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Abstract:As colon cancer is among the top causes of death, there is a growing
interest in developing improved techniques for the early detection of colon
polyps. Given the close relation between colon polyps and colon cancer,
their detection helps avoid cancer cases. The increment in the availability of
colorectal screening tests and the number of colonoscopies have increased
the burden on the medical personnel. In this article, the application of deep
learning techniques for the detection and segmentation of colon polyps in
colonoscopies is presented. Four techniques were implemented and evaluated:
Mask-RCNN, PANet, Cascade R-CNN and Hybrid Task Cascade (HTC).
These were trained and tested using CVC-Colon database, ETIS-LARIB
Polyp, and a proprietary dataset. Three experiments were conducted to assess
the techniques performance: 1) Training and testing using each database
independently, 2) Mergingd the databases and testing on each database inde-
pendently using a merged test set, and 3) Training on each dataset and testing
on the merged test set. In our experiments, PANet architecture has the best
performance in Polyp detection, and HTC was the most accurate to segment
them. This approach allows us to employ Deep Learning techniques to assist
healthcare professionals in the medical diagnosis for colon cancer. It is antic-
ipated that this approach can be part of a framework for a semi-automated
polyp detection in colonoscopies.

Keywords: Colon polyps; deep learning; image segmentation

1 Introduction

Colorectal cancer is a disease that frequently goes undiagnosed in opportune manner. Since
in its early-stages there are several differential diagnoses that must be ruled out, this issue leads to
high mortality rates [1]. There has been a steady increment in the incidence of colon cancer in the
last decades, which has led to a growing number of medical tests, colonoscopy being the standard
one. This has generated an incremental burden on the medical personnel workload, which has
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often lead to the specialists finding it hard to keep up [2]. This type of cancer is the third most
common cancer in men and the second most in women. In 2018, there were 1.8 million new cases
and 881,000 deaths globally according to the American Cancer Society [3]. The incidence rates
are higher in men than in women with a rate of 10.9% and 8.4% respectively. The highest rates
are in Australia, New Zealand, Europe and North America and the lowest are in Africa and
South-Central Asia [3–5].

The relative patients’ survival rate is between one and five years, ranging from 83.4% and
64.9% respectively, and it continues to decrease to 58.3% after ten years from the diagnosis. When
colorectal cancer is timely detected the relative survival rate within five years increases to 90.3%.
Nonetheless, if it spreads regionally this rate is reduced to 70.4%. In metastatic cases, the 5-
year survival rate is just 12.5%, historically Germany and Japan have low incidence of colorectal
cancer [4–7]. In Fig. 1, the worldwide incidence of the different types of cancer is depicted, colon
and rectal add to 1,849,518 cases in 2018 and caused 861,663 deaths. Fig. 2 presents the most
common deaths produced by this disease, combined, colon and rectal cancers constitute the second
cause of deaths [4].

Figure 1: Worldwide incidence of the most frequent cancer types in 2018 [5]

The incidence increment is probably correlated to poor eating habits, obesity and smoking [6].
Fig. 3 shows the estimated incidence of colorectal cancer by country, due to sedentary lifestyle
and an unhealthy habits China is in the first place of the list [8], followed by United States with
48 cases per 100,000 inhabitants, in this case the incidence is attributed to obesity alongside with
tobacco and alcohol consumption.

Colon cancer diagnosis is more frequent in men than in women in the ages between 50
and 65 years. Since there is no early diagnosis, one out of every four cases will develop metas-
tasis [9,10]. In Japan 86% of individuals diagnosed under the age of 50 were symptomatic at
the time of diagnosis, which is directly related to advanced stages and worse prognosis [10,11].
On the other hand, France has a low estimated incidence probably due to its preventive policy
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in public primary care, including intestinal cancer test by colonoscopy, fecal occult blood and
immunological screening [12].

Figure 2: Worldwide number of death cases reported in 2018 [5]

Figure 3: Estimated incidence of colorectal cancer by countries in the year 2018 [5]
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The proprietary dataset used in this paper is from Basque Country in Bilbao Spain. Therefore,
the detailed incidence of cancer cases in Spain is presented and summarized in Fig. 4. There were
567.463 new cases detected in 2018, meaning 67 cases per 100,000 inhabitants, and 263,895 deaths
due to colorectal cancer, meaning 31 deaths per 100,000 inhabitants. By 2035 it is estimated that
there will be 315,413 deceases because of cancer. In particular, there were [13].

