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Abstract: Existing IP geolocation algorithms based on delay similarity often
rely on the principle that geographically adjacent IPs have similar delays.
However, this principle is often invalid in real Internet environment, which
leads to unreliable geolocation results. To improve the accuracy and relia-
bility of locating IP in real Internet, a street-level IP geolocation algorithm
based on landmarks clustering is proposed. Firstly, we use the probes to
measure the known landmarks to obtain their delay vectors, and cluster
landmarks using them. Secondly, the landmarks are clustered again by their
latitude and longitude, and the intersection of these two clustering results
is taken to form training sets. Thirdly, we train multiple neural networks to
get the mapping relationship between delay and location in each training
set. Finally, we determine one of the neural networks for the target by the
delay similarity and relative hop counts, and then geolocate the target by
this network. As it brings together the delay and geographical coordinates
clustering, the proposed algorithm largely improves the inconsistency between
them and enhances the mapping relationship between them. We evaluate the
algorithm by a series of experiments in Hong Kong, Shanghai, Zhengzhou
and New York. The experimental results show that the proposed algorithm
achieves street-level IP geolocation, and comparingwith existing typical street-
level geolocation algorithms, the proposed algorithm improves the geolocation
reliability significantly.

Keywords: IP geolocation; neural network; landmarks clustering; delay
similarity; relative hop

1 Introduction

IP geolocation technology aims to obtain the geographic location of a given IP address [1].
It has been widely used in advertisement delivery, user positioning, tracking attack source and
so on [2–4]. High-precision and reliable IP geolocation technology is getting more and more
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attention in the development of the Internet [5]. But geolocating a host with its IP address is still
a challenging problem because there is no direct relationship between geographic location and IP
address [6]. Therefore, the research on IP geolocation technology is of great practical significance.

The existing methods of IP geolocation mainly include the geolocation method based on IP
location databases and the method based on network measurement.

The method based on IP location databases mainly determines the location of an IP through
query, and the databases used mainly include Whois [7], IP2Location [8] and Maxmind [9].
However, the accuracy of such databases can only reach the national-level, and it is difficult
for them to be used for more accurate geolocation [10,11]; moreover, geolocation results may be
unreliable due to belated database update.

The IP geolocation methods based on network measurement mainly estimate the geographical
location of a target IP by using the delay, topology and other information obtained through the
network measurement on the target IP. These methods can be divided into city-level IP geolocation
methods and street-level IP geolocation methods.

City-level IP geolocation methods include GeoPing [6], CBG (Constraint-Based Geoloca-
tion) [12], Octant [13], GeoWeight [14], LBG (Learning-based Geolocation) [15], Point of Presence
(PoP) Analysis based Geolocation [16], GBLC (Landmark Clustering based Geolocation) [17],
PoP Partition based Geolocation [18], Geo-PoP [19]. These methods mainly use attributes such as
delay, hop count and network structure to constrain the geographical location of the target IP to
a certain area or use the landmark of the known geographical location as its estimated location.
Among them, GeoPing takes the location of the landmark whose delay vector resembles the target
most closely as the location of the target; CBG calculates the “delay-distance” conversion coeffi-
cient of each probes, and estimates the location of the target IP through multiple probes; Octant
and GeoWeight improve the CBG, on the basis of calculating the relationship between delay and
distance, they constrain the location of targets by using intermediate routers and statistical ideas
respectively. GBLC clusters the landmarks to filter out high-reliability landmarks for improving the
precision of city-level IP geolocation algorithm; PoP Analysis based Geolocation, PoP Partition
based Geolocation and Geo-PoP extract the PoP network topology inside the city through the
tightly connected network nodes, and geolocate the target to the city to which the target-connected
PoP belongs.

