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Abstract: This study presents an inventory model for imperfect products with
depletion in ordering costs and constant lead time where the price discount in
the backorder is permitted. The imperfect products are refused or modified or if
they reached to the customer, returned and thus some extra costs are experienced.
Lately some of the researchers explicitly present on the significant association
between size of lot and quality imperfection. In practical situations, the unsatisfied
demands increase the period of lead time and decrease the backorders. To control
customers' problems and losses, the supplier provides a price discount in backor-
ders during shortages. Also, an order’s policies may result in including some
imperfect products in arrival lots. A discount on price may be offered by the sup-
plier on the out-of-stock products to manage the backorder problems. The study
aims to develop a model with imperfect products by permitting the price discount
in backorders, and the cost of ordering is considered a decision variable. First, it is
assumed that the demand for lead time is followed by a normal distribution and
then stops it and assumed that the first two moments of demand for lead time are
known. Further, the minimax distribution method is used to solve this model, and
a separate algorithm is designed. In this study, two models are discussed with and
without a normally distributed rate of demand. The current study verified with the
help of some numerical examples over various model parameters.

Keywords: Inventory; ordering cost; imperfect product; lead time; backorder

1 Introduction and Literature Review

The occurrence of shortages is an essential factor in the study of inventory control. In markets, several
products of profitable brands such as branded shoes and garments may result in a condition in which the
customer may like to wait for backorders even during shortages. Asides the branded product, the image
of the supplier and showroom attract the customers for backorder. To enhance customer loyalty, the
showroom owners upgrade their customer services, provide some gifts to the customers, and maintain the
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quality of products. But these activities are not free; naturally, some extra costs are there. There should be a
policy to lower the cost of shortages of the annual total required cost and lost sales. Avendor must manage an
optimal lead time length to find a required rate of back-ordering so that the related inventory cost is
minimized. In recent years, researchers have used these characteristics and modified conventional
inventory models to include the execution of lead time concepts.

The conventional inventory theory does not consider the time-importance of money for defective
products during production. Generally, during production, the maximum products will be imperfect, and
due to the cost of opportunity, the time value of money will be there. With this thought, an inventory
model for imperfect products must be elaborated to consider into account the value of time of money.
Buzacott [1] presented an EOQ model in the case of inflation. Many researchers [2–4] followed the
model of Buzacott [1] and introduced models by including the different rates of inflations for all costa,
time-value of money, shortages, finite replenishment, etc. Goyal [5] studied complete literature for
previous perishable inventory models. These surveys let out that decaying inventory models have
attention. Park [6] investigates an economic order quantity as purchasing credit. Vrat et al. [7] presented
that the consumption rate of goods is dependent on the size of stock at the initial cycle time. To study the
impact of inflation and time value money and inflation for a finite time horizon, Pal [8] added a model
with shortages and a linear rate of time-dependent demand. Lio et al. [9] studied a non-deterministic
inventory model where the order’s quantity is known where the decision variable is lead time. The study
of Lio et al. [9] explored by Ben-Daya et al. [10]. Ouyang et al. [11] have taken a systematic survey of
where both the review period and lead time are taken as decision variables. Ouyang et al. [12] elaborated
on an integrated policy where the lead time is controllable. Several studies have been carried to present
few guidelines in different situations with lead time, such as Hoque et al. [13] and Lee [14]. Gallego
et al. [15] presented a newsboy problem, which is distributed free.

It can be observed that due to the unsatisfied demands, some customers may opt for the option of the
backorder, and some may refuse it. The customers can be attracted for backorders by offering the
discount on backorder price. In general, instead of providing a discount on backorder price on stock-out
products, it is better to make the customers more prepared to wait for the wanted products. Pan et al. [16]
analyzed a desegregated policy with a discount on the backorder price. Lee et al. [17] elaborated on a
joint inventory policy with the cost of ordering cost and varying lead time. Salameh et al. [18] analyzed
an inspection and joint policy of lot size. Jaber et al. [19] extended the study of Salameh et al. [18] and
provided a straightforward approach to find the lot size quantity. Chang et al. [20] also generalized the
analysis of Salameh et al. [18]. They supposed that the non-conforming products could be sold at low
cost, rejected, or reworked immediately. Hayek et al. [21] presented a model for imperfect products where
the production rate is finite, and shortages are allowed. In the recent study of Annadurai et al. [22]
considered the product of imperfect quality and presented a policy with set-up cost and varying lead time.
Schwaller [23] developed a policy that expands a model by including the hypothesis that a given
percentage of imperfect products in an arrived lot and a cost of inspection are needed to find and destroy
the imperfect products. Salameh et al. [24] developed a policy for an EOQ model by including the
hypothesis that a known percentage of imperfect products is random. It is also included that after the
100% inspection, the imperfect products could be sold at a lower price in a single batch. Chang [25]
analyzed an EOQ fuzzy model with an imperfect rate of demand.

