
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014675

Article

An Adjustable Variant of Round Robin Algorithm Based on
Clustering Technique

Samih M. Mostafa1,* and Hirofumi Amano2

1Faculty of Computers and Information, South Valley University, Qena, 83523, Egypt
2Research Institute for Information Technology, Kyushu University, Fukuoka, 819-0395, Japan

*Corresponding Author: Samih M. Mostafa. Email: samih_montser@sci.svu.edu.eg
Received: 08 October 2020; Accepted: 25 October 2020

Abstract: CPU scheduling is the basic task within any time-shared operating
system. One of the main goals of the researchers interested in CPU schedul-
ing is minimizing time cost. Comparing between CPU scheduling algorithms
is subject to some scheduling criteria (e.g., turnaround time, waiting time
and number of context switches (NCS)). Scheduling policy is divided into
preemptive and non-preemptive. Round Robin (RR) algorithm is the most
common preemptive scheduling algorithm used in the time-shared operating
systems. In this paper, the authors proposed a modified version of the RR
algorithm, called dynamic time slice (DTS), to combine the advantageous
of the low scheduling overhead of the RR and favor short process for the
sake of minimizing time cost. Each process has a weight proportional to
the weights of all processes. The process’s weight determines its time slice
within the current period. The authors benefit from the clustering technique
in grouping the processes that are similar in their attributes (e.g., CPU service
time, weight, allowed time slice (ATS), proportional burst time (PBT) and
NCS). Each process in a cluster is assigned the average of the processes’
time slices in this cluster. A comparative study of six popular scheduling
algorithms and the proposed approach on nine groups of processes vary in
their attributes was performed and the evaluation was measured in terms of
waiting and turnaround times, and NCS. The experiments showed that the
proposed algorithm gives better results.

Keywords: Clustering; CPU scheduling; round robin; turnaround time;
waiting time

1 Introduction

This section is divided into two subsections: (i) CPU scheduling, and (ii) Clustering technique.

1.1 CPU Scheduling
Allocating and de-allocating the CPU to a specific process is known as process scheduling

(also known as CPU scheduling) [1–3]; the piece of the operating system that performs these
functions is called the scheduler. From the processes that are waiting in the memory to receive

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014675


3254 CMC, 2021, vol.66, no.3

service from the CPU, the scheduler chooses the next process to be assigned to the CPU. The
scheduling scheme may be non-preemptive or preemptive, and many CPU scheduling algorithms
have been suggested. First Come First Served (FCFS) algorithm executes processes upon their
order of arrives. Shortest Job First (SJF) algorithm selects the process with the shortest burst time.
Under Shortest Remaining Time First (SRTF) algorithm, the execution of the running process is
paused when a process with shorter burst time arrives. Under priority scheduling, the execution
of the running process is paused when a process with higher priority arrives [4].

The most common of the preemptive scheduling algorithms is the RR scheduling [5], known
hereafter as Standard RR (SRR), used in timesharing and real-time operating systems [6]. In
RR scheduling, the operating system is driven by a regular interrupt by the system timer after a
short fixed interval called standard time slice (STS) [7–10]. After that interruption, the scheduler
switches the context to the next process selected from the circular queue [11,12]. Thus, all processes
are given a chance to receive CPU service time for a short fixed period. The fixed time slice
influences the efficiency of RR algorithm; short time slice leads to high overheads, and long time
slice may leads to starvation between processes. In addition, scheduling criteria (i.e., waiting time,
turnaround time, and NCS) affect performance of the scheduling algorithm [13–15].

1.2 Clustering Technique
Clustering means dividing the data into groups that are useful and meaningful [16]; greater

homogeneity (or similarity) within a cluster and greater difference between clusters bring about
better clustering. Clustering is a type of classification in that it generates labels of the clusters [17,
18]. Classification of data can be completed using clustering without prior knowledge. A clustering
algorithm is the process of dividing abstract or physical object into a collection of similar objects.
Cluster is a collection of data points; points in the same cluster are like each other and different
from points in other clusters. The type of the data determines the algorithm used in the clustering,
for example, statistical algorithms are used for clustering numeric data, categorical data is clustered
using conceptual algorithms, fuzzy clustering algorithms allow data point to be classified into all
clusters with a degree of membership ranging from 0 to 1, this degree indicates the likeness of
the data point to the mean of the cluster. Clustering algorithms are categorized into traditional
and modern [19]. K-means is the most commonly and simplest clustering algorithm. Its simplicity
comes from the use of the squared error as stopping criterion. In addition, the time complexity
of the K-means algorithm is low O(nkt), where n: the number of objects, k: The number of
clusters, and t: The number of iterations. K-means algorithm divides the dataset into K clusters
(C1,C2, . . . ,CK), represented by their centers or means to minimize some objective function that
depends on the vicinity of the subjects to the cluster centroids. The function to be minimized in
K-means is described in Eq. (1) [20].

min
{mk},1≤k≤K

K∑
k=1

∑
x∈Ck

πxdist (x,mk) (1)

where K is the number of the clusters set by the user, πx is the weight of x, mk =
∑

x∈Ck
πxx
nk

is

the centroid of cluster Ck, and the function ‘dist’ computes the distance between the object x and