Street-level IP geolocation methods include SLG (Street-Level Geolocation) [20], IRLD (Iden-
tification Routers and Local Delay Distribution Similarity based Geolocation) [21], NC-Geo
(Nearest Common Router based Geolocation) [22] and TNN (IP Geolocation Algorithm based on
Two-tiered Neural Networks) [23]. These methods mainly adopt the idea of layer-by-layer approx-
imation. Namely, first geolocating the target IP to a larger range and then estimating its location
in a smaller range. Among them, the SLG algorithm uses the landmark having the minimum
relative delay with the target IP as the estimated location of the target IP. On the basis of the SLG
algorithm, the IRLD algorithm considers the problem of delay expansion and anonymous routing,
and uses the similarity of local delay distribution to replace the minimum relative delay in SLG
algorithm to geolocate the target IP, which better solves the anonymous routing when geolocation.
The NC-Geo algorithm estimates the location of the target IP by finding the landmarks with the
nearest common router to the destination IP and using the minimum relative delay between the
landmarks and the router, but it requires at least three landmarks to be connected to the common
router. In essence, IRLD algorithm and NC-Geo algorithm are more precise geolocation under
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the specific conditions of SLG algorithm. The TNN algorithm uses neural network to learn the
mapping relationship between delay and latitude and longitude, so as to realize IP geolocation.

SLG, IRLD, and NC-Geo estimate the location of the nearest landmark or router as the
target geographical location. When the nearest landmark or router is far from the target, the
geolocation error will be large. The main principle in TNN algorithm is based on the fact that IPs
with similar geographical locations have similarities in their delays, but its inverse proposition that
IPs with similar delays have close geographic locations actually fails to hold water. Therefore, the
use of delay similarity in TNN algorithm to perform geolocation will cause unreliable geolocation.

Aiming at the above problems, this paper constructs the geolocation algorithm by using the
delay and relative hop counts under the ideal conditions of the network. The algorithm obtains
the delay and paths from probes to landmarks, uses delay to cluster, and uses the landmark
sets to filter the clustered results to obtain the training sets, and trains the neural networks with
the training sets. The delay similarity and the relative hops between the target and the training
sets are used to judge which training set the target belongs to. When the relative hops between
the target and the training set satisfy the set threshold conditions, the training set is used to
train the neural network to locate the target. The algorithm uses the delay vector clustering as
well as latitude and longitude clustering of the landmarks, which better improves the problem of
unreliable geolocation in TNN algorithm. The proposed algorithm also avoids the limitations of
SLG algorithm, IRLD algorithm and NC-Geo algorithm by using neural networks to learn the
mapping between delay and geographic location.

The rest of this paper is organized as follows. Section 2 reveals the correlation between IP
delay similarity and geographical location distribution. Section 3 introduces the main steps of the
algorithm and divides it into three stages as training sets filtering, neural network training and
target geolocation to explain in detail. The performance of the algorithm is evaluated through the
experiments in Section 4. Finally, Section 5 summarizes the work of this paper.

2 Relationship between Delay Similarity and Geographical Distribution

We conducted a total of more than 5,000 (lasting for 21 days) traceroute measurements on
street-level landmarks (105,461) in China and the US by using nine probes in Beijing, Chengdu,
Shanghai, Wuhan, Washington, Silicon Valley, New York, Atlanta and Seattle, and obtains a lot
of delay information.

In order to verify the relationship between delay similarity and geographical distribution, we
use the K-means algorithm to cluster the delay vectors of landmarks in China and US separately
in this section. We selected cluster quantity K making the contour coefficient meet its maximum.
When the numbers of clusters in China and the United States are 326 and 168 respectively, the
contour coefficients reach its maximum, which are 0.72 and 0.83, respectively. The delay clustering
results and geographical distribution statistical results of landmarks are shown in Tab. 1.

Table 1: Distribution of cluster quantity under different landmark coverage

The total number of clusters Landmark coverage radius

>10 Km >50 Km >100 Km >300 Km

494 466 440 430 395



3348 CMC, 2021, vol.66, no.3

In Tab. 1, there are 395 clusters of landmarks with geographical distribution covering greater
than 300 Km. Although the delays in these clusters are similar, the actual distance between the
corresponding landmarks is greater than 300 Km, which means that the landmarks with similar
delays are not necessarily geographically close.

