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Abstract: Social media has been the primary source of information from
mainstream news agencies due to the large number of users posting their
feedback. The COVID-19 outbreak did not only bring a virus with it but it
also brought fear and uncertainty along with inaccurate and misinformation
spread on social media platforms. This phenomenon caused a state of panic
among people. Different studies were conducted to stop the spread of fake
news to help people cope with the situation. In this paper, a semantic analysis
of three levels (negative, neutral, and positive) is used to gauge the feelings of
Gulf countries towards the pandemic and the lockdown, on basis of a Twitter
dataset of 2 months, using Natural Language Processing (NLP) techniques. It
has been observed that there are no mixed emotions during the pandemic as
it started with a neutral reaction, then positive sentiments, and lastly, peaks
of negative reactions. The results show that the feelings of the Gulf countries
towards the pandemic depict approximately a 50.5% neutral, a 31.2% positive,
and an 18.3% negative sentiment overall. The study can be useful for govern-
ment authorities to learn the discrepancies between different populations from
diverse areas to overcome the COVID-19 spread accordingly.

Keywords: COVID-19; sentiment analysis; natural language processing;
twitter; social data mining; sentiment polarity

1 Introduction

In December 2019, COVID-19 has caused a significant amount of hospitalizations and a
state of global panic. In this environment, people converged to social media to communicate
and to express their views. Some people, as well, used social media for spreading misinforma-
tion and push their agendas. As such, social media has established itself as an essential and
integral part of modern society. While it has been an important tool for businesses, advertising
and broadcasting ideas and news, it has become a powerful tool to spread and form opinions,
obtaining feedbacks, and creating virtual bonding with the masses. Notably, sentiment analysis,
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sometimes known as opinion mining is a process that involves performing text analysis. As people
like to share their thoughts and ideas regarding present situations and diverse social phenomena,
like hazards, cultural, social trends, etc., opinion mining deals with extracting information about
people’s thoughts and feelings from the corpus of text data by using a technique called Natural
Language Processing (NLP).

Due to the tremendous amount of people present on social media and sharing their reviews,
social media has become the main source of getting information from traditional news agencies.
Because of the ease of access to social media and the presence of peers, people rely on social
media for information. Among those people, there are only a few who rely on validated sources
before believing the news. That aside people also show their views on social media and hence
their emotions. During these difficult times, it is of utmost importance to analyze the behavior
of people in their homes, as this might help the government make policies that can help fight
the pandemic in a better way. Importantly, Twitter is one of the main sources of communication
in the Arab world and there is little-known work done on studying it in times of crisis [1].
Consequently, this study aims to fulfill this gap by investigating and studying the role of social
media in keeping the masses aware of the present situation and teaching them how to respond to
the COVID-19 pandemic [2].

1.1 Novel Corona-Virus (COVID-19) and Its Effects on Social Media
1.1.1 Fake News and Misinformation

When articulating in general terms, COVID-19 possesses a lot of misinformation on social
media. With the increase of population on social media due to easy access, everybody has an open
right to manifest emotion on social media [3]. While looking at it from one aspect it becomes
the most popular way to transmit several sources of information. However, when looking at
it from another aspect, anyone can write any wrong information. Due to this fact, there are
many conspiracies theories present on the internet and many people are believing in this wrong
information. Mis-information is deadlier than the epidemic itself and it also spread faster than
the pandemic itself [4].

Many people are fighting this misinformation in their ways. Brennen et al. [5] conducting a
study highlighting the fact that why people spread false information. They tested an intervention
to increase the truthfulness on social media. Ferrara [6] study the quality of information on
Twitter to end up with increasing the belief of misinformation which leads to misleading claims
that fail to get corrected. Sharma et al. [7] analyzed 255 pieces of misinformation based on
their types, sources, and claims. They reported casual clarifications all to tend to improve the
effectiveness of countering misinformation. Gao et al. [8] confirmed the use of bots at the start of
the pandemic to promote political conspiracies in the United States. Öztürk et al. [9] worked on
sentiments of people regarding policies during pandemic using Twitter with two aspects positive
and negative. They build a dashboard to show transparency into data discussions surrounding the
pandemic. Accordingly, other methods beyond debunking are required.