In the modern era, all production firms try to make perfect quality products, but it is not possible to make
all products of excellent quality for various reasons. Generally, it is considered that all products are of the best
quality, but practically it can be observed that imperfect products being manufactured due to lousy
manufacturing methods. The imperfect products must be destroyed, reworked, or refunded by the
customers. Paknejad et al. [26] elaborated on a value-compromised stock inventory policy with non-
deterministic demand. Sarkar et al. [27] studied an imperfect manufacturing system for imperfect products
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in an inventory model with a decreased selling price. Chung et al. [28] analyzed that retailers may pay some
amount for other stores for business requirements. Many researchers presented inventory models with perfect
and imperfect quality separately. Papachristos et al. [29] analyzed EOQ models for imperfect quality
products. Eroglu et al. [30] elaborated on an EOQ model for imperfect products and shortages. Wee et al.
[31] presented an optimal policy for the products with bad quality and back-ordering. Chang et al. [20]
proposed the solutions for an optimal inventory model for imperfect quality products and shortages.
Chang [25] analyzed a fuzzy EOQ model for lousy quality items. Khan et al. [32] provided a review of
the extended EOQ model for lousy quality items. Hayek et al. [21] presented a lot of size production
policy to repair awful quality products. Goyal et al. [33] and Chan et al. [34] also showed their studies
for imperfect products. Sarkar et al. [27] analyzed a policy for imperfect products with non-deterministic
demand. Lee et al. [35] presented a policy of a model for imperfect products where the quantity of order
and lead time are taken as decision variables. Skouri et al. [36] discussed the supply quality effects on
costs. In this study, they provided an alternative approach where whole supplied batches may be of low
standard and so refused.

In present work, an inventory policy for imperfect products where the discount in backorder price to the
customer is allowed and considered as a decision variable. Here two models are discussed first with demand
(normally distributed) and second with demand (generally distributed). We proposed a computational
algorithm to find the required optimal results. This paper’s blueprint is as follows: In Section 2, notations
and assumptions are described, which are used throughout the study. In Section 3, an integrated inventory
policy is presented for imperfect products with depletion in ordering cost and constant lead time where
the price discount in the backorder is permitted. In Section 3, both the normally distributed model and the
non-distributed model are discussed. In Section 4, the numerical verification of the study is provided.
Finally, conclusions, suggestions, and future scope of the study are presented in Section 5.

2 Notations and Assumptions

2.1 Notations

The following notations are used in the present study.

B: Demand (annual)

W: Quantity of ordering

C0: Actual ordering cost without any investment

C: Per order ordering cost, 0 < C < C0

M: Quantity of ordering

s: Length of lead time

a: Per unit discount in backorder price

b: Per unit insignificant profit

c: Per unit cost of inspection

H: Per year per unit non imperfect cost of holding.

H 0: Per year per unit imperfect cost of holding.

l: Backordered fraction of demand in stock-out period duration, 0 � l < 1

l0: Upper bound (for the ratio of backorder

s: Imperfect rate (per order lot), a random variable, 0 � s < 1

gðsÞ: PDF (probability density function) for s

CMC, 2021, vol.66, no.3 2345



h: Opportunity capital cost (fractional annual)

E(.): Mathematics expectation

zm: zm ¼ maxf0; zg
Z: The lead time demand, has PDF fZ with mean Bs and S.D r

ffiffiffi
s

p

�: The class of the CDF (cumulative density function) fZ with mean DL and S.D r
ffiffiffi
s

p

2.2 Assumptions

The following assumptions are used in the present study.

1. Replenishment is allowed when inventory level goes to the point of re-order.

2. If discount in price is larger than the minor gain i.e., a > b then the provider may not be ready to offer
the discount in backorder price.

3. Inspection is without error.

4. An arrival lot may have some imperfect products. Suppose that the counting of imperfect products in
an arrival lot of size W is considered as a binomial random variables of parameters s (0 � s < 1) and
W. All products of an arrival are checked, and imperfect products are returned back.

5. The lead time (s) contains n components which are not mutually dependent. Assume that ui, vi and wi

are minimum duration, normal duration and per unit time crashing cost for ith component respectively.
Where w1 � w2 � w3; . . . ;� wn.

