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Abstract: In this paper, we investigated the inuence of rotating half-space
on the propagation of Rayleigh waves in a homogeneous isotropic, general-
ized thermo-elastic body, subject to the boundary conditions that the surface
is traction free. In addition, it is subject to insulating thermal conduction.
A general solution is obtained by using Lame’ potential’s and Hankel trans-
form. The dispersion equations has been derived separately for two types of
Rayleighwave propagation properties by solving the equations of motionwith
appropriate boundary conditions. It is observed that the rotation, frequency
and r exert some influence in the homogeneous isotropic medium due to
propagation of Rayleigh waves. The frequency equation has been derived of
homogeneous properties by solving the equations of motion with appropri-
ate boundary conditions. It has been found that the frequency equation of
waves contains a term involving the rotating. Therefore, the phase velocity
of Rayleigh waves changes with respect to this rotating. When the rotating
vanishes, the derived frequency equation reduces to that obtained in classical
generalized thermo-elastic case which includes the relaxation time of heat
conduction. In order to illustrate the analytical development, the numerical
solution is carried out and computer simulated results in respect of Rayleigh
wave velocity and attenuation coefficient are presented graphysically. A com-
parative and remarkable study has been carried out through various graphs to
deliberate the consequences of different parameter on the frequency equation.
The obtained results can be very useful in the design and optimization of
Rayleigh wave.

Keywords: Rayleigh waves; wave propagation; generalized thermoelasticity;
thermal stress; rotation

1 Introduction

There are many previous studies on generalized thermoelastic waves. Abd-Alla [1] found
the phase velocity of propagation of Rayleigh waves in an elastic half-space of orthotropic
material. Abd-Alla et al. [2] studied the effect of initial stress, gravity field, and rotation on
the propagation of Rayleigh waves in an orthotropic material elastic half-space. Bagri et al. [3]
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discussed a unified generalized thermoelasticity solution for cylinders and spheres. El-Naggar
et al. [4] investigated the effect of initial stress on the generalized thermoelastic problem in an
infinite circular cylinder. Singh et al. [5] discussed the effect of rotation on the propagation of
Rayleigh waves in an incompressible orthotropic elastic solid half-space with impedance boundary
conditions. Singh [6] studied the Rayleigh waves in an incompressible fiber-reinforced elastic solid
with impedance boundary conditions. Green et al. [7] introduced the theory of thermoelasticity.
Lebon [8] introduced the generalized theory of thermoelasticity. Lord et al. [9] solved the dynami-
cal theory of generalized thermoelasticity to take into account the time needed for the acceleration
of the heat flow. Singh et al. [10] investigated the generalized thermoelastic waves in a trans-
versely isotropic media. The generalized thermoelastic waves are discussed by Sharma et al. [11].
Sharma et al. [12] studied the effect of magnetic field on Rayleigh–Lamb waves in a thermoelastic
homogeneous isotropic plate. Misra et al. [13] discussed the thermo-viscoelastic waves in an
infinite aeolotropic body with a cylindrical cavity. Sharma [14] studied the Rayleigh waves at
the surface of a general anisotropic poroelastic medium. Othman [15] investigated the effects of
rotation on plane waves in generalized thermo-elasticity with two relaxation times. Othman [16]
investigated the effect of rotation and relaxation time on the thermal shock problem for a half-
space in generalized thermo-viscoelasticity. Sinha et al. [17] found the eigenvalue approach to study
the effect of rotation and relaxation time in generalized thermoelasticity. Schoenberg et al. [18]
studied the effect of rotation on propagation waves in an elastic media. Tanaka et al. [19] studied
the application of the boundary element method to 3D problems of coupled thermoelasticity.
Nowaki [20] introduced thermoelasticity.

This paper brings out the analytical study of generalized thermoelastic medium subjected to
rotation. The generalized thermoelastic cylinder is assumed under the influence of rotation and
the relaxation time. The main aim of the paper is to investigate the effects of involved parameters
on the Rayleigh wave velocity and attenuation coefficient of the wave. Numerical computation has
been accomplished to manifest the effect of rotation and relaxation time on the Rayleigh wave
velocity and attenuation coefficient of the wave for different types of parameters. The numerical
results have been obtained and presented graphically.

