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Abstract: An emerging definition of the fractal-fractional operator has been used
in this study for the modeling of Casson fluid flow. The magnetohydrodynamics
flow of Casson fluid has cogent in a channel where the motion of the upper plate
generates the flow while the lower plate is at a static position. The proposed mod-
el is non-dimensionalized using the Pi-Buckingham theorem to reduce the com-
plexity in solving the model and computation time. The non-dimensional
fractal-fractional model with the power-law kernel has been solved through the
Laplace transform technique. The Mathcad software has been used for illustration
of the influence of various parameters, i.e., Hartman number, fractal, fractional,
and Casson fluid parameters on the velocity of fluid flow. Through graphs and
tables, the results have been implemented and it is shown that the boundary con-
ditions are fully satisfied. The results reveal that the flow velocity is decreasing
with the increasing values of the Hartman number and is increasing with the
increasing values of the Casson fluid parameter. The findings of the fractal-frac-
tional model have elucidated that the memory effect of the flow model has higher
quality than the simple fractional and classical models. Furthermore, to show the
validity of the obtained closed-form solutions, special cases have been obtained
which are in agreement with the already published solutions.
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Nomenclature
l dynamic viscosity
q the fluid density
eij the i; jð Þth component of deformation rate
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py the yield stress of the non-Newtonian fluid
p ¼ eijeij the product of the component of deformation rate itself
pc the critical value of this product based on the non-Newtonian model
lc the plastic dynamic viscosity
b the material parameter of Casson fluid
u the fluid velocity in the x-direction

1 Introduction

The applications of non-Newtonian fluids are quite remarkable and play an important role in the flow
modeling in industry and engineering sectors [1–4]. The magnetohydrodynamic (MHD) flows of these
fluids are widely used in the field of MHD generators, magnetic drug targeting (MDT), MRI, and
controlled flows, etc. with increased interest by many researchers [3,5,6]. Non-Newtonian fluids exhibit a
complex structure that essentially requires some robust mathematical modeling for explanation and
depiction. The non-Newtonian fluids flow behaves inversely with the influence of porosity and
magnetohydrodynamics [2]. To solve the model for the MHD flow of micropolar fluid, the Laplace
transformation was applied by Ali et al. [7]. MHD flow has been studied for the oscillating plates which
include the effects of porous media under heat transfer and radiation [2,5]. The convective flow of non-
Newtonian fluid over an oscillating plate in porous media was studied by Krishna et al. [8]. They have
shown the relationship between the pressure gradient and flow velocity. This pressure gradient study has
also discussed the relationship with the magnetohydrodynamics and the effects of different materials on
the velocity using the Lattice Boltzmann method. The unsteady flow of Casson fluid for the oscillating
plate to show the velocity relation in the porous media was studied by Khan et al. [9], who also discussed
the velocity and shear stress by obtaining closed-form solutions. Ullah et al. [10] studied the flow of
Casson fluid with slip on the stretching sheet.