Figure 4: Estimated incidence of colorectal cancer in Spain [13]

Colorectal cancer consists in the apparition of neoplasms or polyps, originated when healthy
cells from the inner lining of the colon or rectum change and grow uncontrollably, forming a mass
called adenocarcinoma. Most colorectal cancer cases are preceded by diseases such as intestinal
polyposis, Peutz–Jegher disease, Lynch syndrome, and inflammatory bowel disease [14]. Polyps are
defined as inflammations of the gastrointestinal wall [15]. When diagnosing colorectal cancer the
spread of the disease is measured using five stages, that could be also identified using a Deep
Learning approach [16]. In stage 0 cancer treatment is usually conducted by removing the polyp
through colonoscopy as the cancer is on the inner lining of the colon. In Stage I cancer has not
grown outside the colon wall, if the polyp is removed completely no other treatment is needed. In
Stage II the cancer grow through the colon wall and surgery to remove the section of the colon
with cancer is needed, at this stage some doctors could recommend chemotherapy as an additional
treatment. In Stages III and IV chemotherapy is needed, in Stage III colectomy is required to
remove cancer areas and nearby lymph nodes, and in Stage IV due to metastases (often to liver)
surgery is unlikely, unless it helps to prolong patients live. Early detection in stage 0 through
Stage II is important as cancers could be cured with an 80–90% rate [15,17]. There are studies
explaining that 1% increase in the detection rate of polyps is associated with a 3% decrease in
the incidence interval of colorectal cancer [18].

This article presents the application of different Deep Learning architectures for the automatic
detection and segmentation of colon polyps. These techniques are based on images acquired
during colonoscopies and allowing early detection of cancer risk. The tests of the proposed
algorithm have been made against standard databases, enabling to compare with other published
works and against a new database created in the Basque Country in Spain. This evaluation
constitutes a fundamental step in the usage of these techniques for a semi-automatic polyp
detection framework.
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2 Methodology

Early detection of colon polyps provides valuable information to assess the risk of developing
cancer. This fact has motivated several studies in automatic polyp detection, leading to diagnosis
recommendation systems to assist healthcare professionals. We implemented four deep learning
techniques to detect and segment polyps in colonoscopy images, and used CVC-CLINIC and
ETIS-LARIB databases to compare our results with state-of-the-art techniques. All the models
were trained using two GPU Nvidia GeForce GTX Titan X.

2.1 Proposed Method
To achieve automatic detection of polyps, we compare some of the most recent Convolutional

Neural Networks (CNN) architectures for instance segmentation. Four architectures proposed
during the last few years based on their performance on the Microsoft COCO dataset were
selected [19]. All predictions are filtered based on their confidence and merged to generate a single
binary mask.

2.1.1 Mask R-CNN
This technique is an extension of Faster R-CNN, adding a branch to predict segmentation

masks and refining the Region of Interest (RoI) pooling. A Convolutional Neural Network (CNN)
is employed to extract image features, from those features another CNN propose RoIs. Then this
information is feed to fully connected layers to determine the boundary box from the required
elements. Mask R-CNN adds a branch with two extra convolution layers for predicting the actual
segmentation masks from each of the ROIs [20]. Additionally, in Mask R-CNN proposal the
authors refined the RoI pooling, making every target cell the same size and calculating the feature
maps within them by interpolation, this improves the accuracy significantly. In Fig. 5 the neural
network flow is presented, ResNet-101 with ImageNet pre-trained weights is used as backbone
for feature map extraction over the polyp images, then these feature maps are aligned with the
RoIs and feet into fully connected layers (FC) and to additional convolutional layers to perform
boundary box predictions and classification on the FC layers and segmentation mask prediction
on the convolutional branch. The neural network architecture used in the convolutional layers
has 3 × 3 dimensions, and a ReLU activation function was used in the hidden layers. On the
presented experiments we used a learning rate of 0.001, learning momentum of 0.9 and weight
decay of 10−4.