2 Formulations of the Problem and Boundary Conditions

Let us consider a homogeneous isotropic elastic solid with an infinite circular cylinder under
initial temperature θ0. The elastic medium is rotating uniformly with an angular velocity �=�n,
where n is a unit vector representing the direction of the axis of rotation. The displacement
equation of motion in the rotating frame has two additional terms, centripetal acceleration,
Ω× (Ω× u

)
due to time-varying motion only where u= (ur, 0,uz) is the displacement vector, and

Ω= (0,Ω, 0). All quantities considered will be functions of the time variable t and the coordinates
r and z.

The dynamic equation of motion is given by Sharma et al. [12] as follows:

∂Trr
∂r

+ ∂Trz
∂z

+ 1
r
(Trr−Tθθ )= ρs

(
∂2u
∂t2

−Ω2u

)
, (1)

∂Trz
∂r

+ ∂Tzz
∂z

+ 1
r
Trz = ρs

(
∂2w
∂t2

−Ω2w

)
. (2)
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The heat conduction equation is given by [4]:

k∇2θ = ρscv
(
θ̇ + τ1θ̈

)+ γ θ0∇ (u̇+ δτ1ü) (3)

Where ρs is the density of the material, k is thermal conductivity, cv is the specific heat of
the material per unit mass, Trr, Tθθ , Tzz, and Trz are the stresses components, u and w are the
displacement components, and ωθ is the rotating component.

The stress–strain relations are given by Abd-Alla [12]:

Trr= (λ+ 2μ)Err+λEzz+λEθθ − γ
(
θ + τ0θ̇

)
(4)

Tθθ = (λ+ 2μ)Eθθ +λErr+λEθθ − γ
(
θ + τ0θ̇

)
(5)

Tzz = (λ+ 2μ)Ezz+λErr+λEθθ − γ
(
θ + τ0θ̇

)
(6)

Trz = 2μErz (7)

Trθ =Tθz = 0. (8)

where, γ = αt (3λ+ 2μ), τ0 and τ1 are thermal relaxation time.

The strain components and the rotation are given by Bagri et al. [13] as follows:

Err= du
dr

, Eθθ = u
r
, Ezz = dw

dz
,

Erz = 1
2

(
∂u
∂z

+ ∂w
∂r

)
, ωθ = 1

2

(
∂u
∂z

− ∂w
∂r

)
.

(9)

Using Eqs. (4)–(9) into Eqs. (1) and (2), the following can be written as:

(λ+ 2μ)
∂

∂r
∇ · u+ 2μ

∂ωθ

∂z
− γ ∂

∂r

(
θ + τ0θ̇

)= ρs
(
∂2u
∂t2

−Ω2u

)
, (10)

(λ+ 2μ)
∂

∂z
∇ ·w+ 2μ

∂ωθ

∂r
− γ ∂

∂z

(
θ + τ0θ̇

)= ρs
(
∂2w
∂t2

−Ω2w

)
. (11)

By Helmholtz’s theorem [14], the displacement vector
→
u can be written in the following form:

→
u =∇φ+∇ ∧

→
ψ , (12a)

Where the scalar φ and the vector
→
ψ represent irrational and rotational parts of the

displacement
→
u . The component of the vector

→
ψ to be non-zero, as

→
ψ = (0,ψr, 0) . (12b)

From Eqs. (12a) and (12b), we obtain

u= ∂φ

∂r
− ∂2ψ

∂r∂z
, w= ∂φ

∂z
+ ∂2ψ

∂r2
+ 1
r
∂ψ

∂r
. (12c)
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Substituting from (12a)–(12c) into Eqs. (3), (10), and (11), we get two equations for φ and
→
ψ

as follows:

k∇2θ = ρscv
(
1+ τ1 ∂

∂t

)
θ + γ θ0 ∂

∂t

(
1+ δτ1 ∂

∂t

)
∇2φ, (13)

∇2φ = ρs

(λ+ 2μ)

(
∂2

∂t2
−Ω2

)
φ+ γ

(λ+ 2μ)

(
θ + τ0θ̇

)
, (14)

∇2ψ = ρs

μ

(
∂2

∂t2
−Ω2

)
ψ . (15)

Where,

∇2 = ∂2

∂r2
+ 1
r
∂

∂r
+ ∂2

∂z2
. (16)

Eq. (14) represents the longitudinal wave in the direction of r with velocity c1 =
√
(λ+ 2μ)
ρs

and Eq. (15) represents the velocity of the shear wave in the direction of r with velocity c2 =
√
μ

ρs
.