In fact, among the above 494 clusters, the geographical locations where the landmarks in
cluster W (a total of 315 landmarks), cluster X (124 landmarks), cluster Y (324 landmarks) and
cluster Z (187 landmarks) are located are shown in Fig. 1. The landmarks in cluster W are located
in Dallas, Houston, etc. in the United States. The landmarks in cluster X are located in Los
Angeles, San Francisco, etc. in the United States. The landmarks in cluster Y are located in
Shanghai, Hangzhou, etc. in China. The landmarks in cluster Z are located in Chengdu, Yibin,
etc. in China. The average contour coefficients of cluster W, cluster X, cluster Y and cluster Z
are 0.73, 0.76, 0.81 and 0.83, respectively. As a consequence, it is unreliable to merely use the
similarity of delays as the basis for geolocation.

(a)                                        (b)                                       (c)                                     (d) 

Figure 1: Geographical distribution of the landmarks with partial delay similarity. (a) Distribution
of the landmarks in cluster W; (b) Distribution of the landmarks in cluster X. (c) Distribution
of the landmarks in cluster Y; (d) Distribution of the landmarks in cluster Z

Fig. 2 shows the CDF (cumulative distribution function) of geolocation error when the TNN
algorithm geolocates the targets in Shanghai, New York, Hong Kong and Zhengzhou. When the
training size is greater than 100, 300, 500 and 1000, respectively, the geolocation median error is
9.2, 10.3, 12.2 and 12.9 Km. Tab. 2 shows the statistical results with the geolocation error being
10, 20 and 40 Km, respectively, when the TNN algorithm geolocates the targets.

Tab. 2 shows that the geolocation accuracy rate of the TNN algorithm with a geolocation
error being 10, 20 and 40 Km, respectively, is not very high. This may be due to the fact that
when the TNN algorithm trains the neural network with all landmarks, the landmark position
of similar delay is not adjacent very often, so the mapping relationship between the delay and
location of the landmarks learned by the neural network is not very strong.

3 Basic Principles and Main Steps of Proposed Algorithm

The basic idea of the algorithm is as follows: Based on the rule that hosts in the same local
area and under the same network conditions often have similarity in their delays, the delays and
relative hop counts are obtained for geolocation. The schematic framework of the algorithm is
shown in Fig. 3.
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Figure 2: Error distribution of geolocation by the TNN algorithm

Table 2: The proportion of geolocation error of the TNN algorithm

Training set size∗ PGE< 10 Km§ (%) PGE< 20 Km (%) PGE< 40 Km (%)

>100 55.0 78.9 90.7
>300 49.2 74.5 89.8
>500 43.5 68.3 88.0
>1000 41.2 68.1 87.1

∗ “training set size>N” represents a landmark set composed of all training sets with a landmark quantity greater than N in the training
set. §“PGE<X” is short for “proportion of the targets within geolocation error being X”.

As shown in Fig. 3, the algorithm is divided into three parts: � Training sets filtering,� Neural networks training, and � Target geolocation. The specific steps of the algorithm are
as follows:

� Training sets filtering. First, deploy n probes P1,P2, . . . ,Pn, and acquire the delay from the
probes to landmark sets, and construct absolute delay vectors:

Vecj =
(
d1,j,d2,j, . . . ,dn,j

)
(1)

where Vecj represents the delay vector of the j-th landmark, and di,j represents the delay from the
detection source i to the landmark j. Then, use Eq. (1) to cluster the landmarks. Next, use the
latitude and longitude in the landmark set to cluster all the landmarks. Finally, the intersection
of the two clustering results is calculated, and each intersection is used as a training set, so that
the delay, latitude and longitude in each training set landmark are similar.