Figure 5: Mask R-CNN network flow for polyp region segmentation
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2.1.2 PANet
In the previous architecture [20], the authors explore the usage of a Feature Pyramid Network

(FPN) on the backbone of the Mask R-CNN network. In their experiments, they found a
noticeable increment in their metrics over other architectures. In PANet [21], the authors improve
on this architecture enhancing information propagation between low-level and high-level features.
In order to achieve this, they propose the usage of a bottom-up augmentation path to propagate
low-level features. On each stage of this processes the feature maps of previous stages use a 3×3
convolutional layer and adds it to the current one using a lateral connection. Like Mask R-CNN,
these maps pass through a RoIAlign layer in order to pool feature grids from each level. Then,
they are concatenated using a fusion operation such as element-wise max or element-wise sum in
what is called an adaptive feature pooling layer, this architecture is described in Fig. 6. Finally,
the authors of this method improved mask prediction adding a fully connected layer that gets
concatenated to the final convolutional layer, which generates the final mask.

ResNext-101 pre-trained with ImageNet [22] was used as the feature extractor for this archi-
tecture. We employ Stochastic Gradient Descent (SGD) as optimizer with momentum of 0.9 and
a weight decay of 10−4. We use a learning rate of 0.01 with 500 iterations of gradual warm up. In
order to fit batches of 8 images in memory, we rescale the images to 400× 400 pixels, except the
ones from ClinicDB that have lower resolution. We trained the neural network for 20 iterations
and selected the optimal epoch in order to avoid overfitting the datasets.

Figure 6: PANet architecture overview. The mask prediction path is similar to the one in mask
R-CNN in Fig. 5

2.1.3 Cascade R-CNN
In [23] the authors presented a method for training and evaluating models based on the

Faster R-CNN framework, which uses an IoU threshold of 0.5 to filter proposed bounding boxes,
limiting the performance of deep learning algorithms. This can be attributed to the lack of
incentive for the model to predict more accurate bounding boxes, and that using a higher IoU
makes it harder for the model to obtain initial results over which to improve. As presented in
Fig. 7, to solve this problem, the authors propose a modification to Faster R-CNN framework
which include a multi-stage extension of the original architecture. They used a combination of
cascaded bounding box regressions and cascaded detection. With this technique, the model is able
to progressively refine its prediction, sampling the training data with increasing IoU thresholds on
each stage. This allows the model to handle different training distributions.
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Figure 7: Cascade mask R-CNN architecture overview. M is a mask predictor and B is a bounding
box predictor

The architecture selected as network backbone is ResNext-101 pre-trained with ImageNet
database. For the experiments we employed SGD as optimizer with momentum of 0.9, weight
decay of 10−4 and again we rescale the images to 400×400 pixels, except the ones from ClinicDB,
in order to fit them in memory for a batch size of 8. We use a learning rate of 0.005 with a
warm-up of 500 iterations. We trained the neural network for 20 iterations and selected the most
optimal epoch in order to avoid overfitting the datasets.

2.1.4 Hybrid Task Cascade (HTC)
The advantages of cascade models for image segmentation were explored by [23], which

resulted in Cascade Mask R-CNN, but [24] argue that this is not an optimal way of leveraging
the improvements that a cascade model can provide. To improve Cascade Mask R-CNN results,
the authors propose a new cascade architecture (Fig. 8) that interleaves the bounding box and
mask prediction branches, so that the latter can take advantage of the updated bounding box
predictions. Another addition is the inclusion of a segmentation mask. This layer connected to
the output of the Feature Pyramid is used as a complementary task that improves performance
when trained fused with the bounding box and mask features.

Figure 8: HTC network overview. S is the segmentation path for this architecture
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The architecture selected as the network backbone is ResNext-101 pre-trained with ImageNet
database. For the experiments we employ SGD with momentum of 0.9, weight decay of 10−4 and
we rescale the images to 400× 400 pixels, except the ones from ClinicDB. in order to fit them in
memory for a batch size of 8. We use a learning rate of 0.005 with a warm up of 500 iterations.
We trained the neural network for 20 iterations and selected the most optimal epoch in order to
avoid overfitting the datasets.

2.2 Datasets
Colonoscopy is the reference method for the diagnosis and treatment of colonic diseases.

It is an exploratory technique that allows the assessment of the colon wall through endoscopic
examination. The lesions detected are assessed to be removed and biopsies are taken for analysis.
One of the main problems arising in the colon are polyps, these are abnormal tissue growths
appear in the intestinal mucous membrane. They normally occur in between 15% and 20% of the
adult population, being one of the most common problems affecting the colon and rectum. Even
though most polyps are benign, their association with colorectal cancer has been proven, develop
via the adenoma-carcinoma sequence [25]. As it can be seen in Fig. 9, in order to detect Polyps
on colonoscopy screening three challenges should be addressed [26]:

• There are a variety of noises on the images known as artifacts, such as specular highlights,
lens frames and inadequate preparation for the procedure.