CMC, 2021, vol.66, no.3 3255

the centroid mk, 1 ≤ k ≤ K. The K-means clustering method requires all data to be numerical.
The pseudo-code of K-means algorithm is as follows:

Algorithm: K-Means
Input —Dataset

—number of clusters
Output —K clusters

Step-1: —Initialize K centers of the cluster
Step-2: —Repeat

—Calculate the mean of all the objects belonging to that cluster

μk =
1
Nk

Nk∑
q=1

xq

where μk is the mean of cluster k and Nk is the number of points
belonging to that cluster

—Assign objects to the closest cluster centroid
—Update cluster centroids based on the assignment

—Until centroids do not change

Determining the optimal number of clusters in a dataset is an issue in clustering. The most
commonly clustering evaluation technique used is the Silhouette method which measures clustering
quality by determining how well each data point lies within its cluster. The Silhouette method can
be summarized as follows:

1. Apply the clustering algorithm for different values of k. For instance, by varying k from
1 to n clusters.
2. For each k, the total Within-cluster Sum of Square (WSS) is calculated.
3. Plot the curve of WSS according to the value of k.
4. The location of a knee in the curve indicates the appropriate number of clusters.

Figure 1: Organization of the paper



3256 CMC, 2021, vol.66, no.3

Eq. (2) defines the Silhouette coefficient (Si) of the ith data point.

Si = biai
max (bi,ai)

(2)

where bi is the average distance between the ith data point and all data points in different clusters;
ai, is the average distance between the ith data point and all other data points in the same
cluster [16,21].

Motivation: The time slice used in RR scheduling algorithm influences the performance of
the timesharing systems. The time slice used should be chosen to avoid starvation (resulted from
choosing long time slice) and overheads of more context switches (resulted from choosing short
time slice).

Organization: The rest of this paper is divided as follows: Section 2 discusses the related
work. The proposed algorithm is presented in Section 3. Section 4 discusses the experimental
implementation. Section 5 concludes this research work (see Fig. 1).

2 Related Works

For better CPU performance in most of the operating systems, the RR scheduling algorithm
is widely implemented. Many versions of the RR algorithm have been proposed to minimize
turnaround and average waiting times. This section discusses the most common variants of the
RR. Tab. 1 shows a comparison between the known variants of SRR. Variable Time Round-
Robin scheduling (VTRR) is a dynamic version of the SRR algorithm proposed by Aaron et
al. [22]. VTRR assigned a time slice to a process taking into consideration the time needed to
all processes. A weighting version of SRR is proposed by Tarek et al. [23]. The authors groups
the processes into five categories based on the burst times. The weight of a process is inversely
proportional to its burst time; process with low weight receives less time and vice versa. If the
burst time of a process less than or equal to 10 tu, it receives 100% of the time defined by SRR.
If the burst time of a process less than or equal to 25 tu, it receives 80% of the time defined
by SRR, and so on. Changeable Time Quantum (CTQ) is a dynamic version of SRR proposed
by Samih et al. [14]. In every round, CTQ finds the time quantum that gives the smallest average
waiting time, and the processes executes for this time. Modifying the time slice at the beginning
of each round is another dynamic version of SRR proposed by Lipika [24], in which the time
slice is calculated with respect to the residual burst times (RBT) in the successive rounds. Lipika
benefited from SJF in which the processes are ordered increasingly based on their burst times (i.e.,
the process with the highest burst time will be at the tail of the ready queue and the process
with the lowest burst time will be at the head of the queue) [25–27]. Adaptive80 RR is a dynamic
variant of SRR proposed by Christoph and Jeonghw [6]. The time quantum equals process’s burst
time at 80th percentile. The authors imitated Lipika’s [24] in sorting the processes in increasing
order, and the time slice in each is calculated depending on the burst times of the processes in the
queue. A hybrid scheduling technique based on SJF and SRR named SJF and RR with dynamic
quantum (SRDQ) is proposed by Samir et al. [28]. SRDQ divided the queue into Q1 and Q2
based on the median; Q2 for long the processes (longer than the median) and Q1 for the short
processes (shorter than the median). Like Lipika’s [24] and Adaptive80 RR [6] algorithms, SRDQ
sorts the processes in the queue in ascending order in each subqueue. Proportional Weighted
Round Robin (PWRR) is a modified version of SRR proposed by Samih [15]. PWRR assigns
the time slice to a process proportional to its weigh which is calculated by dividing its burst time
by the summation of all processes’ burst times in the queue. Adjustable Round Robin (ARR)



CMC, 2021, vol.66, no.3 3257

is another dynamic version of the SRR proposed by Samih et al. [13]. Under a predefined
condition, ARR gives short process a chance of execution until termination without interruption.
Amended Dynamic Round Robin (ADRR) is a dynamic version of SRR proposed by Uferah
et al. [12]. In every cycle, the time slice is adjusted based on the burst time of the process. Like
Lipika’s [24], SRDQ [28] and Adaptive80 RR [6] algorithms, the processes are sorted in ascending
order. Dynamic Round Robin (DRR) CPU scheduling algorithm is a dynamic version of the SRR
algorithm based on clustering technique proposed by Samih et al. [29]. DRR starts by grouping
similar processes in a cluster; the number of clusters is obtained from Silhouette method. Each
cluster has a weight and is assigned a time slice, and all processes in a cluster are assigned the
same time slice. They benefit from the clustering technique in grouping processes that resemble
each other in their features.