3 Boundary Conditions

Let us consider a homogeneous and isotropic elastic solid with an infinite cylinder of the
radius a. The axis of the cylinder is taken along the z direction, subjected to the boundary
conditions are given as follows:

Trr (a, z, t)= 0,

Trz (a, z, t)= 0
at r= a (17)

The thermal boundary condition is

∂θ

∂r
= 0 at r= a (18)

4 Solution of the Problem

Assume that the temperature and potential functions of solid satisfy

θ = θ1eiωt, φ = φ1eiωt, ψ =ψ1e
iωt

Eqs. (13)–(15) yield a set of differential equations:(
∇2 − iωρscv

k

)
θ1 =

iωγ θ0τ ′1
k

∇2φ1 (19)
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(
∇2+

(
ω2+Ω2

)
c21

)
φ1 =

γ τ ′0
ρsc21

θ1 (20)

(
∇2+

(
ω2+Ω2)

c21

)
ψ1 = 0 (21)

where ∇2 is the Laplace operator. θ∗ can be eliminated from Eq. (20) by substituting it in
Eq. (19), giving

∇4φ1+
[(
ω2+Ω2)

c11
− iωρsτ ′1

k

(
1+ ετ ′0

)]∇2φ1−
iω
(
ω2+Ω2)ρscv

kc21
φ1 = 0 (22)

Where

∇4 =
[
∂2

∂r2
+ 1
r
∂

∂r
+ ∂2

∂z2

]2
, ε= γ 2θo

ρ2s c
2
1cv

, τ ′0 = 1+ iωτ0, τ ′1 = 1+ iδωτ1 (23)

The general solution of Eqs. (21) and (22) can be found. If we introduce the inversion of the
Hankel transform which is defined by

φ1 (r, z,ω)=
∫ ∞

0
φ1 (ξ , z,ω)J0 (ξr) ξ dξ

We obtain(
q2− d2

dz2

)2

φ1+
[(
ω2+Ω2)

c21
− iωρsτ1′

k

(
1+ ετ0′

)](
q2− d2

dz2

)
φ1−

iω
(
ω2+Ω2)ρscv

kc21
φ1 = 0 (24)

By putting λ2 =
(
q2− d2

dz2

)
, the indicial equation governing (24) is

λ4−
[(
ω2+Ω2)

c21
− iωρsτ1′

k

(
1+ ετ0′

)]
λ2− iω

(
ω2+Ω2)ρscv

kc21
= 0 (25)

where ξ2j = q2−λ2j are the roots of Eq. (24) and Re (ξ)≥ 0, j= 1, 2.

If ε= 0, then the roots of Eq. (25) become

λ21 =
(
ω2+Ω2)

c21
, λ22 =− iωρscvτ1′

k
(26)
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The above roots correspond to the case in which the elastic wave and generalized heat
condition equations are not coupled. For small ε, i.e., only the first order is taken. The roots of
Eq. (25) take the form

(λ21,λ
2
2)=

1
2

[
(ω2+�2)

c41
− iωρsτ1′

k
(1+ ετ0′)±

√
(ω2+�2)

c41
− iωρsτ1′

k
(1+ ετ ′0)

·
(
1+ i

2
2ω(ω2+�2)ρscvτ1′(1− ετ0′)
k (ω

2+�2)

c21
− c21

ω2ρsc2vτ
′2
1 (1+2ετ ′0)
k

)]
(27)

Then the solution of Eq. (24) is

φ1 (ξ , z,ω)=D1 (ξ) e
−λ1z+D2 (ξ) e

−λ2z (28)

which leads to

φ (r, z, t)=
∫ ∞

0

[
D1 (ξ)e−λ1z+iωt+D2 (ξ) e−λ2z+iωt

]
J0 (ξr) ξ dξ . (29)

The solution of Eq. (21) is

ψ (r, z, t)=
∫ ∞

0
C (ξ) e−λ3z+iωtJ0 (ξr) ξ dξ (30)

Where λ23 = q2−
(
ω2+Ω2)

c22
and Re (λ3)≥ 0.

