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Abstract:Variance is one of the most importantmeasures of descriptive statis-
tics and commonly used for statistical analysis. The traditional second-order
central moment based variance estimation is a widely utilized methodology.
However, traditional variance estimator is highly affected in the presence
of extreme values. So this paper initially, proposes two classes of calibra-
tion estimators based on an adaptation of the estimators recently proposed
by Koyuncu and then presents a new class of L-Moments based calibra-
tion variance estimators utilizing L-Moments characteristics (L-location, L-
scale, L-CV) and auxiliary information. It is demonstrated that the proposed
L-Moments based calibration variance estimators are more efficient than
adapted ones. Artificial data is considered for assessing the performance of
the proposed estimators.We also demonstrated an application related to apple
fruit for purposes of the article. Using artificial and real data sets, percentage
relative efficiency (PRE) of the proposed class of estimators with respect to
adapted ones are calculated. The PRE results indicate to the superiority of the
proposed class over adapted ones in the presence of extreme values. In this
manner, the proposed class of estimators could be applied over an expansive
range of survey sampling whenever auxiliary information is available in the
presence of extreme values.

Keywords: L-moments; variance estimation; calibration approach; stratified
random sampling

1 Introduction

All around, it was considered that the utilization of auxiliary knowledge (information) in
the test review (sampling survey) configuration brings about effective estimators of population
parameters. The literature on test review portrays an incredible assortment of strategies for utiliz-
ing auxiliary information. Ratio technique is the acceptable delineation in this specific situation,
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see [1–5]. In some cases when some population parameters, as the mean, coefficient of variation,
the standard deviation of the auxiliary variable have been known many authors including [6,7]
imagined an enormous number of improved estimators for the population mean of the variate of
interest. This urge researchers to utilize the characteristics of the auxiliary variable (mean, coeffi-
cient of variation, standard deviation, median and quartiles) in order to improve the population
variance estimate of the study variable.

Variations are available in our life. For example, a doctor needs a full comprehension of vari-
eties in the level of human circulatory strain, internal heat level, and heartbeat rate for satisfactory
medicine. A maker needs steady information on the degree of varieties in individuals’ response
to his item to have the option to realize whether to decrease or increment his cost or improve
the nature of his item. An agriculturist requests a sufficient comprehension of the varieties in
climatic factors particularly all around (or from time to time) to have the option to anticipate
when, where, and how to plant his harvest. A lot of circumstances can be experienced where
the population variance estimate of the study variable assumes a huge significance. Consequently,
different authors, for example, [8,9] have given their consideration to the improved estimation of
population variance of the study variable with the utilization of auxiliary information. However,
all these quoted estimators based on traditional second-order central moment based variance
estimation which is highly affected in presence of extreme values. So, in the current article, we
have characterized a class of estimators for the population variance of the study variable based
on L-Moments and calibration approach that is less effective to extreme values.

An experimental investigation utilizing apple production data sets was led, and we got good
outcomes, numerically. The analysis of apple fruit production has great importance in food
sciences. In view of the applications here, this study well provide a significant premise for future
food sciences, medical researches, and many engineering applications.

The rest of the article is arranged in the following major sections. In Section 2, we present
some classes of calibration based variance estimators according to the traditional second-order
central moment. In Section 3, we provide L-Moments characteristics (L-location, L-scale, L-
CV) and, propose a new class of calibration based variance estimators under stratified random
sampling scheme. Results discussion is documented in Section 4. Finally, some conclusions are
given in Section 5.

2 Adapted Classes of Estimators

Consider a finite population Ωa = {va1, va2, . . . , van} of size N. Suppose (Y ,X) be the study
and auxiliary variables associated with Ωa. Let Ωa is stratified into L strata with the hth stratum

containing Nh units, where h = 1, 2, . . . ,L, such that
∑L

h=1Nh = N. A simple random sample

(srs) of size nh is drawn without replacement from the hth stratum such that
∑L

h=1 nh = n.
Further, (xhi,yhi) are the observed values of Y and X in hth stratum, where i= 1, 2, . . . ,Nh and
h= 1, 2, . . . ,L. In light of this stratified sampling design, taking motivation from [1], we present
the first calibrated class of variance estimators as given below

T(SHa) =
L∑
h=1

ΦSH
h s2yh (1)
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where s2yh is the sample variance of the study variable in hth stratum. Further, ΦSH
h are calibrated

weights that are selected in such a way that the sum of the chi-square type distance measure

L∑
h=1

(
ΦSH
h −Wh

)2
ΨhWh

(2)

is minimum, subject to the calibration constraints

L∑
h=1

ΦSH
h = 1 (3)

L∑
h=1

ΦSH
h Δ̂xh =

L∑
h=1

WhΔxh (4)

Note that Wh = Nh
N denoting the traditional stratum weight,

(
Δ̂xh,Δxh

)
are the sample and

population characteristics of the auxiliary variable in hth stratum and, Ψh are appropriately
selected weights that express the form of the estimator. Some suitable choices for Ψh are provided
in Tab. 1.