6. The point of re-order (R) is given as

R = awaited demand during lead time + stock of safety

i.e., R ¼ Bsþ jr
ffiffiffi
s

p
, here j is the factor of safety.

7. Assume that si is the lead time length for component i. Then si can be presented as follows

si ¼
Xn
j¼1

vj �
Xi
j¼1

ðvj � ujÞ;where ði ¼ 1; 2; 3…nÞ

Here the per cycle cost of lead time crashing (U) is as follows

U ¼ wjðsi�1 � sÞ þ
Xi�1

j¼1

wjðvj � ujÞ; si � s � si�1

8. During the period of stock-out, l (ratio of backordering) is a variable and directly proportional to a
(per unit discount in backorder price, provided by supplier). So l ¼ l0a=b, where 0 � l0 < 1 and
0 � a � b.

9. If the size of arrival lot is W with an imperfect rate s, then all products are identified and separated
the imperfect products from the arrival lot W. So, the actual ordered quantity W is decreased by a
quantity W(1 – s).

3 Mathematical Formulation of the Model

It is assumed that the lead time demand, i.e., Z has the probability distribution function fZðzÞ with mean
Bs and S.D r

ffiffiffi
s

p
. The per cycle expected counting of backorders is lEðZ � RÞþ where EðZ � RÞþ is the

shortage against the expected demand after the cycle completion and ðB=W ÞEðZ � RÞþ½alþ bð1� lÞ� is
the annual cost of stock-out. The level of net inventory (expected) before the arrival of lot of order is
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½R� Bsþ ð1� lÞEðZ � RÞþ�. The total expected cost (annual) will consist of imperfect holding, non-
imperfect holding cost, ordering cost, and inspection cost, the cost of lead time crashing and cost of
stock-out. The combined inventory function of cost (TIC) is given as below

TICðW ;R; l; sÞ ¼ B

Wf1� EðsÞg C þ U þ EðZ � RÞþ alþ bð1� lÞf g þ cW
� �

þ H

2
Wf1� EðsÞg þW Eðs2Þ � E2ðsÞð Þ

1� EðsÞ þ E½sð1� sÞ�
1� EðsÞ

� �

þ H R� Bsþ ð1� lÞEðZ � RÞþ� �þ H 0ðW � 1ÞE½sð1� sÞ�
1� EðsÞ

(1)

Here B=Wf1� EðsÞg is the number of expected orders annually.

In this study the ordering cost C is considered as a decision variable. The sum of capital investment cost
and all inventory costs can be minimized by optimizing over W, C, R, l and s with the constraint
0 < C � C0, where C0 is the actual cost of ordering. Now, the capital investment of supplier is hIðCÞ,
where h is the per year opportunity capital cost (fractional annual) and obeys the logarithmic investment
function defined as IðCÞ ¼ m lnðC0=CÞ, 0 < C � C0, where 1/m is the fraction of decrement in C against
the increment in investment (per dollar). Thus from Eq. (1)

TICðW ;C;R; l; sÞ ¼ m lnðC0=CÞ þ B

Wf1� EðsÞg C þ U þ EðZ � RÞþ alþ bð1� lÞf g þ cW
� �

þ H

2
Wf1� EðsÞg þW Eðs2Þ � E2ðsÞð Þ

1� EðsÞ þ E½sð1� sÞ�
1� EðsÞ

� �

þ H R� Bsþ ð1� lÞEðZ � RÞþ� �þ H 0ðW � 1ÞE½sð1� sÞ�
1� EðsÞ

(2)

Furthermore during the period of stock-out, the ratio of backorder (l) is a variable and directly varies to
the price discount in backorder (a) provided by the supplier (per unit). Thus l ¼ l0a=b, where 0 � l0 < 1
and 0 � a � b. So the per unit price discount of backorder (a) is considered as a decision inconstant in place
of ratio of backorder (l). So Eq. (2) will become

TICðW ;C;R; l; sÞ ¼ m lnðC0=CÞ þ B

Wf1� EðsÞg C þ U þ EðZ � RÞþ l0a
2

b
þ b� l0a

� �
þ cW

� �

þ H

2
Wf1� EðsÞg þW Eðs2Þ � E2ðsÞð Þ

1� EðsÞ þ E½sð1� sÞ�
1� EðsÞ

� �

þ H R� Bsþ ð1� l0a
b
ÞEðZ � RÞþ

� �
þ H 0ðW � 1ÞE½sð1� sÞ�

1� EðsÞ

(3)