Fractional derivatives are quite applicable for efficiently discussing the complex real-world problem for
the flow of various types of fluids [11]. Several numerical simulations have studied water pollution with
different applications through Caputo Fabrizio (CF) fractional derivatives [12]. These CF fractional
derivatives have also been used in heat transfer analysis to get closed-form solutions for unsteady fluid
flow over an oscillating plate where the fractional parameter is directly proportional to temperature. At
the same time, it is inversely related to the velocity of the fluid. Fractional fluids have higher velocity
values, which positively influence fluid flow [13]. These tenuous effects of the fluid flow could be
efficiently resolved with the help of fractional derivatives [11]. The CF fractional derivatives and
Atangana–Baleanu (AB) are very useful to identify and calculate the velocity values [14]. Fractional
partial differential equations had also solved for closed-form solutions by using finite Hankel and Laplace
transformation techniques. The numerical analysis of the fractional derivatives highlights a more
significant effect on the velocity as compared to ordinary derivatives [15]. The fractional model could
also apply to Casson fluid along with the energy equations. The Caputo fractional model and the Laplace
transformation have also been used to get the solutions with Wright function by Ali et al. [16]. AB
fractional derivatives and CF fractional derivatives could be used for the demonstration of the heat and
mass transfer analysis of free convection flow of Casson fluid. For these types of flows, solutions and
results were obtained through the Laplace transformation technique by Sheikh et al. [17]. Free convection
generalized (Caputo–Fabrizio time-fractional derivatives) flow of Jeffrey fluid was analyzed via the
Laplace transformation technique by Saqib et al. [18]. They had obtained the exact solutions for velocity
and temperature. The results emphasize that fractional flows are relatively swifter than classical flows.
Saqib et al. [11] discussed the Atangana–Baleanu (AB) derivatives model for Casson fluid in a
microchannel. They have concluded that the fractional parameter considerably influences the viscosity
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and buoyancy forces. The numerical analysis of nanofluids through a porous media in a vertical channel by
applying AB fractional derivative for convection free flow was discussed by Saqib et al. [19]. The flow of
Casson fluid was considered by Sheikh et al. [20]. They studied the Caputo fractional derivative and the flow
had modeled using the generalized Fourier and Fick laws.

Carpinteri et al. [21] discussed the fractal-fractional calculus in continuum mechanics. The fractal-
fractional model for the convective flow in the rotating cavity was considered by Abro et al. [22]. They
used the Caputo fractional derivative, CF derivatives, and AB derivatives for their analysis. Fractal-
fractional derivatives for Couette flow by Laplace transformation were applied for viscous fluid flow
between two plates considering a constant value of velocity [23]. In many real-life phenomena,
mathematical modeling with and without fractional calculus is quite applicable especially in engineering
and sciences, for instance, [24–35] mathematical biology and infectious diseases [36], market economics
[37], and biomedical research [38,39].

Keeping in mind the above literature survey, in this paper we have considered electrically conducted
flow of Casson fluid in a channel. The fractal-fractional model has been created for the subject flow using
the concept of fractional calculus. The exact solutions have been obtained using the Laplace transform
technique.

2 Mathematical Modelling

We have considered the motion of Casson fluid in a vertical channel. The flow is assumed in the
direction of the x-axis while the y-axis is taken perpendicular to the plates. The fluid and the plates are at
rest when t � 0. At t ¼ 0þ, the plate at y ¼ d begins to move in its plane with velocity U as shown in Fig. 1.

We suppose that the rheological equation for an incompressible Casson fluid is [15,40]:

sij ¼
2 lc þ pyffiffiffiffi

2p
p

� �
eij; p.pc;

2 lc þ pyffiffiffiffiffi
2pc

p
� �

eij; pc,p:

8<
: (1)

Figure 1: Geometry of the flow

CMC, 2021, vol.67, no.2 1387



The flow of Casson fluid is governed by the following partial differential equations [41,42]:

q
@uðy; tÞ

@t
¼ l 1þ 1

b

� �
@2uðy; tÞ

@y2
� rB0

2uðy; tÞ; (2)

where the initial and boundary conditions are:

uðy; 0Þ ¼ 0; uð0; tÞ ¼ 0; uðd; tÞ ¼ U : (3)

Introducing the following dimensionless variables [23]

v ¼ u

U
;n ¼ U

m
y;s ¼ U2

m
t; into Eq. (2) and Eq. (3) we get:

@vðn; sÞ
@s

¼ b0
@2vðn; sÞ

@n2
�Mvðn; sÞ; (4)

with initial and boundary conditions in the dimensionless form:

vðn; 0Þ ¼ 0; vð0; sÞ ¼ 0; vð1; sÞ ¼ 1; (5)

where M ¼ rB0
2m

lU2 is the Hartman number and b0 ¼ 1þ 1

b
.