Table 1: Comparison of common versions of SRR (WT denotes waiting time, and TT denotes
turnaround time)

Researchers Year Technique
name

Technique
type

Based on Performance metrics

WT TT NCS

Aaron et al. 2001 VTRR Dynamic SRR � � �
Tarek et al. 2007 BRR Dynamic SRR � � �
Samih et al. 2010 CTQ Dynamic SRR � � �
Lipika Datta 2015 – Dynamic SRR and

SJF
� � �

Christoph et al. 2015 Adaptive80
RR

Dynamic SRR and
SJF

� � �

Samir et al. 2017 SRDQ Dynamic SRR and
SJF

� � �

Samih 2018 PWRR Dynamic SRR � � �
Samih et al. 2019 ARR Dynamic based on

threshold
SRR � � �

Uferah et al. 2020 ADRR Dynamic SRR and
SJF

� � �

Samih et al. 2020 DRR Dynamic based on
clustering

SRR and
K-means

� � �

3 The Proposed Algorithm

The processes’ weights (PW), ATS, PBT , and NCS depend on the process’s burst times (BT),
and are calculated in the next subsections. The proposed work starts by grouping similar processes
in clusters. The similarity between processes depends on BT , ATS, NCS, PW and PBT . K-means
is the most commonly algorithm used in clustering. The proposed work consists of three phases:
Data preparation, data clustering, and dynamic implementation.



3258 CMC, 2021, vol.66, no.3

3.1 Data Preparation
In the data preparation phase, PW and NCS are calculated. The weight of the ith process

(PWi) is calculated from Eq. (3):

PWi = BTi∑N
j=1BTj i

(3)

where N is the number of the processes, and BTi is the burst time of the ith process. NCS is
calculated from Eq. (4):

NCSi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⌊
BTi
STS

⌋
if BTi �= h×STS

h= 1, 2, 3, . . .

BTi
STS

− 1 if BTi = h×STS

h= 1, 2, 3, . . .

(4)

STS is determined by SRR, and �X� indicates the largest integer smaller than or equal to X .
If the burst time of a process is greater than the STS, the time slice of this process equals STS.
The ATS assigned to a process in a round is calculated from Eq. (5).

ATSi =
{
STS if BTi > STS

BTi if BTi ≤ STS
(5)

PBT of a process in a round is calculated from Eq. (6).

PBTi = BTi∑n
z=1ATSz

(6)

The proportional time slice (PTS) of a process in a round is calculated from Eq. (7).

PTSi = (1−PBTi)×STS (7)

3.2 Data Clustering
In the data clustering phase, Silhouette method is used to find the optimum number, k, of

clusters, then K-means algorithm clusters the data into k number. BT , PW , ATS, PBT and NCS
are the clustering metrics used in the proposed work. Each data point is assigned to the nearest
centroid, each group of points assigned to the same centroid results cluster. The assignment and
updating steps are repeated until all centroids do not change. The Euclidean (L2) distance is used
to quantify the notion of ‘closest’.

3.3 Dynamic Implementation
In the dynamic implementation, the process with long burst time results small PTS, which

causes many NCS. To avoid overhead resulted from more NCS, a threshold which is an imple-
mentation choice is determined. The weight of the lth cluster, CWl, is calculated from Eq. (8):

CWl =
Cavgl∑k

m=1Cavgm
(8)



CMC, 2021, vol.66, no.3 3259

where Cavgl is the average of burst times in the lth cluster. Eq. (9) calculates the time slice
assigned to the lth cluster (CTSl).

CTSl =
(
1− CWl∑k

l=1CWl

)
×STS (9)

Each process Pr; r= 1, 2, 3, . . . , c executes for CTSl. Awarding more time to the process that
is close to its completion enables it to complete its execution and leave the queue, which in turn
decreases the number of processes in the queue.

Unlike Previous works (e.g., Samih et al. [29]) which give short process in the current round
an opportunity to run until termination under predefined condition, the proposed algorithm takes
into account not only the current round, but also successive rounds. Depending on the process’s
BT, the proposed algorithm gives it more time in the current and successive rounds according
to Eq. (10):

DTSr,l =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CTSl + threshold if
(
threshold×

(
BTr
STS

+ 1
)
≥mod (BTr,CTS)

)

where mod (BTr,CTS) > 0

CTSl if mod (BTr,CTS)= 0

(10)

where DTSr,l is the dynamic time slice assigned to process Pr in cluster l. In successive rounds,
RBT will be updated according to Eq. (11). The proposed algorithm is described in Fig. 2.

RBTi =BTi−CTSi (11)

3.4 Illustrative Example
The following example illustrates the proposed technique. Tab. 2 contains the first dataset used

in the experiments. The optimal number of clusters is indicated from the location of a knee in
the curve in Fig. 3.

Cluster 1 contains the 7th and 8th processes. Cluster 0 contains the others (Tab. 3).

From Eq. (8), CW0 equals 0.981702176 tu, and CW1 equals 1.754574456 tu. From Eq. (9),
CTS0 equals 6.41227 tu, and CTS1 equals 3.58773 tu. The 7th and 8th processes will be assigned
3.58773 tu, the others will be assigned 6.41227 tu.