� Neural networks training. Take the delay of the landmarks in the training set Ci as input,
and the latitude and longitude thereof as output, obtaining a well-trained neural network.

� Target geolocation. First, acquire the delay information from n probes to the target, express
it as

VecT= (d1,d2, . . . ,dn) (2)
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Figure 3: Algorithm frame diagram

where di represents the delay from the detection source i to the target. Then, Eq. (2) is used
to determine the delay cluster which the target belongs to, calculate the training set having the
smallest relative hop counts with target in the delay cluster, record the relative hop counts between
target and the training set as V . Set the threshold U , and if U ≥ V , input the neural network
constructed by Cj in the Eq. (2) to obtain its latitude and longitude; otherwise, end the algorithm.

Among them, training sets filtering, neural network training and target geolocation are the
important parts of the algorithm, which will be described in detail in the following subsections.

3.1 Training Sets Filtering
Because the geographical location of landmarks with similar delay is not necessarily close, and

if all landmarks are used as training sets to train neural network, the result of location will be
unreliable. Therefore, the training sets need to be filtered so that the delay, latitude and longitude
of landmarks in each training set are similar. The specific steps are as follows:

Input: Delay vectors of landmarks, longitude and latitude of landmarks

Output: Filtered training sets
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Step 1 Use Eq. (1) to perform K-means clustering on the landmarks, wherein K value is
iterated in ascending order, and then select the k value maximizing the contour coefficient, and
record the clustering set as D= {D1,D2, . . . ,Dk}.

Step 2 Use the latitude and longitude in the landmark set to cluster all the landmarks, in
terms of the number of clusters, also select the value corresponding to the maximum contour
coefficient and recording it as h, and record the clustering set as L= {L1,L2, . . . ,Lh}.

Step 3 Calculate F=L∩D and record the final set of clusters as F= {
C1,C2, . . . ,Cq

}
.

At this time, the delay, latitude and longitude of the landmarks in each training set are similar.
The neural network is trained by using the landmarks in each training set, and the mapping
between delay and latitude and longitude will be more reliable.

As a result, this training set can ensure that the samples with delay similarity are geograph-
ically close. Close geographical locations and delay similarity can indicate that the samples are
similar in network local characteristics. For example, the samples have a common router, and the
hop counts from them to the common router are not large, showing that these samples have very
similar paths and thus share similarities in network characteristics such as network congestion. It
is therefore reasonable to use the samples in such sets as training sets to train the neural networks.

3.2 Neural Network Training
Use Eq. (1) of the landmarks in Ci as the input of the neural network, and use the latitude

and longitude vectors of the landmarks in Ci as the output of the neural network to train the
neural network. This paper uses the multilayer perceptron neural network, and its structure is
shown in Fig. 4 [24].

Delay 
vector

Latitude
Longitude

Input layer Hidden layers Output layer

Figure 4: Neural network structural diagram

Among them, the number of hidden layers is n. The calculation formula of the output Hi
j of

the hidden layer neuron j in the i-th layer is⎧⎨
⎩
Hi
j = f

(∑
k w

i
k,j · Ik+ θ ij

)
, i= 1

Hi
j = f

(∑
k w

i
k,j ·Hi−1

k + θ ij

)
, i> 1

(3)

where Hi−1
k is the output value of the hidden layer neuron k in the i − 1 layer, wik,j is the

connection weight from the hidden layer neuron k in the i− 1 layer to the current layer neuron
j, θ ij is the threshold of the hidden layer neuron j in the i − th layer. Ik is the input value of
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the input layer neuron k. The hidden layer neuron activation function f (x) is set to a sigmoid
function, which is just like

f (x)= 1
1− exp (−x) (4)

The calculation formula of the output layer neurons is{
y=∑

j wj,y ·Hn
j + θy

x=∑
j wj,x ·Hn

j + θx
(5)

where Hn
j is the output value of the hidden layer neuron j in the n layer, wj,x and wj,y are the

connection weights from the hidden layer neuron j in the n-th layer to the output layer neuron x
and y, θx and θy are the thresholds of the output layer neuron x and y.