3.1 Normal Distribution Model

It is assumed that the demand of lead time Z abides normal distribution with p.d.f fZðzÞ, mean DL and
S.D r

ffiffiffi
s

p
. We have R ¼ Bsþ jr

ffiffiffi
s

p
, here j is safety factor and the shortage quantity (expected) at the

completion of cycle is given as EðZ � RÞþ ¼ R1
R
ðz� RÞþfZðzÞdz ¼ r

ffiffiffi
s

p
fðjÞ > 0, where

fðjÞ ¼ f1ðjÞ � jf1� f2ðjÞg. Here f1ðjÞ is standard normal p.d.f and f2ðjÞ is cumulative distribution
function. Hence Eq. (3) can be expressed as
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TICN ðW ;C; j; a; sÞ ¼ m lnðC0=CÞ þ B

Wf1� EðsÞg C þ U þ r
ffiffiffi
s

p
fðjÞ l0a

2

b
þ b� l0a

� �
þ cW

� �

þ H

2
Wf1� EðsÞg þW Eðs2Þ � E2ðsÞð Þ

1� EðsÞ þ E½sð1� sÞ�
1� EðsÞ

� �

þ H R� Bsþ ð1� l0a
b
Þr ffiffiffi

s
p

fðjÞ
� �

þ H 0ðW � 1ÞE½sð1� sÞ�
1� EðsÞ

(4)

For the solution of Eq. (4) we differentiae TICN ðW ;C; j; a; sÞ partially with respect to W, C, j, a and s
respectively. We have

@TICN ðW ;C; j; a; sÞ
@W

¼ �B½C þ U þ ðl0a2=bþ b� l0aÞr
ffiffiffi
s

p
fðjÞ�

W 2f1� EðsÞg (5)

@TICN ðW ;C; j; a; sÞ
@C

¼ � hm
C

þ B

Wf1� EðsÞg (6)

@TICN ðW ;C; j; a; sÞ
@j

¼ Hr
ffiffiffi
s

p þ H 1� l0a
b

	 

þ B

W ð1� EðsÞÞ
l0a

2

b
þ b� l0a

	 
� �
� r

ffiffiffi
s

p
PxðjÞ (7)

where PxðjÞ ¼ Pðx � jÞ, x is standard normal variable.

@TICN ðW ;C; j; a; sÞ
@a

¼ B

W ð1� EðsÞÞ
2l0a
b

� l0 �
Hl0
b

	 
� �
r
ffiffiffi
s

p
fðjÞ (8)

@TICN ðW ;C; j; a; sÞ
@s

¼ B

2W ð1� EðsÞÞ
l0a

2

b
þ b� l0a

	 

rfðjÞffiffiffi

s
p

þ Hr
2
ffiffiffi
s

p jþ ð1� l0a
b
ÞfðjÞ

� �
� B

W ð1� EðsÞÞ
(9)

By checking the sufficient conditions, for fixed ðW ;C; j; aÞ, TICN ðW ;C; j; a; sÞ is concave for
si � s � si�1 as

@TICN ðW ;C; j; a; sÞ
@s

¼� B

4W ð1� EðsÞÞ
l0a

2

b
þ b� l0a

	 

rfðjÞ
s3=2

þ Hr

4s3=2
jþ ð1� l0a

b
ÞfðjÞ

� �
< 0

(10)

So, for fixed ðW ;C; j; aÞ, the total expected minimum cost (annual) will exist at the last of the interval
½si; si�1�. Now, by putting Eq. (6) equal to zero and then solving for C, we have

C ¼ hmW ð1� EðsÞÞ
B

(11)

Now, putting Eq. (6) equal to zero and then solving for a, we have

a ¼ HW ð1� EðsÞÞ
2B

þ b
2
c (12)
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Putting the value of a from Eq. (12) in Eq. (5) and then putting it equal to zero, have

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B½C þ Ufbð4� b0Þ=4gr

ffiffiffi
L

p
fðjÞ

HSðEsÞ½1� ðHl0=2DbÞr
ffiffiffi
L

p
fðjÞ�

s
(13)

where SðEsÞ ¼ ¼ 1� 2E sð Þ þ Eðs2Þ þ ð2H 0=HÞEð1� EðsÞÞ
Now, again putting the value of a from Eq. (12) in Eq. (7) and then setting it equal to zero, we have

PxðjÞ ¼ 4HbBW ð1� EðsÞÞ ð4� l0Þb2B2 þ ð4� 2l0ÞHbBW ð1� EðsÞÞ� �� l0H
2W 2

ð1� EðsÞÞ (14)

To find the values of ðW ;C; j; aÞ, we solve the Eqs. (11) to (14) for the interval ½si; si�1� and denote these
values by ðW �;C�; j�; a�Þ respectively. The following postulation claims that, for fixed interval ½si; si�1� the
point ðW �;C�; j�; a�Þ is the optimal solution for the minimum expected annual cost.