4 Experimental Implementation

The specifications of the computer used in the experiments are: Intel core i5-2400 (3.10 GHz)
processor, 1 TB HDD, 16 GB memory, Python 3.7.6, and Gnu/Linux Fedora 28 OS.

4.1 Benchmark Datasets
The performance of the compared algorithms was tested using nine synthetic datasets [29].

The burst times in each dataset are randomly generated. The number of process, BTs, NCSs, PBT ,
and ATSs in each dataset differ from the other. Detailed information on datasets is presented
in Tab. 4.



3260 CMC, 2021, vol.66, no.3

Figure 2: Algorithm flowchart

Table 2: Dataset_1

BT ATS PBT PW NCS

0 109 10 −1.72043 0.077746 10
1 150 10 −6.12903 0.10699 14
2 3 3 9.677419 0.00214 0
3 50 10 4.623656 0.035663 4
4 49 10 4.731183 0.03495 4
5 49 10 4.731183 0.03495 4
6 409 10 −33.9785 0.291726 40
7 490 10 −42.6882 0.349501 48
8 47 10 4.946237 0.033524 4
9 46 10 5.053763 0.03281 4

4.2 Performance Evaluation
Six common algorithms; VTRR, SRR, ADRR PWRR, BRR and DRR were compared

with the proposed algorithm on different nine collections of number of processes with different
attributes. The experiments were performed in two cases; when the processes arrive at the same
time, and when the processes arrive in different times.



CMC, 2021, vol.66, no.3 3261

Figure 3: Optimal number of clusters (k= 2)

Table 3: Clustered Dataset_1

BT ATS PBT PW NCS y

0 109 10 −1.72043 0.077746 10 0
1 150 10 −6.12903 0.10699 14 0
2 3 3 9.677419 0.00214 0 0
3 50 10 4.623656 0.035663 4 0
4 49 10 4.731183 0.03495 4 0
5 49 10 4.731183 0.03495 4 0
6 409 10 −33.9785 0.291726 40 1
7 490 10 −42.6882 0.349501 48 1
8 47 10 4.946237 0.033524 4 0
9 46 10 5.053763 0.03281 4 0

Table 4: Datasets specifications. The first column presents the dataset ID, the second column
presents the number of processes, and the third column presents the number of attributes (i.e.,
ATS, BT, PBT, PW, and NCS)

Dataset ID #Processes #Attributes

1 10 5
2 15 5
3 20 5
4 25 5
5 30 5
6 35 5
7 40 5
8 45 5
9 50 5

—In the first case, the time consumed in the clustering is trivial and can be ignored. Fig. 4
shows the average waiting times and turnaround times comparison. Fig. 5 shows the
NCS comparison. Fig. 6 shows the improvement percentage of the proposed algorithm



3262 CMC, 2021, vol.66, no.3

over the compared algorithms. Tab. A1 shows a comparison of the time cost between
the compared algorithms in terms of average waiting and turnaround times and NCS.
Tab. A2 shows the improvement percentages of the proposed algorithm over the six
scheduling algorithms.

—In the second case, new processes arrive to the queue; therefore, the clustering is repeated
in every round. Fig. 7 shows the average waiting times and turnaround times compari-
son. Fig. 8 shows the NCS comparison. Fig. 9 shows the improvement percentage of the
proposed algorithm over the six scheduling algorithms. Tab. B1 shows the running times
comparison between the compared algorithms. Tab. B2 shows the average waiting time
and turnaround time comparison between the compared algorithms. Tab. B3 shows the
improvement percentages of the proposed algorithm over the six scheduling algorithms in
terms of average waiting and turnaround times, and NCS.

Figure 4: Comparing algorithms’ time cost (case 1)

Figure 5: Comparing algorithms’ NCS (case 1)



CMC, 2021, vol.66, no.3 3263

Figure 6: Improvement percentage of the proposed algorithm over the compared algorithms
(case 1)

Figure 7: Comparing algorithms’ time cost (case 2)

Figure 8: Comparing algorithms’ NCS (case 2)5 Conclusion

This paper introduced a dynamic version of SRR. The proposed algorithm reduces the
scheduling time cost (i.e., waiting time and turnaround time). Unlike SRR which uses a fixed
slice of time, the proposed algorithm assigns a time slice to a group of similar processes and



3264 CMC, 2021, vol.66, no.3

Figure 9: Improvement percentage of the proposed algorithm over the compared algorithms
(case 2)

each process in this group runs for this time. The similarity between the processes in a group is
determined using the clustering technique depending on the attributes of these processes. The most
important attribute is the burst time that determines other attributes (i.e., number of allocations to
CPU, weights, and the allowed time slice in a round). Clustering technique uses these attributes to
cluster the processes. Every process in a cluster is assigned a time slice equal to the average of all
allowed time slices in the group. In a round, some processes may complete their execution times
and leave the queue; therefore, in the successive rounds, the number and burst times of survived
processes will be updated. If all processes arrived at the same time, the clustering is applied once.
On the other hand, if the processes arrive sequentially, clustering is applied in each round. The
proposed algorithm endows the process that is close to complete with more time in the current
round. In addition, the proposed algorithm gives a process more time in the current and successive
rounds according to the condition in Eq. (10). The comparison was done between the proposed
algorithm and six common algorithms from the point of view of waiting time, turnaround time,
and NCS. The results showed that the proposed algorithm outperformed the compared algorithms.