3.3 Target Geolocation
After training the neural network for each training set, in target geolocation, it is first

necessary to judge the training set to which the target belongs. Then, the target delay vector is
input into the neural network trained by the training set to obtain the latitude and longitude of
the target. Specific steps are as follows:

Input: Target IP

Output: Target longitude and latitude

Step 1 Use the detection source deployed in the previous stage to measure the delay of the
target, and use the Ally method [25] and the Mercator [26] method to merge the router aliases.
Construct Eq. (2) using targets. Record the hop counts of each router and the target in each
measurement path.

Step 2 Calculate the Euclidean distance between the Di center and Eq. (2), and select the Di
whose center has the smallest Euclidean distance with Eq. (2) as Di to which the target T belongs.

Step 3 Extract the router in the path of the set Cj in the probe measurement set Di, which is
denoted as

Rcj = {r1, r2, . . . , rs} (6)

where rm is the k-th router in Cj, and s is the number of routers in the path of the set Cj. The
minimum hops of the distance between rm and the landmarks in Cj are recorded as hrm,Cj .

Step 4 By taking the intersection of routers in the probe-to-target paths and Rcj , common
router sets are obtained, which is denoted as

Mj =
{
r1, r2, . . . , rp

}
(7)

p is the number of common routers for Rcj and the routers in the paths from probes to the
target. The relative hop count of T and Cj is recorded as

Lj =min
(
hrm,Cj + hrm,T

)
, k= 1, 2, . . . ,p (8)

where hrm,T is the minimum hops of the distance between rm and the target. Cj with the smallest
Lj is used as the training set to locate the target, and record the smallest Lj as V .
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Step 5 Set the threshold U , and if U ≥V , use the neural network formed by the training set
Cj to geolocate the target; otherwise, end the algorithm.

The feasibility behind this strategy is as follows. The algorithm uses delay to determine the
cluster to which the target belongs (clusters are obtained by time-delay clustering), but this cluster
may produce multiple subclusters after the intersection with the cluster of latitude and longitude
clustering. Therefore, it is necessary to calculate the relative hop count between the target and the
landmarks in multiple clusters, and take the cluster with the smallest relative hop count as the
target geolocation training set. It is worth noting that the “relative hop count between the target
and the cluster” refers to the minimum relative hop count between the target and a landmark in
the cluster, and to some extent, it represents the similarity between the target and the landmark.
Specifically, the smaller the relative hop count, the more similar the target is to a certain sample
in the cluster, and the mapping relationship between the target’s delay and latitude and longitude
is more consistent with that of the trained neural network for this cluster. On the other hand, the
greater the relative hop count, the greater the difference between the target and the sample path
in this cluster. At this time, network characteristics such as path and congestion will affect the
mapping relationship between delay and latitude and longitude, making the mapping relationship
of the target different from that of trained neural network for this cluster. Consequently, in the
algorithm, it is reasonable to measure the reliability of geolocation by setting a corresponding
threshold. When the relative hop count is greater than the threshold, the algorithm deems that
the target cannot be geolocated, thus ensuring the reliability of the algorithm under different
geolocation requirements.

4 Experimental Results and Analysis

This section mainly verifies the rationality and effectiveness of the proposed algorithm. The
experiment includes two experiments: Verification on the geolocation effect of the algorithm, and
comparative verification. The experimental setups are shown in Tab. 3.

Table 3: Experimental setups

Landmark deployment A total of 55,318 measurable street-level landmarks: 2,384 in New
York, 1,811 in Shanghai, 11,360 in Zhengzhou and 39,763 in
Hong Kong.

Probe deployment China: Four probes deployed, in Beijing, Chengdu, Shanghai and
Wuhan, respectively.