2.1 Fractal-Fractional Model

The fractal-fractional model for the mentioned flow problem, in the generalized form is:

C}a
svðn; sÞ ¼ dsd�1 b0

@2vðn; sÞ
@n2

�Mvðn; sÞ
� �

� vðn; 0Þs�a

� 1� að Þ ; (6)

If we assume that vðjÞ is continuous in open interval, if vðjÞ is fractal differentiable on (a, b) with order
d, then the fractal fractional derivative of vðjÞ with order a in Riemann–Liouville sense with power law is
presented as [43]

FFP
0 }a;d

j vðjÞ ¼ 1

� 1� að Þ
d

djd

Z j

a
v tð Þ j� tð Þ�adt; (7)

where

dvðtÞ
dtd

¼ lim
j!t

v jð Þ � v tð Þ
jd � td

: (8)

2.2 Velocity Profile

Applying the Laplace transform to Eq. (5) using Eq. (6) we arrived at

sa�vðn; sÞ � vðn; 0Þ ¼ d� dð Þs�d b0
@2�vðn; sÞ

@n2
�M�vðn; sÞ

� �
; (9)

in a suitable form Eq. (9) can be written as

@2�vðn; sÞ
@n2

¼ 1

d� dð Þb0
sa þ d� dð ÞMð Þ�vðn; sÞ; (10)
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solving Eq. (10), using Eq. (5) we have the following solution:

�vðn; sÞ ¼ 1

s

e�n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþdþd� dð ÞMð Þ

p

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþdþd� dð ÞMð Þ

p
� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþdþd� dð ÞMð Þ

p � en
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþdþd� dð ÞMð Þ

p

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþdþd� dð ÞMð Þ

p
� e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþdþd� dð ÞMð Þ

p
" #

; (11)

where a ¼ 1

d� dð Þb0
.

In more suitable form Eq. (11) can be written as:

�v n; sð Þ ¼ 1

s

X1
n¼1

P1
v1

2nþ 1� nð Þv1
v1!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþd þ d� dð ÞMð Þ

q� �v1

�P1
v2

� 2nþ 1� nð Þð Þv2
v2!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a saþd þ d� dð ÞMð Þ

q� �v2

2
6664

3
7775; (12)

inverting the Laplace transformation of Eq. (12) [23] we have:

v n; sð Þ ¼
X1
n¼1

P1
v1

P1
�1

�2n� 1þ nð Þv1
v1!

ffiffiffi
a

pð Þv1 d� dð ÞMð Þ�1

�1!

s
�1�

aþ dð Þv1
2

� 1þ �1 � aþ dð Þv1
2

� �� �1 þ v1
2

� �
�

v1
2

� �
8>>><
>>>:

9>>>=
>>>;

�P1
v2

P1
�2

2nþ 1� nð Þv2
v2!

ffiffiffi
a

pð Þv2 d� dð ÞMð Þ�2
�2!

s
�2�

aþ dð Þv2
2

� 1þ �2 � aþ dð Þv2
2

� �� �2 þ v2
2

� �
�

v2
2

� �
8>>><
>>>:

9>>>=
>>>;

2
6666666666664

3
7777777777775
:(13)

2.3 Limiting Cases

Validating results, the present solutions have reduced to the already published results in the literature,
and the solutions for some other well-known flows have been obtained.