1.1.2 People’s Sentiment during the Pandemic
There have been various studies to perform analysis of the mood of communities in response

to a global stimulus. Ferrara [6] present a study that analyzes the factors affecting the journalist’s
use of Twitter using a framework called the theory of planned behavior. In Sharma et al. [7],
authors perform sentiment analysis of people in response to the global issue of terrorism. Simi-
larly, there are various studies conducted to study the moods of the population towards natural
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disasters, such as floods, earthquakes, and hurricanes [8–10]. It is noticeable that sentiment analysis
cannot only be performed on those areas which are affected by a certain event. Contrary, there
are various research performed to analyze sentiments of people who have only known about it
through social, electronic, or print media and are not physically affected by the event. Abdul-
Mageed et al. [11] show the behavior of people living in Turkey towards the Syrian refugee crisis
since 2016. The authors also present the mood of people residing in Turkey in both languages
Turkish and English. The analysis of both regions towards the same event provides additional
information about the reaction of people living in different regions.

Table 1: Comparison table of previous methodologies

Reference Year Methodology Findings Challenges/Gaps identified

[1] 2020 Data mining for
collection of
multilingual
twitter dataset

Multilingual dataset was
collected for regarding
COVID-19

There is a need for data
in order to analyze the
situation regarding
COVID-19 in different
parts of world

[3] 2020 Conducted study
with 1600
participants

Why people spread
misinformation and
testing of intervention

Dealing with
misinformation on
social media

[4] 2020 Use NLP to check
quality of
information present
on social media

Trends of tweets in
different areas and what
were the keywords

Analysis of tweets in
different languages

[6] 2020 Analysis of tweets Bots has been used for
spreading
misinformation

Misinformation
in pandemic

[7] 2020 Analysis of tweets
sentimental analysis

Geo-information trends,
sentimental trends on
basis of countries

Sentimental analysis of
people around the globe
during COVID-19

[8] 2020 Statistical analysis High mental health
conditions
during pandemic

Need to pay attention on
mental health of people
while combating
COVID-19

[12] 2019 Classification Saudi
dialect text

To analyze Saudi dialect
text

Spread of misinformation

However, taking inspiration from the studies presented in [8,9,11], we present the sentiment
analysis of Gulf countries towards the global pandemic of COVID-19. Our study aims at per-
forming an analysis of People’s moods towards this event. We perform this study using the tweets
extracted from Twitter using the Tweepy API. Then, data has been analyzed using TextBlob_ar
and classify the tweets into three categories namely, positive, negative, and neutral. This study
can help in analyzing the state of minds of the general population. Consequently, the analysis
of this study can assist authorities in the implementation of various guidelines and rules in a
particular region. Besides, this study can also highlight the needs of people during this global
event, specifically, psychological assistance to cope with the prevailing conditions. Overall, the



1616 CMC, 2021, vol.67, no.2

literature review of methods to perform sentiment analysis of the tweets posted during the
COVID-19 pandemic in the Gulf States is summarized in Tab. 1.

1.2 Contribution
• This paper as its significant contribution, proposes the pandemic mood of the people

in Gulf countries, i.e., Saudi Arabia, United Arab Emirates, Kuwait, Oman, Bahrain
and Qatar.

• It deals with analysis of twitter data to find trends of people’s sentiment to track the rise
of fear and panic that has been caused by rapid spread of COVID-19 infection.

• There have been studies conducted that explored custom studies as well as automated
studies of sentiment analysis and there is a tremendous potential in this field.

• There have also been studies that uses deep learning for sentiment analysis [10,11] and
studies that deals with sentiment analysis of Arabic language [11–13].