The United States: Five probes deployed, in Washington, Silicon
Valley, New York, Atlanta and Seattle, respectively.

Detection protocol UDP, TCP, ICMP, ICMP-PARIS [27], UDP-PARIS [27]

In Tab. 3, the landmarks used in the verification of the correlation between delay similarity
and geographical distribution in Section 2 include the landmarks used in the verification on the
geolocation effect of the algorithm and comparative verification.

Because the IRLD algorithm and NC-Geo algorithm belong to the geolocation under the
specific conditions of the SLG algorithm. Unlike the application scenarios in this paper, the
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geolocation conditions of the SLG algorithm are more general, so comparative verification is
carried out on the algorithm proposed in this paper and the SLG algorithm and TNN algorithm.

4.1 Verification on the Geolocation Effect of the Algorithm
Based on the experimental setups in Tab. 3, we verify the effect of the geolocation algorithm

in this subsection. 80% of the landmarks are randomly selected from each city as the candidate
set of the training set for training network, and the remaining 20% of the landmarks (a total of
11,063) are used as unknown targets for geolocation verification. The landmarks can be divided
into 67 clusters by using the landmark clustering in the algorithm and filtering algorithm. Tab. 4
shows the relationship between the size of the training set, the number of clusters and the
geographical location thereof.

Table 4: Size of the training set and the statistical table of cluster quantity distribution

Training set size∗ The quantity of clusters in the region

Zhengzhou Shanghai Hong Kong New York

Trainingsetsize> 100 20 3 18 2
Trainingsetsize> 300 11 2 14 2
Trainingsetsize> 500 7 0 12 0
Trainingsetsize> 1000 4 0 5 0
∗ “training set size>N” represents a landmark set composed of all training sets with a landmark quantity greater than N in the training set.

Tab. 5 shows the geolocation effects of training sets in different training sizes and different
geolocation thresholds on the corresponding targets.

Fig. 5 shows the geolocation error cumulative distribution of the targets that can be geolo-
cated under different training set sizes and different threshold conditions. The red dashed line,
blue dot line, green chain line and the black solid line indicate the cumulative error distribution
of all neural networks formed by the training sets with the landmarks greater than 100, 300, 500
and 1000 in each training set for the corresponding target geolocation, respectively.

Tab. 5 and Fig. 5 show that as the total number of landmarks in the landmark set decreases,
the number of samples in a single training set increases, and the number of targets that can be
geolocated decreases, but the geolocation error (median error/maximum error) is on a downward
trend. The reason lies in that the network trained by the training set that fails to satisfy a certain
number of samples lacks universality, which is statistically reasonable. In addition, it can be seen
that different geolocation thresholds have different degrees of influence on the number of targets
that can be geolocated and geolocation error. As the geolocation threshold increases, the number
of targets that can be geolocated increases, but the geolocation error also increases.

It can be seen that the geolocation effect of the algorithm is closely related to the number of
samples in the training set and the geolocation threshold. In fact, it is also closely related to the
network characteristics of the geolocation target and the training set.

Tab. 6 shows the number of targets that can be geolocated, geolocation error and other
geolocation effect when the number of landmarks in the corresponding training sets in Zhengzhou
and Hong Kong and the geolocation threshold are 4.
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Table 5: Relationship between different training set sizes, different thresholds and the quantity of
the targets that can be geolocated and geolocation error

Landmark set U∗ QCG/QCNG§ MGE� (Km)

Trainingsetsize > 100 (a total of 43 training
sets and 43,808 landmarks)

2 8801/2262 3.45

3 9607/1456 3.92
4 10325/738 4.07

Trainingsetsize > 300 (a total of 29 training
sets and 41,052 landmarks)

2 7298/3765 3.22

3 8021/3042 3.52
4 8655/2408 3.80

Trainingsetsize > 500 (a total of 19 training
sets and 36396 landmarks)

2 6336/4727 2.89

3 6978/4085 3.19
4 7437/3626 3.42

Trainingsetsize > 1000 (a total of 9 training
sets and 28435 landmarks)

2 5740/5323 2.47

3 6292/4771 2.89
4 6519/4544 3.01

∗U is short for “geolocation threshold”; §QCG is short for “quantity of the targets that can be geolocated”, QCNG is short for “quantity
of the targets that can’t be geolocated”; �MGE is short for “median geolocation error of the targets that can be geolocated”.