• Polyps have a number of shapes and textures and they can vary from 3 mm to 10 mm.
• There are transformation and distortions from the employed imaging system.

Figure 9: Different polyp shapes and artifacts present in colonoscopy images make difficult their
segmentation

Several computer-aided techniques have been proposed to detect polyps in colonoscopies [27].
We used two public databases and one proprietary database to detect and segment colon polyps.
All our experiments were trained and validated using these 3 databases: CVC-ClinicDB database
and ETIS-LARIB Polyp from the 2015 MICCAI sub-challenge on automatic polyp detection [28]
and one proprietary database from Deusto University e-Vida research group. Tab. 1 contains
the number of images, image size and train and validation subset sizes, in the first column the
combination from the 3 databases is called all and contains images with different sizes.

2.2.1 Experiments
We conducted three sets of experiments in order to evaluate the performance of the proposed

techniques when tested with different databases. The experimental set up is presented in Fig. 10,
in the first experiment we compared the results when training the model by using each of the
databases independently and test on independent evaluation sets, in the second experiment we
used the training sets from the three databases for training and tested on each testing set from
the databases independently, adding one testing set formed from the conjunction of the three
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databases. Finally, we trained on each database independently and tested on an expanded testing
set formed by the conjunction of the three databases. On each of the experiments we employed
an 80/20 training/test ratio.

Table 1: Database description

Databases

Total images Image size Train Validation

All 1210 mixed 969 241
ClinicDB 612 384× 288 490 122
ETIS 196 1225× 966 157 39
Deusto 402 1047× 576 322 80

Figure 10: Experiments designed to test the performance of the proposed techniques by using
3 databases

2.2.2 Metrics
To measure segmentation, we compare the binary mask generated by our model with the

ground truth pixel by pixel. The metrics used for testing the segmentation performance are
presented in Tab. 2. These metrics are defined in terms of the correct detection output for the
cases that are inside the polyp region (True Positive), the detection output of polyps for cases
outside the polyp in the ground truth (False Positive), polyp not detected in a region containing
a polyp in the ground truth (False Negative), and no detection in a region without polyp in the
ground truth (True Negative). These regions are described in Fig. 11, the overlap of regions is
defined as True Positive, the missing detection of the ground truth are False Positive, the incorrect
detection is False Positive, anything falling outside these regions are the True Negative cases.
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Table 2: Segmentation metrics

Metric Formula

Accuracy Acc= (TP+TN)

(TP+TN +FP+FN)

Sensitivity Sen= TP
(TP+FN)

Precision Prec= TP
(TP+FP)

Figure 11: Region definition for TN: True Negative, FN: False Negative, TP: True Positive, and
FP: False Positive

3 Results

The results of the application of multiple Deep Learning models are presented in two
sections, we present both the detection rate of polyps and the segmentation performance from
the technique.

3.1 Polyp Detection Rate
The polyp detection rate for the implemented techniques is presented in Tabs. 3–6. These

tables summarize the error results of the three experiments proposed, the error is measured as
the ratio between the detected polyp and the actual presence of a polyp on the image. The best
performance is obtained when the model was trained using all databases and testing on Deusto
database as highlighted in green. Additionally, we highlight for each database used in training,
the best test result in bold. As observed the lowest error percentage is achieved when training
with all datasets and testing on the Deusto data. ETIS dataset is relatively small and therefore,
as expected, has more error in detection on average for all models.

3.2 Polyp Segmentation Rate
Tabs. 7–10 present the metrics results for the polyp segmentation when using the proposed

techniques for polyp detection. The best performances for each of the metrics are highlighted
in green, while the best performance for each of the databases are highlighted by using bold
fonts. We note that training on all databases provides an overall advantage although it may not
necessarily lead to the best performance in each metric.
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Table 3: Mask R-CNN polyp detection rate

Missing polyps rates

Test train All (%) ClinicDB (%) ETIS (%) Deusto (%)

All 2.49 2.46 10.26 1.25
ClinicDB 12.03 28.69 56.41 17.50
ETIS 21.99 42.62 64.10 25.00
Deusto 6.22 25.41 41.03 10.00

Table 4: PANet polyp detection rate

Missing polyps rates

Test train All (%) ClinicDB (%) ETIS (%) Deusto (%)