2.3.1 Case 1 (Newtonian Fluid)
For b ! 1 the obtained solution is reduced to the following form:

v n; sð Þ ¼
X1
n¼1

P1
v1

P1
�1

�2n� 1þ nð Þv1
v1!

ffiffiffiffiffiffiffiffiffiffiffiffi
1

d� dð Þ
r� �v1

d� dð ÞMð Þ�1

�1!

s
�1�

aþ dð Þv1
2

� 1þ �1 � aþ dð Þv1
2

� �� �1 þ v1
2

� �
�

v1
2

� �
8>>><
>>>:

9>>>=
>>>;

�P1
v2

P1
�2

2nþ 1� nð Þv2
v2!

ffiffiffiffiffiffiffiffiffiffiffiffi
1

d� dð Þ
r� �v2

d� dð ÞMð Þ�2

�2!

s
�2�

aþ dð Þv2
2

� 1þ �2 � aþ dð Þv2
2

� �� �2 þ v2
2

� �
�

v2
2

� �
8>>><
>>>:

9>>>=
>>>;

2
6666666666664

3
7777777777775
; (14)

which is identical to the solution calculated by [23].

CMC, 2021, vol.67, no.2 1389



2.3.2 Case 2 (Solution for fractional model)
For d ¼ 1 the obtained solution is reduced to the corresponding fractional model:

v n; sð Þ ¼
X1
n¼1

P1
v1

P1
�1

�2n� 1þ nð Þv1
v1!

ffiffiffi
a

pð Þv1 Mð Þ�1
�1!

s�1�
ð1þaÞv1

2

� 1þ �1 � ð1þ aÞv1
2

� �� �1 þ v1
2

� �
�

v1
2

� �
8>><
>>:

9>>=
>>;

�P1
v2

P1
�2

2nþ 1� nð Þv2
v2!

ffiffiffi
a

pð Þv2 Mð Þ�2

�2!

s�2�ð1þaÞv2
2

� 1þ �2 � ð1þ aÞv2
2

� �� �2 þ v2
2

� �
�

v2
2

� �
8>><
>>:

9>>=
>>;

2
66666666664

3
77777777775
: (15)

2.3.3 Case 3 (Solution of integer order model)
For a ¼ d ¼ 1 the obtained solution is reduced to the corresponding classical model:

v n; sð Þ ¼
X1
n¼1

P1
v1

P1
�1

�2n� 1þ nð Þv1
v1!

ffiffiffi
a

pð Þv1 Mð Þ�1
�1!

s�1�v1

� 1þ �1 � v1ð Þ
� �1 þ v1

2

� �
�

v1
2

� �
8><
>:

9>=
>;

�P1
v2

P1
�2

2nþ 1� nð Þv2
v2!

ffiffiffi
a

pð Þv2 Mð Þ�2

�2!

s�2�v1

� 1þ �2 � v1ð Þ
� �2 þ v2

2

� �
�

v2
2

� �
8><
>:

9>=
>;

2
666666664

3
777777775
: (16)

3 Results and Discussion

In the present study, we have considered the fractal-fractional model of the MHD flow of Casson fluid in
a channel. The flow has been induced due to the constant velocity of the upper plate. To better understand the
flow behavior, graphs have been plotted for velocity profile, and the results shown in tables.

The influence of the Hartman number is shown in Fig. 2. The velocity of the Casson fluid is decreasing
with the increasing values of the Hartman number. Lorentz’s forces, which are opposing forces to the flow,
are more potent for the rising values of the Hartman number. This behavior is also shown in Tab. 1, which
clearly shows that the obtained solutions are satisfying the imposed boundary conditions.

Figure 2: Variations in velocity profile against n for different values of M
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The effect of the fractional parameter is shown in Fig. 3 and presented in Tab. 2. Variations in velocity
are shown for different values of a, and despite the increasing or decreasing behavior of the velocity, this
figure shows that we can draw many graphs for the velocity while keeping the physical parameters
constant. This effect is known as a memory effect, which can be described by a.

The graph is plotted for d in Fig. 4 and presented in Tab. 3. Despite the increasing or decreasing behavior
of the velocity, this figure shows that we can draw many graphs for the velocity while keeping the physical
parameters constant. The important fact is that both the fractional and fractal parameters are describing the
memory, and together these can describe the memory better than the fractional and classical models.