Substituting Eq. (29) into Eq. (20) yields

θ = ρs

γ τ ′0

∫ ∞

0

[
D1 (ξ)

(
ω2− c21λ

2
1

)
e−λ1z+iωt+D2

((
ω2+Ω2

)
− c21λ

2
2

)
e−λ2z+iωt

]
J0 (ξr) ξ dξ (31)

The stress components Trr and Trz are given by

Trr= λ∇2φ+ 2μ
∂2φ

∂r2
− 2μ

∂3ψ

∂r2∂z
− γ (θ + τ θ̇)

Trz =μ
[
2
∂2φ

∂r∂z
− ∂3ψ

∂r∂z2
+ ∂3ψ

∂r3
+ 1
r
∂2ψ

∂r2
− 1
r
∂ψ

∂r

(32)

Substituting Eqs. (29)–(31) into Eqs. (12c) and (32), we get

u=
∫ ∞

0

[
D1 (ξ) e−λ1z+iωt+D2 (ξ) e−λ2z+iωt+C (ξ) ξ3e−λ3z+iωt

]
ξ2J0 (ξr) ξ dξ (33)

w=−
∫ ∞

0

[[
D1 (ξ) λ1 (ξ) e

−λ1z+iωt+D2 (ξ) λ2e
−λ2z+iωt] ξ +C (ξ) λ33e

−λ3z+iωt
]
J0 (ξr) dξ (34)
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Trr=D1(ξ)

∫ ∞

0

[
(λ21− ξ2)λJ0(ξr)− 2μ

(
ξ2J0(ξr)− 1

r
ξJ1(ξr)

)

−ρs(ω2+�2)− c21λ
2
1)J0(ξr)

]
ξe−λ1z+iωt dξ +D2(ξ)

∫ ∞

0

[
(λ22− ξ2)λJ0(ξr)

− 2μ
(
ξ2J0(ξr)− 1

r
ξJ1(ξr)

)
−ρs(ω2+�2)− c21λ

2
2)J0(ξr)

]
ξe−λ2z+iωt dξ

+C (ξ)
∫ ∞

0
2μ
(
1
r
J1 (ξr)− ξJ0 (ξr)

)
ξ2e−λ3z+iωt dξ (35)

Trz =μ
∫ ∞

0

[
D1 (ξ)

(
2λ1ξ

2J1 (ξr)
)
e−λ1z+iωt+D2 (ξ)

(
2λ2ξ

2J1 (ξr)
)
e−λ2z+iωt

+C (ξ)
(
λ23+ ξ2

)
ξ2J1 (ξr)e

−λ3z+iωt
]
dξ (36)

5 Frequency Equation

In this section, we are going to obtain the frequency equation for the boundary conditions
which specify that the outer surface of the cylinder is traction free and the thermal boundary
conditions are illustrated. Substituting Eqs. (31) and (32) into the boundary conditions (17) and
(18), we get

D1(ξ)

[
(λ21− ξ2)ξλJ0(ξa)− 2μ

[
ξ3J0(ξa)− 1

a
ξ2J1(ξa)

]
−ρs(ω2+�)2 − c21λ

2
1)ξJ0(ξa)

]
e−λ1z+iωt

+D2(ξ)

[
(λ22 − ξ2)ξλJ0(ξa)− 2μ

[
ξ3J0(ξa)−

1
a
ξ2J1(ξa)

]
−ρs(ω2+�)2− c21λ

2
2)ξJ0(ξa)

]
e−λ2z+iωt

+C (ξ)
[
2μξ3

(
1
a
ξ2J1 (aξ)− ξ3J0 (aξ)

)]
e−λ3z+iωt = 0 (37)

D1 (ξ)
(
2λ1e−λ1z+iωt

)+D2 (ξ)
(
2λ2e−λ2z+iωt

)+C (ξ)
(
λ23+ ξ2

)
e−λ3z+iωt = 0 (38)

D1(ξ)(ω
2+�2)− c21λ

2
1)e

−λ1z+iωt)e−λ2z+iωt+D2t(ξ)(ω
2+�2− c21λ

2
2)e

−λ2z+iωt)= 0 (39)

By eliminating constraints D1 (ξ) ,D2 (ξ) and C (ξ), the frequency equation is given in a form
of third order determinant as follows:⎡
⎢⎢⎢⎣
a11 a12 a13

a21 a22 a23

a31 a32 0

⎤
⎥⎥⎥⎦= 0 (40)

where

a11 =
[
(λ21− ξ2)ξλJ0(ξa)− 2μ

[
ξ3J0 (ξa)− 1

a
ξ2J1(ξa)

]
−ρs(ω2+�)2− c21λ

2
1ξJ0(ξa)