Postulation 1. The Hessian matrix for TICN ðW ;C; j; a; sÞ in interval ½si; si�1� is positive define at the
point ðW �;C�; j�; a�Þ.

The effects of C on the total annual cost (expected) can be examined by finding the partial derivative of

second order of TICN ðW ;C; j; a; sÞ with respect to C and obtaining
@2TICN ðW ;C; j; a; sÞ

@C2
¼ hm=C2 > 0.

Thus TICN ðW ;C; j; a; sÞ is convex in C for fixed ½si; si�1� and ðW ;C; j; aÞ. Since it is not easy to find the
solution forðW ;C; j; a; sÞ, so the following algorithm is used to find the solution

Algorithm 1

Step 1. For every si (i = 0,1, 2, 3…n) perform the following sub steps

(i) Start with ji1 ¼ 0 and Ci1 ¼ C0

(ii) Evaluate Wi by substituting fðji1Þ and Ci1

(iii) With this value of Wi find Ci2 by Eq. (11), ai by Eq. (12) and Pxðji2Þ by Eq. (14)

(iv) Determine ji2 and then fðji2Þ
(v) Repeat sub steps (ii) to (iv) until the values of Wi;Ci; ai and ji are unchanged.

Step 2. Compare Ci with C0 and ai with a0, there will be two cases

(i) If Ci � C0 and ai � a0 then Ci and ai are feasible. Go to Step 3.

(ii) If Ci > C0 and ai > a0 then Ci and ai are infeasible. For a particular si, let Ci ¼ C0 and ai ¼ a0
and find the values of ðWi; ji; aiÞ by iterative methods with the help of Eqs. (12), (13) and (14).
Go to Step 3.

Step 3. For every ðWi;Ci; ji; ai; siÞ determine the corresponding total expected cost (annual) by
TICN ðWi;Ci; ji; ai; siÞ using Eq. (4).

Step 4. M ¼ min TICN ðWi;Ci; ji; ai; siÞ : i ¼ 0; 1; 2; 3;…::; nf g and put TICN ðW �;C�; j�; a�; si�Þ = M.
Then ðW �;C�; j�; a�; si�Þ is the final solution and the optimal reordering point R� ¼ Bs� þ J �r

ffiffiffiffi
s�

p
can be determined.

3.2 Model without Distribution

In real situations the distribution of probability for the demand of lead time is restricted. A good manager
can predict the variance and mean value of the demand of lead time. The actual distribution of probability
may not be known. Due to the absence of required things the anticipated shortage EðZ � RÞþ is not
known and so ðW ;C; j; a; sÞ cannot be determined. To defeat this situation, assumption of normal
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distribution is moderated and assumed that the demand of lead time Z considered with first two moments. For
instance the p.d.f fZ of Z comes from the class� with mean DL and S.D r

ffiffiffi
s

p
. Thus the procedure of minmax

distribution-free is used to resolve this problem i.e., to determine the best p.d.f fZ in� for every ðW ;C; j; a; sÞ
and the total expected cost can be minimized.

To find Min-Max TICðW ;C; j; a; sÞ, the following preposition is required which was presented by
Gallego et al. [6]

EðZ � RÞþ � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2sþ ðR� BsÞ

p
� ðR� BsÞ

n o
(15)

Substituting R ¼ Bsþ jr
ffiffiffi
s

p
in (15), we have

EðZ � RÞþ � 1

2
r
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� j


 �
(16)

Now using Eq. (3) and inequality (16) and taking the factor of safety j as a decision v factor in place of R,
the function of can be presented as

TICU ðW ;C;R; l; sÞ ¼ m lnðC0=CÞ þ B

Wf1� EðsÞg C þ U þ cW½ �

þ H

2
2jr

ffiffiffi
s

p þWf1� EðsÞg þW Eðs2Þ � E2ðsÞð Þ
1� EðsÞ þ E½sð1� sÞ�

1� EðsÞ
� �

þ 1

2

B

Wf1� EðsÞg
l0a

2

b
þ b� l0a

	 

þ H 1� l0a

b

	 
� �
r
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� j


 �
(17)