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] K. Chandiramani, R. Verma and M. Sivagami, “A modified priority preemptive algorithm for CPU

scheduling,” Procedia Computer Science, vol. 165, pp. 363–369, 2019.
[2] I. S. Rajput and D. Gupta, “A priority based round robin CPU scheduling algorithm for real time

systems,” Journal of Advanced Engineering Technologies, vol. 1, no. 3, pp. 1–11, 2012.
[3] M. R. Reddy, V. V. D. S. S. Ganesh, S. Lakshmi and Y. Sireesha, “Comparative analysis of CPU

scheduling algorithms and their optimal solutions,” in 2019 3rd Int. Conf. on Computing Methodologies
and Communication (ICCMC), Erode, India, pp. 255–260, 2019.

[4] A. Silberschatz, P. B. Galvin and G. Gagne, Operating System Concepts-10th. John Wiley & Sons, Inc.,
2018.

[5] J. Sunil, V. G. Anisha Gnana and V. T. Karthija, Fundamentals of OperatingSystemsConcepts. Germany,
Saarbrucken: Lambert Academic Publications, 2018.



CMC, 2021, vol.66, no.3 3265

[6] C. McGuire and J. Lee, “The adaptive80 round robin scheduling algorithm,” in Transactions on
Engineering Technologies. Dordrecht, The Netherlands: Springer, pp. 243–258, 2015.

[7] T. Wilmshurst, Designing Embedded Systems with Pic Microcontrollers, 2nd ed., Oxford: Elsevier, 2010.
[8] P. Singh, A. Pandey and A. Mekonnen, “Varying response ratio priority: A preemptive CPU scheduling

algorithm (VRRP),” Journal of Computer and Communications, vol. 3, no. 4, pp. 40–51, 2015.
[9] M. U. Farooq, A. Shakoor and A. B. Siddique, “An efficient dynamic round robin algorithm for CPU

scheduling,” in 2017 Int. Conf. on Communication, Computing andDigital Systems (C-CODE), Islamabad,
Pakistan, pp. 244–248, 2017.

[10] A. A. Alsulami, Q. A. Al-Haija, M. I. Thanoon and Q. Mao, “Performance evaluation of dynamic
round robin algorithms for CPU scheduling,” in 2019 Southeast Conf., Huntsville, AL, USA,
pp. 1–5, 2019.

[11] A. Singh, P. Goyal and S. Batra, “An optimized round robin scheduling algorithm for CPU
scheduling,” International Journal on Computer Science and Engineering, vol. 2, no. 7, pp. 2383–
2385, 2010.

[12] U. Shafi, M. Shah, A. Wahid, K. Abbasi, Q. Javaid et al., “A novel amended dynamic round robin
scheduling algorithm for timeshared systems,” International Arab Journal of Information Technology,
vol. 17, no. 1, pp. 90–98, 2020.

[13] S. M. Mostafa and H. Amano, “An adjustable round robin scheduling algorithm in interactive
systems,” Information Engineering Express (IEE), vol. 5, no. 1, pp. 11–18, 2019.

[14] S. M. Mostafa, S. Z. Rida and S. H. Hamad, “Finding time quantum of round robin CPU scheduling
algorithm in general computing systems using integer programming,” International Journal of New
Computer Architectures and their Applications, vol. 5, pp. 64–71, 2010.

[15] S. M. Mostafa, “Proportional weighted round robin: A proportional share CPU scheduler in time
sharing systems,” International Journal of NewComputerArchitectures and their Applications, vol. 8, no. 3,
pp. 142–147, 2018.

[16] U. G. Inyang, O. O. Obot, M. E. Ekpenyong and A. M. Bolanle, “Unsupervised learning framework
for customer requisition and behavioral pattern classification,” Modern Applied Science, vol. 11, no. 9,
pp. 151–164, 2017.

[17] A. Lengyel and Z. Botta-Dukát, “Silhouette width using generalized mean—A flexible method for
assessing clustering efficiency,” Ecology and Evolution, vol. 9, no. 23, pp. 13231–13243, 2019.

[18] A. Starczewski and A. Krzyżak, “Performance evaluation of the silhouette index bt: Artificial intel-
ligence and soft computing,” in Artificial Intelligence and Soft Computing, Lecture Notes in Computer
Science, vol. 9120. Cham: Springer, pp. 49–58, 2015.

[19] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” Annals of Data Science, vol. 2,
no. 2, pp. 165–193, 2015.

[20] J. Wu, Cluster Analysis and K-means Clustering: An Introduction, Advances in K-means Clustering. Berlin
Heidelberg: Springer, pp. 1–16, 2012.

[21] Y. Liu, Z. Li, H. Xiong, X. Gao and J. Wu, “Understanding of Internal Clustering Validation
Measures,” in 2010 IEEE Int. Conf. on DataMining, ICDM, Sydney, NSW, Australia, pp. 911–916, 2010.