All 0.41 0.00 5.41 0.00
ClinicDB 0.00 0.82 0.00 0.00
ETIS 8.71 9.02 30.77 22.50
Deusto 4.15 17.21 23.08 2.50

Table 5: Cascade R-CNN polyp detection rate

Missing polyps rates

Test train All (%) ClinicDB (%) ETIS (%) Deusto (%)

All 0.00 1.64 15.38 0.00
ClinicDB 1.66 8.20 46.15 5.00
ETIS 28.22 39.34 51.28 33.75
Deusto 2.90 14.75 28.21 3.75

Table 6: HTC polyp detection rate

Missing polyps rates

Test train All (%) ClinicDB (%) ETIS (%) Deusto (%)

All 0.00 2.46 12.82 0.00
ClinicDB 0.83 3.28 30.77 5.00
ETIS 19.09 26.23 35.90 25.00
Deusto 2.07 9.84 28.21 1.25
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Table 7: Mask R-CNN polyp segmentation rates

Accuracy Precision
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.9732 0.9782 0.968 0.9632 All 0.927 0.8913 0.9232 0.9318
ClinicDB 0.9674 0.9663 0.8827 0.9539 ClinicDB 0.9168 0.8636 0.6954 0.9169
ETIS 0.9668 0.9774 0.9521 0.9431 ETIS 0.9442 0.9277 0.9077 0.9322
Deusto 0.9758 0.974 0.9232 0.963 Deusto 0.928 0.8747 0.8065 0.934

Sensitivity Dice
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.9082 0.9008 0.9014 0.9055 All 0.8274 0.7689 0.8093 0.8399
ClinicDB 0.898 0.8703 0.7278 0.8764 ClinicDB 0.8031 0.7049 0.3744 0.7855
ETIS 0.8728 0.8713 0.836 0.8267 ETIS 0.7939 0.7656 0.6943 0.7295
Deusto 0.9155 0.8957 0.7845 0.9005 Deusto 0.838 0.7499 0.536 0.8378

Table 8: PANet polyp segmentation rates

Accuracy Precision
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.9736 0.9783 0.9133 0.9662 All 0.834 0.7836 0.6258 0.8885
ClinicDB 0.9658 0.9749 0.864 0.9606 ClinicDB 0.8053 0.7659 0.5354 0.8475
ETIS 0.9531 0.9557 0.9645 0.9376 ETIS 0.8674 0.7739 0.8578 0.8696
Deusto 0.9761 0.9639 0.9641 0.9623 Deusto 0.8581 0.7621 0.7819 0.8737

Sensitivity Dice
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.9493 0.9386 0.936 0.9079 All 0.8749 0.8372 0.6749 0.8892
ClinicDB 0.9491 0.9406 0.937 0.9216 ClinicDB 0.851 0.8249 0.5912 0.8628
ETIS 0.7547 0.7513 0.7737 0.7416 ETIS 0.7734 0.7075 0.764 0.7612
Deusto 0.9478 0.9332 0.948 0.9035 Deusto 0.8897 0.8041 0.8233 0.8663

4 Discussion

Even though few authors have explored the problem of polyp segmentation, multiple works
on polyp detection and localization have been made in recent years. Most remarkable results have
been obtained exploring the use of deep learning and end to end models instead of hand-crafted
solutions, as it can be seen on the results of the 2015 MICCAI sub-challenge on automatic polyp
detection [28].

To identify how relevant our results in segmentation are, the model is compared with the
lowest polyp missing rate trained with ClinicDB and tested using ETIS against past results
reported. In Tab. 11 we show the results of the two best models in the MICCAI competition,
and their combination [28]. We also include the results of two previous works that used fully
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convolutional networks for this problem. One of them experimented with multiple well-known
architectures such as GoogLeNet and VGG [29] and the other used a model based on Faster
R-CNN with two types of image augmentation for increased accuracy [27].