In this regard, our major contributions are performing the semantic analysis of the tweets
that are posted from Gulf regions; study the pandemic mood of people; track the rise of fear and
panic that has been caused by the rapid spread of COVID-19 infection, and examines behaviors
and the new lifestyle that shifted to something new and decreases of information amplification
upon hearing the news. Furthermore, discussion and conceptual insights are provided in this study
with descriptive text mining and data visualization. The rest of the paper is organized as follows.
Section 2 theory components and related works are outlined and how our methods are leveraged
from other works. In Section 3, we present the result and analysis of the proposed work. We also
discuss and present a comparison of the results in Section 4. Finally, we conclude the paper and
provide further research areas.

2 Materials and Methods

Any community’s opinion can become the driving force of any cause. Therefore, the data
derived by conducting sentiment analysis on the data collected by social media can not only
provide insight into what people think but can also assist in the development of various policies.
In [9], one of the most significant works performed in such a domain is discussed. Sentiment
analysis of tweet data on the Syrian crisis was performed by the authors in [9]. This study
effectively presents the Turkish community’s reaction to this issue. In our work, however, we
conduct a sentiment analysis of Arabic tweets posted with Arabic tweets during the COVID-19
pandemic. Only the gulf countries, i.e., Saudi Arabia, Oman, Bahrain, Qatar, and the United Arab
Emirates (UAE), were concerned with the data used for this work. The goal of this work is to
examine people from a specific area towards a global pandemic. This work is significant because
it captures the reaction of the community towards a very rare phenomenon and people have never
seen anything like it before. Fig. 1 shows the architecture of our sentiment analysis including data
extraction and pre-processing.

2.1 Data Extraction
The data used in this work for semantic analysis is gathered from Twitter over a span of

almost two months, i.e., between 1 March 2020 and 28 April 2020. The position philtre was also
specified, i.e., only the tweets of the aforementioned Gulf countries were extracted.
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Figure 1: Pipeline of the sentiment analysis including data extraction and pre-processing

Using Python’s tweepy package and Twitter API, this data collection was performed program-
matically [14]. The resulting data is collected in CSV files, where various files for each country
in the Gulf region are listed. The CSV files also contained information about the tweet, date,
and country of the person posting. The keywords corona, coronavirus, COVID, COVID-19, and
sarscov22 were used to gather a total of 60,000 tweets.

2.2 Data Preprocessing
In machine learning, data preprocessing is an essential step [15,16]. The data that is accessed

using the Twitter API is not a live stream. Instead, knowledge is a series of tweets from a given
time interval. Therefore, if we repeatedly hit the endpoints of Twitter’s REST API, our data might
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contain duplicate tweets. We delete all redundant tweets from our data to ensure our data is safe
and thorough. Furthermore, we also screen out spam tweets, but this is achieved in the next step
of data cleaning. With the reduced dataset containing 33496 tweets from all countries together,
the data cleaning resulted in the reduction of our dataset.

There is a need for more cleaning to eliminate the unwanted content of the dataset after
cleaning the data in the first level. First of all, in this stage, we remove all spam tweets and tok-
enize the text data. The method of separating the text into smaller units is Tokenization. There are
different text tokenizers, and each has its own definition concerning the smallest unit. In certain
instances, the smallest units or tokens are called words, phrases, numbers, and even punctuation.
We delete hashtags, mentions, numbers, hyperlinks, non-Arabic words, emojis, punctuation marks,
and single characters after we apply tokenization. Please note that, in addition to text details,
the emojis provide additional sentiment information [17]. For this job, however, the use of emojis
for conducting semantic analysis is out of reach. It is noticeable that the information includes
tweets that are posted in various regions by users. Thus, the text of the tweet is highly dependent
on the region’s aesthetics and design. The data obtained is therefore not homogeneous. To make
data homogenous, we, therefore, apply data transformations. In the later stages of our work, this
helps us to standardize and normalize the text. In Arabic language, most letters have contextual
letterforms, for instance ( ), so in this case we normalize to ( ). Similarly, the diacritics ( )
that help to pronounce the letter in proper way are not required and are therefore removed as well.