To show the effect of the Casson fluid parameter b, Fig. 5 has been plotted. It has been depicted from this
figure that velocity increases with the increasing values of b. Physically, the increasing values of b reduces
the thickness of the boundary layer. We can say that for a huge value of b the fluid will behave like a
Newtonian fluid.

Table 1: Variations in velocity profile against n for different values of M

n vðn; sÞ at M ¼ 0 vðn; sÞ at M ¼ 3 vðn; sÞ at M ¼ 5 vðn; sÞ at M ¼ 7

0
0.04
0.08
0.12
0.16
0.2
0.24
0.28
0.32
0.36
0.4
0.44
0.48
0.52
0.56
0.6
0.64
0.68
0.72
0.76
0.8
0.84
0.88
0.92
0.96
1

0
0.019
0.038
0.057
0.078
0.099
0.122
0.147
0.173
0.202
0.232
0.265
0.301
0.339
0.38
0.424
0.471
0.52
0.572
0.627
0.684
0.743
0.805
0.868
0.933
1

0
0.016
0.033
0.05
0.068
0.088
0.11
0.133
0.159
0.187
0.218
0.252
0.289
0.329
0.372
0.418
0.466
0.518
0.572
0.629
0.688
0.748
0.81
0.873
0.937
1

0
0.012
0.024
0.037
0.051
0.068
0.086
0.107
0.131
0.158
0.188
0.222
0.259
0.3
0.345
0.393
0.444
0.499
0.556
0.616
0.678
0.742
0.806
0.871
0.936
1

0
2.923e−3

6.478e−3

0.011
0.018
0.027
0.039
0.054
0.074
0.097
0.125
0.158
0.195
0.237
0.284
0.336
0.391
0.451
0.514
0.58
0.649
0.719
0.79
0.861
0.931
1
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Figure 3: Variations in velocity profile against n for different values of a

Table 2: Variations in velocity profile against n for different values of a

n vðn; sÞ at a ¼ 0:1 vðn; sÞ at a ¼ 0:4 vðn; sÞ at a ¼ 0:7 vðn; sÞ at a ¼ 0:9

0
0.04
0.08
0.12
0.16
0.2
0.24
0.28
0.32
0.36
0.4
0.44
0.48
0.52

0
0.044
0.088
0.131
0.175
0.219
0.262
0.305
0.348
0.39
0.433
0.474
0.516
0.557

0
0.039
0.078
0.116
0.155
0.194
0.233
0.273
0.312
0.351
0.391
0.431
0.47
0.511

0
0.022
0.044
0.067
0.09
0.114
0.14
0.167
0.195
0.226
0.258
0.292
0.329
0.368

0
−0.023
−0.046
−0.066
−0.084
−0.098
−0.108
−0.113
−0.112
−0.105
−0.091
−0.07
−0.041
−3.988e−3
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Table 2 (continued).

n vðn; sÞ at a ¼ 0:1 vðn; sÞ at a ¼ 0:4 vðn; sÞ at a ¼ 0:7 vðn; sÞ at a ¼ 0:9

0.56
0.6
0.64
0.68
0.72
0.76
0.8
0.84
0.88
0.92
0.96
1

0.597
0.637
0.676
0.715
0.753
0.791
0.828
0.864
0.899
0.934
0.967
1

0.551
0.591
0.632
0.672
0.713
0.754
0.795
0.836
0.877
0.918
0.959
1

0.409
0.452
0.498
0.546
0.597
0.649
0.704
0.76
0.818
0.878
0.938
1

0.041
0.094
0.155
0.224
0.301
0.384
0.474
0.571
0.672
0.778
0.888
1

Figure 4: Variations in velocity profile against n for different values of d

Table 3: Variations in velocity profile against n for different values of d

n vðn; sÞ at d ¼ 0:1 vðn; sÞ at d ¼ 0:4 vðn; sÞ at d ¼ 0:7 vðn; sÞ at d ¼ 0:9

0
0.04
0.08
0.12
0.16
0.2
0.24
0.28
0.32

0
0.044
0.088
0.131
0.175
0.219
0.262
0.305
0.348

0
0.039
0.078
0.116
0.155
0.194
0.233
0.273
0.312

0
0.022
0.044
0.067
0.09
0.114
0.14
0.167
0.195

0
−0.023
−0.046
−0.066
−0.084
−0.098
−0.108
−0.113
−0.112

(Continued)
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Table 3 (continued).