Here TICU ðW ;C;R;l; sÞ is the t final expected cost for distribution-free and it is the supremum of
ðW ;C;R;l; sÞ. Now we differentiate Eq. (17) with respect to W, C, R, l and s respectively in the interval
½si; si�1�, we have
@TICU ðW ;C;R;l; sÞ

@W
¼ �B C þ U þ 1

2

l0a
2

b
þ b� l0a

	 

r
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� j


 �� �
W 2

1� EðsÞ
� �

þ H

2
f1� EðsÞg þW Eðs2Þ � E2ðsÞð Þ

1� EðsÞ þ H 0 Efsð1� sÞg
1� EðsÞ

� � (18)

@TICU ðW ;C;R; l; sÞ
@C

¼ � hm
C

þ B

Wf1� EðsÞg (19)

@TICU ðW ;C;R;l; sÞ
@j

¼ Hr
ffiffiffi
s

p � 1

2
H 1� l0a

b

	 

þ B

Wf1� EðsÞg
l0a

2

b
þ b� l0a

	 
� �

� ffiffiffi
s

p
r 1� jffiffiffiffiffiffiffiffiffiffiffiffi

1þ j2
p

 ! (20)

@TICU ðW ;C;R;l; sÞ
@a

¼ B

Wf1� EðsÞg
2l0a
b

� l0

	 

� Hl0

b

� �
r
ffiffiffi
s

p ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� j


 �
(21)
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@TICU ðW ;C;R;l; sÞ
@s

¼ 1

4
H 1� l0a

b

	 

þ B

Wf1� EðsÞg
l0a

2

b
þ b� l0a

	 
� �

�
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� j


 �
ffiffiffi
s

p þ Hjr
2
ffiffiffi
s

p � BCi

Wf1� EðsÞg

(22)

By checking the second order partial derivative, the sufficient conditions, for fixed ðW ;C;R; lÞ,
TICU ðW ;C;R; l; sÞ is concave in the interval ½si; si�1� as
@2TICU ðW ;C;R; l; sÞ

@s2
¼� 1

8
H 1� l0a

b

	 

þ B

Wf1� EðsÞg
l0a

2

b
þ b� l0a

	 
� �

�
r

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� j


 �
s3=2

� Hjr

4s3=2
< 0

(23)

So, for fixed ðW ;C; j; aÞ, the total expected minimum cost (annual) will exist at the last of the interval
½si; si�1�. Now, by putting Eq. (19) equal to zero and then solving for C, we have

C ¼ hmWf1� EðsÞg
B

(24)

Similarly solving for a by putting Eq. (21) to zero, we have

C ¼ HWf1� EðsÞg
2B

þ b
2

(25)

Again putting Eq. (25) into Eq. (18) and then putting it to zero, we have

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2B½C þ Ufbð4� b0Þ=8gr

ffiffiffi
s

p ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� jÞ�

HSðEsÞ½1� ðHl0=2BbÞr
ffiffiffi
s

p ð
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
� jÞ�

s
(26)

where SðEsÞ ¼ ¼ 1� 2E sð Þ þ Eðs2Þ þ ð2H 0=HÞEfsð1� EðsÞÞg
Now, putting Eq. (25) into Eq. (20) and then putting it to zero, we have

1� jffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ 1

p ¼ 8HbBWf1� EðsÞg ð4� l0Þb2B2 þ ð4� 2l0ÞHbBWf1� EðsÞg� �
� l0H

2W 2f1� EðsÞg�1

(27)

To find the values of ðW ;C; j; aÞ, we solve the Eqs. (24) to (27) for the interval ½si; si�1� and denote
these values by respectively (we represent these terms by ðW �;C�; j�; a�Þ). The following postulation
claims that, for fixed interval ½si; si�1�, the point ðW �;C�; j�; a�Þ is the optimal solution for the minimum
expected annual cost.

Postulation 3. The Hessian matrix for TICU ðW ;C; j; a; sÞ in interval ½si; si�1� is positive define at the
point ðW �;C�; j�; a�Þ.

The effects of C on the total annual cost (expected) can be examined by finding the partial derivative of

second order of TICUðW ;C; j; a; sÞ with respect to C and obtaining
@2TICN ðW ;C; j; a; sÞ

@C2
¼ hm=C2 > 0.