In the last step, we remove the stop words. Stop words are the most common word that
have no meaning, but to help sentence structure like ( ). We also remove these words
before starting the analysis of our data. In addition, after the removal of stop words, we perform
stemming of the clean data. Stemming Is the process of reducing the word stems in root form,
e.g., ( , ) are converted to ( ) after stemming. The algorithm we used for
stemming the Arabic data is ISRIStemmer available in the NLTK library.

Figure 2: A visual model of TextBlob_ar classification
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2.3 Word Tagging
After ensuring the text has been cleaned, each word of every tweet is looked to calculate the

sematic score. The sentiment score of each word is then combined to compute the semantic score
of the particular tweet.

In this work, each word’s semantic score is calculated using three levels of semantics, i.e.,
negative, neutral, and positive as shown in Fig. 2 TextBlob is a machine learning library for
classifying the word’s sematic of English language. In this work, we focus on Arabic language
tweets from the gulf region. Therefore, we make use of TextBlob_ar. TextBlob_ar performs
semantic analysis on the words of Arabic language and it is built on the top of TextBlob and
NLTK. Tab. 2 presents the pros and cons of using the TextBlob for semantic analysis.

Table 2: Comparison of pros and cons of TextBlob_ar used in this work for performing tweet’s
word tagging

Pros Cons

Easy to use and intuitive interface to
the NLTK library

Limited by an upper bound on HTTP
requests

Faster as compared to NLTK for
natural language processing

Neural network models are not used

Provides language detection and
translation using Google
translate service

3 Results and Analysis

Python3 is used to develop all our codes for the execution of semantic analysis. Moreover,
we use following Python libraries.

• Pandas (for data manipulation and analysis)
• NLTK (for language processing)
• Tweepy (for accessing twitter REST API)
• TextBlob: (for natural language processing and word tagging)

3.1 Results
The sentiment property of the library TextBlob_ar for each word returns a tuple representing

a sentiment, which includes polarity and subjectivity. The polarity score ∈ (−1.0, 1.0), i.e., −1.0,
0.0 and 1.0 represent the negative, neutral, and positive sentiment of the word, respectively. Sim-
ilarly, the subjectivity score ∈ (0.0, 1.0), where 0.0 and 1.0 represent the objective and subjective
opinion, respectively. Tab. 3 presents a few instances of the polarity and subjectivity tests.

In Tab. 4, we present a quantitative comparison of positive, negative, and neutral sentiments
extracted from tweets using TextBlob_ar. Similarly, we also present these results visually in
Figs. 3–8.
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Table 3: Examples of polarity and subjective score computation using TextBlob_ar

Arabic text (TextBlob_ar input) Sentiment G.Truth

Polarity Subjective score

0.40417 0.6834 Pos

0.0 0.0 Neu
0.6999 0.667 Neg

Table 4: Quantitative comparison of positive, negative, and neutral sentiments

Country Positive (%) Negative (%) Neutral (%)

Saudi Arabia 32.92 19.71 47.37
U.A.E 28.27 18.63 53.1
Oman 34.16 20.99 44.84
Kuwait 31.89 17.77 50.34
Bahrain 30.01 17.11 52.88
Qatar 29.85 15.38 54.73

Figure 3: A ratio of positive, negative, and neutral sentiments of tweets of UAE

As featured in Figs. 3–8, the most data obtained or gathered is the tweets with a neutral
feeling. For example, Oman has the lowest number of neutral tweets in the period from 1 March
2020 to 28 April 2020, i.e., 44.84% of the total tweets are neutral. On the other hand, within the
same range, Qatar represents the largest number of neutral tweets, i.e., 54.73. The negative tweets
from the lowest sentiment on the start of the covid19 pandemic in each of the gulf countries
are visible from the figures. Oman is the country of the gulf region that represents the greatest
number of negative tweets, i.e., 20.99%, whereas Qatar represents the lowest number of tweets
with negative sentiments, which is 15.38%.
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Figure 4: A ratio of positive, negative, and neutral sentiments of tweets of Saudi Arabia