[22] A. Harwood and H. Shen, “Using fundamental electrical theory for varying time quantum uniproces-
sor scheduling,” Journal of Systems Architecture, vol. 47, no. 2, pp. 181–192, 2001.

[23] T. Helmy, “Burst round robin as a proportional-share scheduling algorithm,” in Proc. of the 4th IEEE-
GCC Conf. on Towards Techno-Industrial Innovations, Bahrain, pp. 424–428, 2007.

[24] L. Datta, “Efficient round robin scheduling algorithm with dynamic time slice,” International Journal
of Education and Management Engineering, vol. 5, no. 2, pp. 10–19, 2015.

[25] S. Zouaoui, L. Boussaid and A. Mtibaa, “Improved time quantum length estimation for round robin
scheduling algorithm using neural network,” Indonesian Journal of Electrical Engineering and Informatics,
vol. 7, no. 2, pp. 190–202, 2019.

[26] A. Pandey, P. Singh, N. H. Gebreegziabher and A. Kemal, “Chronically evaluated highest instanta-
neous priority next: A novel algorithm for processor scheduling,” Journal of Computer and Communica-
tions, vol. 4, no. 4, pp. 146–159, 2016.



3266 CMC, 2021, vol.66, no.3

[27] N. Srinivasu, A. S. V. Balakrishna and R. D. Lakshmi, “An augmented dynamic round robin CPU,”
Journal of Theoretical and Applied Information Technology, vol. 76, no. 1, pp. 118–126, 2015.

[28] S. Elmougy, S. Sarhan and M. Joundy, “A novel hybrid of shortest job first and round Robin with
dynamic variable quantum time task scheduling technique,” Journal of Cloud Computing, vol. 6, no. 1,
pp. 1–12, 2017.

[29] S. M. Mostafa and H. Amano, “Dynamic round robin CPU scheduling algorithm based on K-means
clustering technique,” Applied Sciences, vol. 10, no. 15, pp. 1–4, 2020.



CMC, 2021, vol.66, no.3 3267

A
pp

en
di
x
A

T
ab

le
A
1:

A
ve
ra
ge

w
ai
ti
ng

ti
m
e
an

d
tu
rn
ar
ou

nd
ti
m
e
co
m
pa

ri
so
n
be
tw

ee
n
th
e
pr
op

os
ed

al
go

ri
th
m

an
d
si
x
sc
he
du

lin
g
al
go

ri
th
m
s

(c
as
e
1)