Thus TICU ðW ;C; j; a; sÞ is convex in C for fixed ½si; si�1� and ðW ;C; j; aÞ. Since it is not easy to find the
solution for ðW ;C; j; a; sÞ, so the Algorithm 2 is executed to determine the solution of ðW �;C�; j�; a�; s�Þ
represented by TICN ðW �;C�; j�; a�; s�Þ.
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Algorithm 2

Step 1. For every si (i = 0,1, 2, 3, …, n) perform the following sub steps

(i) Start with ji1 ¼ 0 and Ci1 ¼ C0

(ii) Evaluate Wi by substituting Ci1 in Eq. (26)

(iii) With this value of Wi find Ci2 by Eq. (24), ai by Eq. (25) and ji2 by Eq. (27)

(iv) Repeat sub steps (ii) to (iii) until the values of Wi;Ci; ai and ji are unchanged.

Step 2. Compare Ci with C0 and ai with a0, there will be two cases

(i) If Ci � C0 and ai � a0 then Ci and ai are feasible. Go to Step 3.

(ii) If Ci > C0 and ai > a0 then Ci and ai are infeasible. For a particular si, let Ci ¼ C0 and ai ¼ a0 and
find the values of ðWi; ji; aiÞ by iterative methods with the help of Eqs. (26), (27) and (25). Go to Step 3.

Step 3. For every ðWi;Ci; ji; ai; siÞ determine the corresponding total expected cost (annual) by
TICU ðW ;C; j; a; sÞ using Eq. (17).

Step 4. M ¼ min TICU ðWi;Ci; ji; ai; siÞ : i ¼ 0; 1; 2; 3;…::; nf g and put TICU ðW �;C�; j�; a�; s�Þ = M.
Then ðW �;C�; j�; a�; s�Þ is the solution and the reorder point R� ¼ Bs� þ J �r

ffiffiffiffi
s�

p
can be obtained.

4 Numerical Verification of the Study

To verify the present study and illustrate the effects of reduction in ordering cost, an inventory product is
considered with the same parameter values as in Pan et al. [16]. B = 600 units (every year),H = 20$/unit/year,
C0 = 200$/order, H 0 = 12$/unit/year, r = 7 units/week, b = 150$/unit lost, c = 1.6$/unit. For the reduction in
ordering cost, we consider h = 0.1 and m = 5800. There are three components of lead time

Example 1. Suppose a normal distribution follows the demand for lead time. The results are presented in
Tab. 1 and Tab. 2 for = 0.2, 0.4, 0.6, 0.8 by using the Algorithm 1. Next, an analysis of optimal solutions is
presented in Tab. 3 and to observe the impacts of reduction in the cost of ordering and discount in backorder
price. The same Tab. 3 includes the results with the fixed cost of ordering and with no discount on the
backorder price. The shavings can be observed by comparing both the cases, which range between
18.52% to 21.45%.

Example 2. In this example the data of Example 1 is considered except the condition that distribution of
probability of the demand of lead time is not known. Using the Algorithm 2, find the results presented in
Tab. 4 and Tab. 5 includes the analyzed optimal values. The comparative results of Tab. 5 reflect that in
case of bad distribution of demand of lead time, it is preferable to invest in reduction of ordering cost and
permit discount in price of backorder to resolve the problem of ordering during the period of shortages.
The shavings can be observed by comparing both the cases, which range between 18.44% to 20%.

Table 1: Data (Lead time)

Component of
lead time (i)

Min. duration
ui (in days)

Normal distribution
vi (in days)

Unit cost of crashing
wi ($ per day)

13 205 65 0.43

23 205 65 1.23

33 165 95 5.03
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With the help of these two examples, it can be observed that the shavings of total expected cost (annual)
are examined by the reduction in ordering cost and discount in price of backorder’. Next, we test the
importance of distribution-free concept in comparison of normal distribution. If we use the solution in
place of ðW �;C�; j�; a�; s�Þ, then TICN ðW �;C�; j�; a�; s�Þ � TICNðW �;C�; j�; a�; s�Þ will be the added cost.

This is hugest quantity for the information p.d.f fZ and the amount is assumed as the additional
information of expected value (AIEV) and its précis is shown in Tab. 6. In practice, the model
(Reduction in ordering cost) with the discount in backorder price is more like the supply chain of real life.

