +1 class mean the HD found
and if the point is below the hyperplane then it is classi�ed as −1 class mean the HD does
not found.

3.3.4 Fuzzy Based Fusion
After the training of the SVM, different evaluation parameters such as accuracy, sensitivity,

speci�city etc. are used to evaluate the performance of the proposed architecture. Once the process
of performance evaluation is completed for both SVM individually then a fuzzy-based decision
level fusion process is applied to integrate the performance of both SVM for the �nal decision as:

µFHD (fh)=µSVM1∩SVM2 (s1, s2)

µFHD (fh)=min [µSVM1 (s1) ,µSVM2 (s2)] (16)

In Eq. (16) the FHD denotes the fusion-based heart disease prediction. The t-norm function
for fuzzy-based fusion is de�ned as:

t : [0, 1]× [0, 1]→ [0, 1]

After the implementation of the t-norm function fuzzy-based fusion implication is applied as:

µQ6 (s1, s2)=min [µFP1 (s1) ,µFP2 (s2)]

The Eq. (17) shows the relationship between SVM1 and SVM2:

Q6 =

6⋃
e=1

Rue (17)

Eq. (18) integrates the performance of SVM1 and SVM2 in crisp form is as follow:

µϕ (L)= max
1≤i≤6

[
supI∈(s1,s2)

(
6∏

k=1

(
µs1k, s2k (s1, s2)

))]
(18)

Defuzzi�er is a very important component of an expert system. It is the process of mapping
the fuzzy sets to the crisp output. The center of gravity defuzzi�er is used to get the �nal fused
decision of the proposed architecture. The center of gravity defuzzi�er speci�es the Ω∗COG as the
center of the area covered by the membership function of ϕ for fuzzy-based decision level fusion,
that is,

Ω∗COG =

∫
v ϕµϕ (ϕ)dϕ∫
vµϕ (ϕ)dϕ

4 Results and Discussion

The proposed supervised machine learning architecture empowered with fuzzy-based decision
level fusion has been applied to two different datasets. The proposed architecture working on the
mechanism of parallel computing. Furthermore, the k-fold cross-validation method is used to split
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the dataset into different folds for the training and testing of the proposed architecture. Different
evaluation metrics are used to access the performance of the architecture which are as follows.

Accuracy=
TP+TN

TP+TN+FP+FN
× 100%

Miss rate=
FP+FN

TP+TN+FP+FN
× 100%

Sensitivity/recall=
TP

TP+FN
× 100%

Speci�city =
TN

TN+FP
× 100%

Percision=
TP

TP+FP
× 100%

False positive ratio = 1− speci�city

False negative ratio = 1− sensitivity

The proposed architecture predicts the output as positive (+1) and negative (−1). The +1
indicates the presence of heart disease and −1 indicates that no symptoms of heart disease
found in the patient. The performance of the proposed supervised machine learning architecture
empowered with fuzzy-based decision level fusion using different statistical metrics are shown in
Tab. 3. In Tab. 3 it is clearly shown that the proposed architecture achieved effective results during
fold-5 cross-validation. The architecture achieved 96.23%, 95.64%, 94.36%, 97.01%, 3.7%, 4.36%,
and 2.99% in terms of accuracy, speci�city, precision, sensitivity, miss rate, false positive ratio, and
false negative ratio respectively.

Table 3: The performance of the proposed architecture

K-fold Accuracy
(%)

Speci�city
(%)

Precision
(%)

Sensitivity
(%)

Miss rate
(%)

False positive
ratio (FPR)
(%)

False negative
ratio (FNR)
(%)

2-fold 84.41 83.06 76.62 86.52 15.58 16.94 13.48
3-fold 94.70 94.10 92.32 95.75 5.19 5.9 4.25
4-fold 94.80 95.85 94.70 95.52 4.29 4.15 4.48
5-fold 96.23 95.64 94.36 97.01 3.7 4.36 2.99

The comparison of proposed supervised machine learning architecture empowered with fuzzy-
based decision level fusion with existing methods is described in Tab. 4. Different machine learning
methods and architectures for the diagnosis of heart disease which is presented by the researcher
in recent years such as Multilayer Perceptron combine with SVM (MLP+SVM), Hybrid machine
learning-based diagnostic system, ANN combine with FL (ANN+ FL), Hybrid Random Forest
with a Linear Model (HRFLM), ANN combine with Fuzzy Analytical Hierarchy Process (AHP)
(ANN+Fuzzy AHP) etc. are studied for the comparative analysis of proposed architecture. The
accuracy performance metric is used to compare the performance of proposed architecture with
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existing methods in the �eld of heart disease. It is observed that the proposed architecture gives
better results in terms of accuracy as compared to the other existing methods.

Table 4: Comparative analysis of proposed architecture with existing methods

Study Method Year of
proposed

Evaluation in term
of accuracy (%)

[33] Support vector machine+ principle
component analysis (SVM+PCA)

2018 88.24

[28] Hybrid machine learning-based diagnostic
system

2019 88.47

[35] Arti�cial neural network+Neuro Fuzzy logic
(ANN+NF)

2014 87.04

[34] Support vector machine based heart disease
risk prediction model

2020 89.9

[29] Big data+ optimal arti�cial neural network
(OANN)-based diagnostic system

2020 90.91

[36] ANN-based three-phase method 2015 88.89
[37] Arti�cial neural network+Fuzzy analytical

hierarchy process (AHP) (ANN+Fuzzy
AHP)

2017 91.1

[38] HD detection system based on a set of
relief-rough

2017 92.32

[25] Fast conditional mutual information
(FCMIM)+ support vector machine
(FCMIM+ SVM)

2020 92.37

[39] Cloud computing and machine learning
algorithm support vector machine (SVM)

2020 93.33

The Proposed
architecture

Fussion based machine learning 2020 96.23

5 Conclusion

The early diagnosis of heart abnormalities and information related to heart condition from
raw health care data is very important which could help to save human lives in the long term.
In recent years, machine learning methods and techniques have achieved effective performance
to process raw data and give a novel and new discernment toward heart disease. The prediction
of heart disease is an important and a challenging task in the �eld of medical. However, the
mortality rate of heart disease can be signi�cantly controlled if heart disease is diagnosed at an
early stage and adopt preventative measures. Furthermore, different machine learning methods
and techniques for the diagnosis of heart disease are presented in recent years. The existing
machine learning methods have some limitations in terms of accuracy. Therefore, the proposed
supervised machine learning architecture empowered with fuzzy-based decision level fusion has
achieved 96.23% accuracy which is much better than the existing methods. The proposed work
can be extended by using different machine learning algorithms such as Arti�cial Neural Network,
Decision Tree, Random Forest etc. along with SVM.
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