D
at
as
et

D
T
S

D
R
R

P
W
R
R

V
T
R
R

B
R
R

SR
R

A
D
R
R

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

1
39
3.
8

53
4

12
2

39
8.
41

53
8.
61

12
4

45
0.
85

59
1.
05

14
1

48
5.
90

62
6.
10

12
4

46
7.
60

60
7.
80

30
6

48
5.
90

62
6.
10

12
4

48
5.
9

62
6.
1

12
4

2
54
8.
28
9
65
6.
35
6
14
1

55
2.
37

66
0.
44

14
0

60
5.
22

71
3.
28

15
4

65
3.
27

76
1.
33

14
4

62
2.
20

73
0.
27

34
1

65
3.
27

76
1.
33

14
4

62
5.
93
3
73
4

13
9

3
70
1.
15
7
79
2.
25
7
15
6

70
4.
30

79
5.
40

15
6

76
0.
63

85
1.
73

16
9

81
2.
35

90
3.
45

16
0

77
9.
50

87
0.
60

37
1

81
2.
35

90
3.
45

16
0

77
8.
3

86
9.
4

15
4

4
84
7.
42
1
92
7.
94
1
16
9

85
2.
07

93
2.
59

17
1

91
8.
54

99
9.
06

18
2

96
8.
24

10
48
.7
6
17
5

94
3.
52

10
24
.0
4
40
1

96
8.
24

10
48
.7
6
17
5

93
5.
36

10
15
.8
8
16
9

5
99
9.
80
8
10
73
.0
8
18
3

10
04
.3
7
10
77
.6
3
18
5

10
78
.2
6
11
51
.5
3
19
5

11
25
.6
7
11
98
.9
3
19
0

11
07
.8
0
11
81
.0
7
43
0

11
25
.6
7
11
98
.9
3
19
0

10
94
.7
7
11
68
.0
3
18
4

6
11
50
.1

12
17
.8
7
19
9

11
54
.2
3
12
22
.0
0
19
9

12
36
.4
2
13
04
.2
0
21
0

12
80
.5
7
13
48
.3
4
20
5

12
54
.3
1
13
22
.0
9
45
5

12
80
.5
7
13
48
.3
4
20
5

12
22
.9
7
12
90
.7
4
19
4

7
12
65
.8
8
13
29
.1
6
20
7

12
75
.3
4
13
38
.6
1
21
0

13
56
.3
8
14
19
.6
5
22
0

14
23
.5
3
14
86
.8
0
21
9

13
88
.5
8
14
51
.8
5
47
9

14
23
.5
3
14
86
.8
0
21
9

13
41
.8
5
14
05
.1
3
20
4

8
12
47
.5
6
13
07
.0
7
21
9

13
83
.7
2
14
43
.2
3
22
1

14
68
.7
5
15
28
.2
6
23
0

15
33
.0
9
15
92
.6
0
22
9

14
98
.9
1
15
58
.4
2
49
9

15
33
.0
9
15
92
.6
0
22
9

14
54
.7
6
15
14
.2
7
21
4

9
12
74
.5
8
13
30
.8
8
22
6

14
87
.4
4
15
43
.7
4
22
8

15
75
.9
9
16
32
.2
9
23
8

16
37
.4
8
16
93
.7
8
23
9

16
05
.9
2
16
62
.2
2
51
9

16
37
.4
8
16
93
.7
8
23
9

15
63
.6
2
16
19
.9
2
22
4

A
ve
ra
ge

93
6.
51

10
18
.7
3

97
9.
14

10
61
.3
6

10
50
.1
1
11
32
.3
4

11
02
.2
3
11
84
.4
5

10
74
.2
6
11
56
.4
8

11
02
.2
3
11
84
.4
5

10
55
.9
4
11
38
.1
6

Im
pr
ov
em

en
t%

4.
35

11
.7
6

10
.8
2

17
.2
9

15
.0
4

20
.9
3

12
.8
2

19
.0
2

15
.0
4

20
.9
3

11
.3
1

17
.7
2



3268 CMC, 2021, vol.66, no.3

Table A2: Improvement percentages of the proposed algorithm over six scheduling
algorithms (case 1)

DRR PWRR VTRR BRR SRR ADRR

WT TT NCS WT TT NCS WT TT NCS WT TT NCS WT TT NCS WT TT NCS

1 1.16 0.86 1.61 12.65 9.65 13.48 18.95 14.71 1.61 15.78 12.14 60.13 18.95 14.71 1.61 18.95 14.71 1.61
2 0.74 0.62 −0.71 9.41 7.98 8.44 16.07 13.79 2.08 11.88 10.12 58.65 16.07 13.79 2.08 12.40 10.58 −1.44
3 0.45 0.39 0.00 7.82 6.98 7.69 13.69 12.31 2.50 10.05 9.00 57.95 13.69 12.31 2.50 9.91 8.87 −1.30
4 0.55 0.50 1.17 7.74 7.12 7.14 12.48 11.52 3.43 10.19 9.38 57.86 12.48 11.52 3.43 9.40 8.66 0.00
5 0.45 0.42 1.08 7.28 6.81 6.15 11.18 10.50 3.68 9.75 9.14 57.44 11.18 10.50 3.68 8.67 8.13 0.54
6 0.36 0.34 0.00 6.98 6.62 5.24 10.19 9.68 2.93 8.31 7.88 56.26 10.19 9.68 2.93 5.96 5.65 −2.58
7 0.74 0.71 1.43 6.67 6.37 5.91 11.07 10.60 5.48 8.84 8.45 56.78 11.07 10.60 5.48 5.66 5.41 −1.47
8 9.84 9.43 0.90 15.06 14.47 4.78 18.62 17.93 4.37 16.77 16.13 56.11 18.62 17.93 4.37 14.24 13.68 −2.34
9 14.31 13.79 0.88 19.13 18.47 5.04 22.16 21.43 5.44 20.63 19.93 56.45 22.16 21.43 5.44 18.49 17.84 −0.89

Appendix B

Table B1: Running times comparison between the proposed algorithm and six scheduling
algorithms (case 2)

Dataset DTS DRR PWRR VTRR BRR SRR ADRR

1 0.037 0.027 0.011 0.01 0.017 0.008 0.01
2 0.041 0.03 0.012 0.01 0.018 0.008 0.012
3 0.047 0.042 0.013 0.012 0.02 0.009 0.013
4 0.049 0.044 0.02 0.021 0.023 0.012 0.02
5 0.05 0.046 0.021 0.023 0.026 0.014 0.021
6 0.053 0.051 0.022 0.025 0.029 0.017 0.023
7 0.056 0.052 0.028 0.027 0.035 0.02 0.026
8 0.07 0.063 0.033 0.03 0.039 0.023 0.03
9 0.1 0.072 0.04 0.033 0.04 0.026 0.032



CMC, 2021, vol.66, no.3 3269

T
ab

le
B
2:

A
ve
ra
ge

w
ai
ti
ng

ti
m
e
an

d
tu
rn
ar
ou

nd
ti
m
e
co
m
pa

ri
so
n
be
tw

ee
n
th
e
pr
op

os
ed

al
go

ri
th
m

an
d
si
x
sc
he
du

lin
g
al
go

ri
th
m
s

(c
as
e
2)