Table 2: Solution process for Example 1 (si in weeks)

l0 si Ui Wi Ci Ri ai TICN ðW �;C�; j�; a�; s�Þ
0.2 7

5
4
3

0
5.2
21.4
56.2

82
95
110
117

66
70
78
90

161
132
112
96

75.65
75.62
75.54
75.44

3912.46
3724.24
3622.56
3738.24

0.4 7
5
4
3

0
5.2
21.4
56.2

84
95
110
117

67
70
78
90

157
128
106
89

75.72
75.54
75.44
75.26

3876.76
3713.12
3588.86
3782.24

0.6 7
5
4
3

0
5.2
21.4
56.2

84
94
111
117

67
70
78
91

154
122
104
86

75.86
75.42
75.38
75.14

3792.25
3624.50
3798.25
3695.24

0.8 7
5
4
3

0
5.2
21.4
56.2

87
94
111
118

68
71
79
91

134
117
101
82

75.92
75.542
75.14
75.08

3052.12
3697.45
3682.23
3586.22

Table 3: Summarized optimal solution for Example 1 (si in weeks)

Analyzed model Model (with ordering cost C and without a) Shavings
(%)

l0 s� W* C* R* a� Cost-1 s� R* W* Cost-2

0.2 4 113 81 115 75.64 3687.52 4 134 78 4521.21 18.44

0.4 4 116 81 109 75.52 3624.25 4 134 75 4473.25 19.00

0.6 4 117 81 107 75.25 3546.84 4 135 72 4422.28 19.80

0.8 4 117 82 104 75.21 3493.28 4 135 69 4365.85 20.00
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5 Conclusion and Future Scope

The occurrence of unsatisfied demands increases the period of lead time and decreases the backorders in
the same ratio. In the case of probabilistic needs, the shortages cannot be ignored. To solve this type of
problem and to cover the losses of customers, a discount in backorders may be offered by the supplier.

Table 4: Solution process for Example 2 (si in weeks)

l0 si Ui Wi Ci Ri ai TICU ðW �;C�; j�; a�; s�Þ
0.2 7

5
4
3

0
5.2
21.4
56.2

82
95
110
117

66
70
78
90

161
132
112
96

75.65
75.62
75.54
75.44

3912.46
3724.24
3622.56
3738.24

0.4 7
5
4
3

0
5.2
21.4
56.2

84
95
110
117

67
70
78
90

157
128
106
89

75.72
75.54
75.44
75.26

3876.76
3713.12
3588.86
3782.24

0.6 7
5
4
3

0
5.2
21.4
56.2

84
94
111
117

67
70
78
91

154
122
104
86

75.86
75.42
75.38
75.14

3792.25
3624.50
3798.25
3695.24

0.8 7
5
4
3

0
5.2
21.4
56.2

87
94
111
118

68
71
79
91

134
117
101
82

75.92
75.542
75.14
75.08

3052.12
3697.45
3682.23
3586.22

Table 5: Summarized optimal solution for Example 2 (Li in weeks)

The analysed model Model with ordering cost C and without a Shavings
(%)

l0 s� W* C* R* a� Cost-1 s� R* W* Cost-2

0.2 4 117 120 93 80.64 4786.52 3 184 70 5692.24 15.91

0.4 4 113 114 81 80.72 4454.35 3 174 65 5350.25 16.74

0.6 3 107 100 86 80.85 4226.84 4 160 72 5079.26 16.78

0.8 3 101 91 74 80.91 3915.28 4 152 63 4808.85 18.58

Table 6: Determination of additional information of expected value (AIEV)

l0 TICN ðW �;C�; j�; a�; s�Þ TICNðQ�;C�; j�; a�; L�Þ AIEV Cost of penalty

0.2 3961.52 3678.85 282.67 1.046

0.4 3838.54 3618.68 219.86 1.052

0.6 3748.12 3538.78 209.74 1.057

0.8 3676.34 3485.42 190.92 1.042
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Also, our inventory policies may not be good for the arriving lots, which include some imperfect products.
This study aims to check the impact of imperfect products on a unified policy by permitting the discount in
the price of backorders and considering the cost of ordering as decision factors. First, it is assumed that the
demand for lead time is followed by a normal distribution and then stops it and assumed that the first two
moments of demand for lead time are known. Further, the minimax distribution method is used to solve
this model, and a separate algorithm is designed. Since the situations of markets are regularly changing,
so the policies of corporate should be managed suitably. If it is possible to decrease the cost of ordering
correctly and the orders fixed well, the per unit time total concern cost will be upgraded. On the other
side, if the seller provides a better discount in the backorder to the purchaser, then the service level will
be improved, and the total expected cost (annual) will be reduced. This study covers the above literature
gaps and is supported by numerical verification.

By the examples, it is observed that a notable quantity of shavings can be attained. It also reflects the
suggestions to invest only when there is a chance of improvement. Computed results tell us the
significant effects of weak quality of supply on the related cost and parameter sensitivity. This study
provides an application in inventory models involving inspections, ordering quantity, and imperfect
products. The presented research further is suitable for more general inventory characteristics in various
real-life problems.
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