Figure 5: A ratio of positive, negative, and neutral sentiments of tweets of Qatar

Figure 6: A ratio of positive, negative, and neutral sentiments of tweets of Oman

Similarly, United Arab Emirates tweeted the lowest number of tweets that are identified as
tweets with positive sentiments. These tweets form 28.27% of the total data collected between 1st
March 2020 to 28th April 2020 from the country. Contrary, Oman represent the highest number
of positive tweets in the same time, i.e., 34.16%.
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Figure 7: A ratio of positive, negative, and neutral sentiments of tweets of Kuwait

Figure 8: A ratio of positive, negative, and neutral sentiments of tweets of Bahrain

Fig. 9 presents the total number of tweets with positive, negative, and neutral sentiments.
These tweets are made in the time interval of 1st March 2020 to 28th April 2020 from the six
countries of Gulf region. It is noticeable that neutral tweets form the major portion of the
collected dataset, followed by the tweets with positive sentiment. The negative tweets represent the
lowest amount of dataset, i.e., 18.3% of all tweets from Gulf region.

Figs. 10–15 represent the wordclouds of each of the Gulf country. A wordcloud or tag
cloud is a visual representation of text data. The wordcloud depicts the words that are most
commonly used in the target dataset and provide information regarding the keywords of the text.
As presented in figures, the most dominant word occurring in the wordcloud all Gulf countries is

which mean “corona” or “COVID” in English. Another most dominant word being used
is , which means “virus.” Another noticeable word in the tag cloud is which mean
pandemic or epidemic and refers to the COVID-19 pandemic in this case.

Fig. 10 presents the wordcloud of Saudi Arabia. The most common term of this wordcloud
are , which translates to “stay home”, “curfew,” “permission,” “pandemic” and
“Health ministry,” respectively. Fig. 11 presents the wordcloud of UAE. The most common terms
in the wordcloud of UAE are which means “Corona,” “virus,”
“Saudi Health,” “new cases,” respectively. Fig. 12 presents the wordcloud of Qatar. The most
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frequent terms of the word cloud are meaning “month,” “Ramadan,”
“Corona” “Application” and “Prince or Sheikh,” respectively.

Figure 9: A combined ratio of positive, negative, and neutral sentiments of tweets from
Gulf region

Figure 10: The wordcloud of Saudi Arabia Emirates obtained from the tweet’s dataset

Figure 11: The wordcloud of United Arab Emirates obtained from the tweet’s dataset

Fig. 13 represents the wordcloud of Oman tweets. The most common words in Oman’s word-
cloud are which translates to “Corona,” “Ministry,” “new cases,”
“Sultanate of Oman” and “virus,” respectively.
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Figure 12: The wordcloud of Qatar obtained from the tweet’s dataset

Figure 13: The wordcloud of Oman obtained from the tweet’s dataset

Fig. 14 presents the wordcloud of Kuwait’s tweet dataset. The most common words in
Kuwait’s tweets are which translates to “Ministry,” “Kuwait,” “Pan-
demic,” “Corona” and “crisis,” respectively. Fig. 15 presents the wordcloud of Bahrain’s tweets.
The most frequent words in this wordcloud are which translates to
“new cases,” “deaths,” “virus,” “Corona,” and “reason,” respectively.