(a) (b) (c)

Figure 5: The CDF of geolocation error under different training set sizes and thresholds.
(a) Threshold is 2. (b) Threshold is 3. (c) Threshold is 4

Tab. 6 shows that under the same threshold condition, the smaller the relative hop count
from the target to the corresponding training set, the higher its proportion in the whole targets
that can be geolocated, and the higher the geolocation accuracy. This, to some extent, shows
that the smaller the hop count from the target to the training set, the more similar the network
characteristics of the target are to the network characteristics of the landmark in the training set.
Thus, the use of the geolocation algorithm should fully consider the relative hop count from the
target to the training set and the sample quantity of the training set.
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Table 6: Geolocation effect under different training sets when the threshold is 4

Training
set

LQ∗ QCG
when U
is 4§

The number of the targets with the minimum
hop count to the corresponding training set
and its proportion

MGE�

Quantity Proportion

2 3 4 2 (%) 3 (%) 4 (%)

I 998 43 35 6 2 81.40 13.95 4.65 9.76
II 1553 16 8 5 3 50.00 31.25 18.75 11.98
III 2450 254 252 1 1 99.21 0.39 0.39 1.84
IV 3980 381 322 53 6 84.51 13.91 1.57 3.01
∗LQ is short for “landmark quantity”; §U is short for “geolocation threshold”, QCG is short for “quantity of the targets that can be
geolocated”; �MGE is short for “median geolocation error of the targets that can be geolocated”.

4.2 Comparative Verification
In this subsection, we compare the geolocation effect of the proposed algorithm in this paper

with those of the SLG algorithm and the TNN algorithm under the situations of the same target
and landmark.
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Figure 6: Comparison on IP geolocation error under the same conditions. (a) Geolocation
error comparison when the training set size > 100. (a-1) Threshold is 2. (a-2) Threshold is 3.
(a-3) Threshold is 4. (b) Geolocation error comparison when the training set size > 300.
(b-1) Threshold is 2. (b-2) Threshold is 3. (b-3) Threshold is 4. (c) Geolocation error comparison
when the training set size > 500. (c-1) Threshold is 2. (c-2) Threshold is 3. (c-3) Threshold
is 4. (d) Geolocation error comparison when the training set size > 1000. (d-1) Threshold is 2.
(d-2) Threshold is 3. (d-3) Threshold is 4

Fig. 6 shows the geolocation cumulative distribution of the proposed algorithm in this paper,
the SLG algorithm and the TNN algorithm. The black line, red dashed line and blue dot line
indicate the geolocation error cumulative distribution of the proposed algorithm, SLG algorithm
and TNN algorithm, respectively. It can be seen from the geolocation error cumulative distribu-
tion in the Fig. 6 that when the geolocation threshold is 2 or 3, the geolocation effect of the
proposed algorithm is better than those of the SLG algorithm and TNN algorithm, but when the
threshold is 4, the partial geolocation result of the proposed algorithm is weaker than that of the
TNN algorithm.

Tab. 7 shows with a geolocation threshold being 4, the statistical results of the proposed
algorithm in this paper, the SLG algorithm and TNN algorithm when the geolocation error is 10,
20 and 40 Km.

Tab. 7 shows that when the landmarks are composed of a training set with training samples
greater than 100, the geolocation accuracy rate of the algorithm within 20 Km is 82.0%, while
the geolocation accuracy rate of the TNN algorithm is 83.7%.