Table 9: Cascade R-CNN polyp segmentation rates

Accuracy Precision
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.9743 0.9809 0.8767 0.9698 All 0.8447 0.8039 0.5998 0.8926
ClinicDB 0.9632 0.9632 0.9753 0.9441 ClinicDB 0.815 0.7307 0.8284 0.8253
ETIS 0.9541 0.9604 0.9487 0.9306 ETIS 0.8916 0.8101 0.7364 0.9170
Deusto 0.9736 0.9676 0.9686 0.9590 Deusto 0.8540 0.7734 0.8290 0.8668

Sensitivity Dice
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.944 0.9275 0.9747 0.9209 All 0.8775 0.8446 0.6522 0.8965
ClinicDB 0.9355 0.9249 0.9288 0.9024 ClinicDB 0.8485 0.779 0.8648 0.8352
ETIS 0.7405 0.7511 0.807 0.6701 ETIS 0.7762 0.7291 0.7218 0.7248
Deusto 0.9336 0.9177 0.9109 0.8937 Deusto 0.8794 0.8096 0.8458 0.8592

Table 10: HTC polyp segmentation rates

Accuracy Precision
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.9736 0.9817 0.8873 0.9709 All 0.8364 0.8182 0.6017 0.8884
ClinicDB 0.9619 0.9717 0.9656 0.9452 ClinicDB 0.8141 0.7512 0.8099 0.8369
ETIS 0.947 0.953 0.9503 0.9112 ETIS 0.858 0.7552 0.7947 0.8915
Deusto 0.9728 0.9662 0.9783 0.9693 Deusto 0.8406 0.7543 0.8587 0.9024

Sensitivity Dice
Test All ClinicDB ETIS Deusto Test All ClinicDB ETIS Deusto
Train Train

All 0.9582 0.9568 0.9768 0.9366 All 0.8809 0.8731 0.656 0.9014
ClinicDB 0.9193 0.9156 0.8525 0.8564 ClinicDB 0.8421 0.7994 0.8062 0.819
ETIS 0.7645 0.7458 0.84 0.6533 ETIS 0.7667 0.6915 0.762 0.683
Deusto 0.9403 0.9163 0.9277 0.8999 Deusto 0.8721 0.7948 0.8865 0.8907

For this comparison, the best models were included respectively (FCN-VGG, and Faster-CNN
with Aug1 and with Aug2). Our results were adapted to the previously reported metrics based on
the Intersection-over-Union (IoU) in the following way, using an IoU threshold of 0.5:

• True Positive (TP): The model made an accurate prediction of the location of a polyp. We
mark with this label the prediction if the IoU between the output of our model and the
ground truth is greater or equal than 0.5.



1642 CMC, 2021, vol.67, no.2

• False Positive (FP): The model predicted a polyp in the wrong location, or its segmentation
mask covered an area much bigger or much smaller than the true area of the polyp. We
use this label when the IoU is lower than 0.5 and gave a prediction.

• False Negative (FN): The model did not predict a mask when there is at least a polyp on
the image. We only considered this label when none of the predictions of the network make
past the confidence threshold and the model outputs an empty binary mask.

With this, we calculate precision, recall and F1 metrics. To obtain more precise polyp local-
izations we also test a higher confidence threshold to filter more detections, which in return lowers
our recall. In both cases we tested the model trained using the ClinicDB dataset with all images
from the ETIS dataset and not only those separated for validation.

Table 11: Segmentation metrics

Model Accuracy (%) Sensitivity (%) Miss rate

[28] 76.5 90 –
[29] – 88 –
Mask R-CNN 96.32 90.55 1.25% (Deusto)
PANet 97.83 93.86 0.00% (ClinicDB)
Cascade mask R-CNN 97.43 94.40 0.00% (All)
HTC network 97.36 95.82 0.00% (All)

5 Conclusions

In this paper the application of four deep learning models for the detection and segmen-
tation of polyps in colonoscopy images was presented. These models were trained and tested
using three data bases: CVC-CLINIC, ETIS-LARIB and a proprietary database from Deusto
University. In order to evaluate the performance three experiments were conducted and discussed.
The results were obtained and compared when using each database independently, combining
them for training and for testing the models. It should be noted that these databases contain
images with different resolutions and characteristics, which allowed us to demonstrate the model
capabilities on a real deployment environment. The results for both the polyp detection rate and
the segmentation were presented, the best detection rate was obtained when training the model
with all the databases and using PANet architecture, the best segmentation accuracy (98.17%)
was obtained when using HTC architecture trained with the merged dataset and tested on CVC-
CLINIC database. The results obtained from the training and testing with the combined datasets
are promising, we are currently working on a framework for real time processing of live feed from
colonoscopy, integrating these techniques for the colon polyp detection and segmentation, with
the Kudo’s classification of the findings, to generate an alert system to aid the medical personnel.
providing computer-aided diagnosis of risk. We foresee that the presented method can be used to
provide a robust semi-automated polyp detection and segmentation tool.
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