Figure 14: The wordcloud of Kuwait obtained from the tweet’s dataset

It is evident from these results that the main topic on the minds of people during the interval
of data collection, i.e., 1st March 2020 to 28th April 2020 are related to pandemic. The results
also make it evident that the most common sentiment observed in the people of Gulf region
during the aforementioned period is neutral.
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Figure 15: The wordcloud of Bahrain obtained from the tweet’s dataset

4 Discussion

For sentiment analysis of the masses in Gulf countries, an analysis of the Twitter dataset
was performed. Every nation’s data has been individually analyzed and the findings are collected
both separately and collectively. Collectively speaking, a neutral assessment of the COVID-19
situation has been acknowledged by more than half of the population. There are positive reviews
by 30 percent of the population and negative reviews by almost 20 percent of the population. This
illustrates that people manage the situation nicely. Although 20 percent of the population with
adverse feelings is concerned, the government should take action to deal with these individuals as
conditions such as this can cause mental health issues. Hotlines and online consultations should
be provided by the government as this could help manage the situation in a better way. Another
way to deal with this problem is to monitor disinformation on social media sites, and some fake
news could scare people. The government should hold interventions to stop the spread of this
misinformation. Another factor of interest is to understand how people in Gulf countries are
feeling towards the COVID-19 pandemic. After checking the timeframe of retrieved data since the
pandemic hit the Gulf countries, we recognize the following:

(1) Firstly, at the beginning of the virus (March 2020), individuals show a neutral reaction
that is very strange from any pandemic that can trigger widespread concern, panic attacks,
apprehension, and tension as a natural feeling for any pandemic. In Gulf countries, this
may reflect large preventive measures such as early closure of borders, social distance
regulation, movement is limited most of the time during curfew hours, virtual work model
to monitor the spread of COVID-19, and much more.

(2) Secondly, after attempting to flatten the virus curve from those nations, a positive response
comes after the neutral feeling. Therefore, reducing new cases and deaths every day leads
to people’s optimistic feelings as the virus will be a more regulated one.

(3) Finally, since mid-April, a greater concern for certain people has been adversely described
as a result of growing deaths and cases.

Overall, it is observed that there are no mixed emotions in Gulf countries during the pan-
demic. Moreover, the positive feelings and satisfaction regarding society in Gulf countries are on
the rise in most of the time.

5 Conclusion and Future Studies

This research comprises a semantic study of the Gulf countries during the period from
1 March 2020 to 28 April 2020. As never before, the prevailing coronavirus pandemic has infected
the world. The main objective of this work is to observe the answer to this pandemic of the



1626 CMC, 2021, vol.67, no.2

citizens of the Gulf countries, i.e., Saudi Arabia, the United Arab Emirates, Kuwait, Oman,
Qatar, and Bahrain. This is achieved by examining the tweets semantically posted from these
regions. The knowledge about the tweets is gathered manually from the tweepy Twitter API. To
delete inappropriate content, such as emojis, single characters, hashtags, re-tweets, spam tweets,
hyperlinks, etc., the collected data is then pre-processed. The data is often processed to extract
and stem the stop words so that the resulting information can be properly analyzed. To perform
the semantic analysis of Arabic knowledge, we employ TextBlob ar. The knowledge is divided
into three semantic categories: positive, negative, and neutral. The findings indicate that the Gulf
countries’ tweets show roughly 50.5% neutral, 31.2% positive, and 18.3% overall negative opinion.
Also, by making the word clouds of the collected data, we analyze the collected data. The analysis
reveals that the most common topic of discussion among the people of gulf countries during the
considered time interval is a coronavirus, which is related to the ongoing pandemic.

We expect more study to strengthen our research by contrasting the semantics of the interval
from 1 March 2020 to 28 April 2020 with the previous three months, i.e., January to March, and
the next three months, i.e., May to July. This research would help to explain the complexities of
the Gulf countries’ semantics, which view the pandemic as a stimulus. This study may help to
explain the different events caused by the pandemic. Therefore, by performing this study, we can
estimate which semantic prevailed among the people due to this event. For instance, the world
economy has been affected significantly by the coronavirus pandemic [12,13]. Considering that the
economy has been greatly affected, we want to look at the semantics of the Gulf countries. To
undertake this analysis, the current data is not adequate. Moreover, until the symptoms of this
pandemic hit the general populations of the area of concern, this research will not be conducted.
We are also intended to recognize the weaknesses and to observe the response of the citizens of
the major countries of COVID-19, i.e., the USA, Spain, Italy, and others.
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