D
at
as
et

D
T
S

D
R
R

P
W
R
R

V
T
R
R

B
R
R

SR
R

A
D
R
R

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

W
T

T
T

N
C
S

1
39
3.
8

53
4

12
2

39
8.
41

53
8.
61

12
4

45
0.
85

59
1.
05

14
1

48
5.
90

62
6.
10

12
4

46
7.
60

60
7.
80

30
6

48
5.
90

62
6.
10

12
4

48
5.
9

62
6.
1

12
4

2
54
4.
48
9
65
2.
55
6
14
1

55
0.
47

65
8.
54

14
0

60
3.
32

71
1.
38

15
4

65
1.
37

75
9.
43

14
4

61
8.
40

72
8.
37

34
1

65
1.
37

75
9.
43

14
4

62
4.
03
3
73
2.
1

13
9

3
69
5.
75
7
78
6.
85
7
15
6

70
1.
60

79
2.
70

15
6

75
7.
93

84
9.
03

16
9

80
9.
65

90
0.
75

16
0

77
4.
10

86
7.
90

37
1

80
9.
65

90
0.
75

16
0

77
5.
6

86
6.
7

15
4

4
84
1.
22
1
92
1.
74
1
16
9

84
8.
97

92
9.
49

17
1

91
5.
44

99
5.
96

18
2

96
5.
14

10
45
.6
6
17
5

93
7.
32

10
20
.9
4
40
1

96
5.
14

10
45
.6
6
17
5

93
2.
26

10
12
.7
8
16
9

5
99
2.
00
8
10
65
.2
8
18
3

10
00
.4
7
10
73
.7
3
18
5

10
74
.3
6
11
47
.6
3
19
5

11
21
.7
7
11
95
.0
3
19
0

11
00
.0
0
11
77
.1
7
43
0

11
21
.7
7
11
95
.0
3
19
0

10
90
.8
7
11
64
.1
3
18
4

6
11
40
.9

12
08
.6
7
19
9

11
49
.6
3
12
17
.4
0
19
9

12
31
.8
2
12
99
.6
0
21
0

12
75
.9
7
13
43
.7
4
20
5

12
45
.1
1
13
17
.4
9
45
5

12
75
.9
7
13
43
.7
4
20
5

12
18
.3
7
12
86
.1
4
19
4

7
12
56
.0
8
13
19
.3
6
20
7

12
70
.4
4
13
33
.7
1
21
0

13
51
.4
8
14
14
.7
5
22
0

14
18
.6
3
14
81
.9
0
21
9

13
78
.7
8
14
46
.9
5
47
9

14
18
.6
3
14
81
.9
0
21
9

13
36
.9
5
14
00
.2
3
20
4

8
12
35
.5
6
12
95
.0
7
21
9

13
77
.7
2
14
37
.2
3
22
1

14
62
.7
5
15
22
.2
6
23
0

15
27
.0
9
15
86
.6
0
22
9

14
86
.9
1
15
52
.4
2
49
9

15
27
.0
9
15
86
.6
0
22
9

14
48
.7
6
15
08
.2
7
21
4

9
12
58
.9
8
13
15
.2
8
22
6

14
79
.6
4
15
35
.9
4
22
8

15
68
.1
9
16
24
.4
9
23
8

16
29
.6
8
16
85
.9
8
23
9

15
90
.3
2
16
54
.4
2
51
9

16
29
.6
8
16
85
.9
8
23
9

15
55
.8
2
16
12
.1
2
22
4

A
ve
ra
ge

92
8.
76

10
10
.9
8

97
5.
26

10
57
.4
8

10
46
.2
4
11
28
.4
6

10
98
.3
6
11
80
.5
8

10
66
.5
0
11
52
.6
1

10
98
.3
6
11
80
.5
8

10
52
.0
6
11
34
.2
9

Im
pr
ov
em

en
t%

4.
77

12
.1
7

11
.2
3

17
.7
0

15
.4
4

21
.3
3

12
.9
2

19
.4
2

15
.4
4

21
.3
3

11
.7
2

18
.1
2



3270 CMC, 2021, vol.66, no.3

Table B3: Improvement percentages of the proposed algorithm over six scheduling algorithms
(case 2)

DRR PWRR VTRR BRR SRR ADRR

WT TT NCS WT TT NCS WT TT NCS WT TT NCS WT TT NCS WT TT NCS

1 1.16 0.86 1.61 12.65 9.65 13.48 18.95 14.71 1.61 15.78 12.14 60.13 18.95 14.71 1.61 18.95 14.71 1.61
2 1.09 0.91 -0.71 9.75 8.27 8.44 16.41 14.07 2.08 11.95 10.41 58.65 16.41 14.07 2.08 12.75 10.87 -1.44
3 0.83 0.74 0.00 8.20 7.32 7.69 14.07 12.64 2.50 10.12 9.34 57.95 14.07 12.64 2.50 10.29 9.21 -1.30
4 0.91 0.83 1.17 8.11 7.45 7.14 12.84 11.85 3.43 10.25 9.72 57.86 12.84 11.85 3.43 9.77 8.99 0.00
5 0.85 0.79 1.08 7.67 7.18 6.15 11.57 10.86 3.68 9.82 9.50 57.44 11.57 10.86 3.68 9.06 8.49 0.54
6 0.76 0.72 0.00 7.38 7.00 5.24 10.59 10.05 2.93 8.37 8.26 56.26 10.59 10.05 2.93 6.36 6.02 -2.58
7 1.13 1.08 1.43 7.06 6.74 5.91 11.46 10.97 5.48 8.90 8.82 56.78 11.46 10.97 5.48 6.05 5.78 -1.47
8 10.32 9.89 0.90 15.53 14.92 4.78 19.09 18.37 4.37 16.90 16.58 56.11 19.09 18.37 4.37 14.72 14.14 -2.34
9 14.91 14.37 0.88 19.72 19.03 5.04 22.75 21.99 5.44 20.83 20.50 56.45 22.75 21.99 5.44 19.08 18.41 -0.89