When the landmarks are composed of a training set with training samples greater than 300,
the geolocation accuracy rates of the algorithm within 20 and 40 Km are 83.9% and 95.5%,
respectively, while the geolocation accuracy rates of the TNN algorithm are 86.2% and 96.3%,
respectively. Tab. 8 gives the reasons for this phenomenon.
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Table 7: The proportion of geolocation error when the threshold is 4

Training
set size

Geolocation algorithm PGE< 10 Km∗ (%) PGE< 20 Km (%) PGE< 40 Km (%)

>100 Proposed algorithm 73.7 82.0 94.3
SLG algorithm 55.7 78.4 93.4
TNN algorithm 58.5 83.7 92.8

>300 Proposed algorithm 76.5 83.9 95.5
SLG algorithm 54.7 80.2 94.3
TNN algorithm 58.5 86.2 96.3

>500 Proposed algorithm 78.8 86.4 95.2
SLG algorithm 53.4 77.6 89.7
TNN algorithm 53.9 81.8 91.5

>1000 Proposed algorithm 82.3 88.2 97.6
SLG algorithm 55.0 79.5 91.6
TNN algorithm 53.7 82.9 92.3

∗“PGE<X” is short for “proportion of the targets within geolocation error being X”.

Table 8: Relationship between the proportion of different relative hop count between the target
and the corresponding training set and the geolocation error under different training set sizes

Training set size Relative hop count between the target
and the corresponding training set

2 3 4

>100 Its proportion to the quantity of the
targets that can be geolocated

85.2% 7.8% 7.0%

Median geolocation error 3.45 Km 26.84 Km 40.25 Km
>300 Its proportion to the quantity of the

targets that can be geolocated
84.3% 8.4% 7.3%

Median geolocation error 3.22 Km 26.20 Km 41.22 Km
>500 Its proportion to the quantity of the

targets that can be geolocated
85.2% 8.6% 6.2%

Median geolocation error 2.89 Km 25.35 Km 33.43 Km
>1000 Its proportion to the quantity of the

targets that can be geolocated
88.0% 8.5% 3.5%

Median geolocation error 2.47 Km 23.46 Km 32.58 Km

Tab. 8 shows that when the relative hop count between the target and the training set is
relatively large, the neural network trained by the training set is not sufficient to reflect the
network characteristics of the target, which may increase the error. The TNN algorithm uses
all landmarks as a training set, which blurs local network characteristics. However, the TNN
algorithm will not guarantee higher geolocation reliability.

Section 2 shows the geolocation of all targets by TNN algorithm. Fig. 2 shows that when the
TNN algorithm geolocates the targets that it considers can be geolocated, although the number of
targets that can be geolocated is more than the proposed algorithm in this paper, its geolocation
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error increases significantly. Tab. 2 shows that the geolocation accuracy rate of the TNN algorithm
with a geolocation error being 10, 20 and 40 Km, respectively, is significantly lower than that of
the proposed algorithm. Hence, it can be seen that the proposed algorithm in this paper is of
greater reliability.

5 Conclusion

IP geolocation algorithm based on delay similarity is a kind of classical IP geolocation
algorithms. However, owing to the inconsistency between IP similar delays and geographical
similarity, the reliability of the geolocation results of such algorithms is not enough. Aiming at
the deficiencies in this kind of algorithm, this paper proposes a street-level geolocation algorithm
based on landmarks clustering. This paper has carried out experimental verification on a total of
55,318 measurable street-level landmarks in Hong Kong, Shanghai, Zhengzhou and New York.
The experimental results show that the proposed algorithm achieves street-level geolocation, and
the reliability of the street-level geolocation algorithm is improved effectively compared with the
SLG algorithm and TNN algorithm.

Because the delays from the probes to the hosts are not stable enough during network
measurement, the geolocation result would be affected, and the path of the network measure-
ment is stable. Infuture work, we consider integrating path vectorization into the construction of
geolocation model to improve the geolocation accuracy.
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