n vðn; sÞ at d ¼ 0:1 vðn; sÞ at d ¼ 0:4 vðn; sÞ at d ¼ 0:7 vðn; sÞ at d ¼ 0:9

0.36
0.4
0.44
0.48
0.52
0.56
0.6
0.64
0.68
0.72
0.76
0.8
0.84
0.88
0.92
0.96
1

0.39
0.433
0.474
0.516
0.557
0.597
0.637
0.676
0.715
0.753
0.791
0.828
0.864
0.899
0.934
0.967
1

0.351
0.391
0.431
0.47
0.511
0.551
0.591
0.632
0.672
0.713
0.754
0.795
0.836
0.877
0.918
0.959
1

0.226
0.258
0.292
0.329
0.368
0.409
0.452
0.498
0.546
0.597
0.649
0.704
0.76
0.818
0.878
0.938
1

−0.105
−0.091
−0.07
−0.041
−3.988e−3

0.041
0.094
0.155
0.224
0.301
0.384
0.474
0.571
0.672
0.778
0.888
1

Figure 5: Variations in velocity profile against n for different values of b
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4 Conclusion

In this study, a new approach has been used to develop the fractal-fractional model of the Casson fluid.
The Laplace transformation technique has been used to solve the model for the exact solutions. The obtained
solutions are plotted and presented in tables. The main outcomes of the present study are:

1. The Laplace transform is a better tool to handle the fractal-fractional models.

2. The Casson fluid velocity is higher for the greater values of b, which shows that the fluid will behave
like a Newtonian viscous fluid.

3. The variations for different values of a and d in velocity have been plotted. It is important here to
mention that we have separate lines for one value of time. This effect shows the memory effect in
the fluid, which cannot be demonstrated from the integer-order model.

Funding Statement: This work was funded by Yayasan Universiti Teknologi PETRONAS (Y.U.T.P.), Cost
Center 015LC0-278.
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Table 4: Variations in velocity profile against n for different values of b

n vðn; sÞ at b ¼ 0:1 vðn; sÞ at b ¼ 0:9 vðn; sÞ at b ¼ 3:0 vðn; sÞ at b ¼ 9:0

0
0.04
0.08
0.12
0.16
0.2
0.24
0.28
0.32
0.36
0.4
0.44
0.48
0.52
0.56
0.6
0.64
0.68
0.72
0.76
0.8
0.84
0.88
0.92
0.96
1

0
0.04
0.08
0.12
0.16
0.2
0.24
0.28
0.321
0.361
0.401
0.441
0.481
0.521
0.561
0.601
0.641
0.681
0.721
0.761
0.801
0.84
0.88
0.92
0.96
1

0
0.042
0.084
0.126
0.168
0.21
0.251
0.293
0.334
0.376
0.417
0.458
0.498
0.539
0.579
0.619
0.659
0.698
0.737
0.776
0.814
0.852
0.89
0.927
0.964
1

0
0.045
0.09
0.135
0.18
0.225
0.269
0.313
0.357
0.4
0.443
0.486
0.528
0.569
0.609
0.649
0.688
0.727
0.764
0.801
0.837
0.872
0.905
0.938
0.97
1

0
0.048
0.095
0.142
0.19
0.236
0.283
0.329
0.374
0.419
0.463
0.507
0.55
0.591
0.632
0.672
0.711
0.748
0.785
0.82
0.854
0.886
0.917
0.946
0.974
1
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