]
,
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a12 =
[
(λ22 − ξ2ξλJ0(ξa)− 2μ

[
ξ3J0(ξa)− 1

a
ξ2J1(ξa)

]
−ρs(ω2+�)2−−c21λ22)ξJ0(ξa)

]
,

a13 =
[
2μξ3

(
1
a
ξ2J1(aξ)− ξ3J0(aξ)

)]
, a21 = 2λ1, a22 = 2λ2,

a23 = (λ23+ ξ2), a31 = (ω2+�2)− c21λ
2
1)e

−λ1z+iωt), a32 =
(
ω2+�2 − c21λ

2
2

)
,

a33 = 0.

The frequency Eq. (40) has a complex root. The real part (Re) gives the velocity of Rayleigh
waves and the imaginary part (I’m) gives the attenuation coefficient.

6 Numerical Results and Discussion

The numerical calculation was carried out of the Rayleigh waves velocity and attenuation
coefficient. To illustrate the theoretical results obtained in the preceding section, we now present
some numerical results. The material chosen for this purpose was carbon steel, the physical data
for which are given below [16]:

ρ = 7.9× 103 kgm−3, λ= 9.3× 1010 Nm−1, μ= 8.4× 1010 Nm−1, ε= 0.34, T0 = 293.1 k,

Cv = 6.4× 102 JKg−1 deg−1, αt = 13.2× 10−6 deg−1, K = 50 Wm−1k−1,

χθ = 0.321 JKg−1 deg−1 .

Fig. 1 shows the variations of Rayleigh waves velocity and attenuation coefficient with
respect to frequency ω for different values of rotation Ω for the Lord-Schulman theory. The
Rayleigh wave velocity decreases with the increase of rotation and frequency, while the attenuation
coefficient increases with the increase of rotation and frequency.

Figure 1: Variations of Rayleigh waves velocity and attenuation coefficient with respect to fre-
quency ω for different values of � at τ1 = 0.1, r= 2

Fig. 2 shows the variations of Rayleigh wave velocity and attenuation coefficient with respect
to frequency ω for different values of relaxation time τ1 for the Lord-Schulman theory. The
Rayleigh wave velocity decreases with the increase of relaxation time and frequency, while the
attenuation coefficient increases with the increase of relaxation time and frequency.
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Figure 2: Variations of Rayleigh waves velocity and attenuation coefficient with respect to fre-
quency ω for different values of relaxation time of τ1 at Ω= 0.5, and r= 2

(II) GL-model (τ0 ≥ τ1> 0, δ = 0), τ0 = 2τ1.

Figure 3: Variations of Rayleigh wave velocity and attenuation coefficient with respect to fre-
quency ω for different values of rotation Ω, at r= 2, τ1 = 0.1

Figure 4: Variations of Rayleigh waves velocity and attenuation coefficient with respect to fre-
quency ω for different values of relaxation time τ1 at Ω= 0.5 and r= 2
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Fig. 3 shows the variations of Rayleigh wave velocity and attenuation coefficient with respect
to frequency ω for different values of rotation Ω for the Green-Linsay theory. The Rayleigh wave
velocity decreases with the increase of rotation and frequency, while the attenuation coefficient
increases with the increase of rotation and frequency; the attenuation coefficient shifts from
positive to negative in the range of frequency.

Fig. 4 shows the variations of Rayleigh wave velocity and attenuation coefficient with respect
to frequency ω for different values of relaxation time τ1 for the Lord-Schulman theory. The
Rayleigh wave velocity decreases with the increase of relaxation time and frequency, while the
attenuation coefficient increases with the increase of relaxation time and frequency.

7 Conclusions

The governing field equations for linear homogeneous and isotropic thermoelastic materials
with rotation are solved to work out appropriate surface wave solutions in an infinite cylinder. The
frequency equation for the Rayleigh surface wave is obtained. The numerical results are illustrated
graphically against frequency for different values of rotation and relaxation time. Some concluding
remarks are given as follows

1. The rotation and relaxation time significantly influence the variations of the Rayleigh wave.
2. Analysis of Rayleigh wave developed into a body due to rotation and relaxation time.
3. The rotation and relaxation time of an infinite cylinder give the same effect in the problem

as mentioned above in the results.
4. The present theoretical results may provide interesting information for experimental scien-

tists, researchers, and seismologists working on this subject.
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