Minimization of Eq. (2), subject to the calibration constraints set out in Eqs. (3) and (4), the
optimum weights shall be calculated by

ΦSH
h =Wh+

⎡
⎢⎣

(
WhΨhΔ̂xh

)(∑L
h=1WhΨh

)
− (WhΨh)

(∑L
h=1WhΨhΔ̂xh

)
(∑L

h=1WhΨh

) (∑L
h=1WhΨhΔ̂

2
xh

)
−

(∑L
h=1WhΨhΔ̂xh

)2

⎤
⎥⎦×

[
L∑
h=1

Wh

(
Δxh− Δ̂xh

)]

(5)

and thus

T(SHa) =
L∑
h=1

Whs
2
yh+ β̂(SHa)

[
L∑
h=1

Wh

(
Δxh− Δ̂xh

)]
(6)

where

β̂(SHa) =
(∑L

h=1WhΨhΔ̂xhs2yh

)(∑L
h=1WhΨh

)
−

(∑L
h=1WhΨhs2yh

) (∑L
h=1WhΨhΔ̂xh

)
(∑L

h=1WhΨh

) (∑L
h=1WhΨhΔ̂

2
xh

)
−

(∑L
h=1WhΨhΔ̂xh

)2
(7)

The whole class T(SHa) is provided in Tab. 1.

Taking motivation from [10], we adapt the following calibration estimator of the population
variance given by

T(SHb) =
L∑
h=1

ΦPbi
h s2yh (8)
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Table 1: First adapted family of estimators

T(SHa) Ψh Δ̂xh Δxh

T(SHa1) 1 xh Xh

T(SHa2)
1
xh

xh Xh

T(SHa3)
1
sxh

xh Xh

T(SHa4)
1
s2xh

xh Xh

T(SHa5)
1
Cxh

xh Xh

T(SHa6) 1 s2xh S2xh
T(SHa7)

1
xh

s2xh S2xh
T(SHa8)

1
sxh

s2xh S2xh
T(SHa9)

1
s2xh

s2xh S2xh

T(SHa10)
1
Cxh

s2xh S2xh

subject to the following constraints

L∑
h=1

Φ
SHb
h Δ̂xh =

L∑
h=1

WhΔxh (9)

L∑
h=1

Φ
SHb
h s2xh =

L∑
h=1

WhS
2
xh (10)

Minimization of Eq. (8), subject to the calibration constraints set out in Eqs. (9) and (10),
the optimum weights shall be calculated by

Φ
SHb
h =Wh+WhΨhΔ̂xhH1+WhΨhs

2
xhH2

where

H1 =
[∑L

h=1Wh

(
Δxh− Δ̂xh

)][∑L
h=1WhΨhs4xh

]
−

[∑L
h=1Wh

(
S2xh− s2xh

)][∑L
h=1WhΨhΔ̂xhs2xh

]
[∑L

h=1WhΨhs4xh

] [∑L
h=1WhΨhΔ̂

2
xh

]
−

[∑L
h=1WhΨhxhs2xh

]2

H2 =
[∑L

h=1Wh
(
S2xh− s2xh

)][∑L
h=1WhΨhΔ̂

2
xh

]
−

[∑L
h=1Wh

(
Δxh− Δ̂xh

)][∑L
h=1WhΨhs2xh

]
[∑L

h=1WhΨhs4xh

][∑L
h=1WhΨhΔ̂

2
xh

]
−

[∑L
h=1WhΨhΔ̂xhs2xh

]2
and thus

T(SHb) =
L∑
h=1

Whs
2
yh+ b̂1(SHb)

L∑
h=1

Wh

(
Δxh− Δ̂xh

)
+ b̂2(SHb)

L∑
h=1

Wh

(
S2xh− s2xh

)
(11)
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where

b̂1(SHb) =
[∑L

h=1WhΨhΔ̂xhs2yh

][∑L
h=1WhΨhs4xh

]
−

[∑L
h=1WhΨhs2xhs

2
yh

][∑L
h=1WhΨhΔ̂xhs2xh

]
[∑L

h=1WhΨhs4xh

][∑L
h=1WhΨhΔ̂

2
xh

]
−

[∑L
h=1WhΨhΔ̂xhs2xh

]2

b̂2(SHb) =
[∑L

h=1WhΨhs2xhs
2
yh

][∑L
h=1WhΨhΔ̂

2
xh

]
−

[∑L
h=1WhΨhΔ̂xhs2ymh

] [∑L
h=1WhΨhΔ̂xhs2xh

]
[∑L

h=1WhΨhs4xh

] [∑L
h=1WhΨhΔ̂

2
xh

]
−

[∑L
h=1WhΨhΔ̂xhs2xh

]2
The whole class T(SHb) is provided in Tab. 2.

Table 2: Second adapted family of estimators

T(SHb) Ψh Δ̂xh Δxh

T(SHb1) 1 xh Xh

T(SHb2)
1
xh

xh Xh

T(SHb3)
1
sxh

xh Xh

T(SHb4)
1
s2xh

xh Xh

T(SHb5)
1
Cxh

xh Xh

T(SHb6) 1 Ĉxh Cxh

T(SHb7)
1
xh

Ĉxh Cxh

T(SHb8)
1
sxh

Ĉxh Cxh

T(SHb9)
1
s2xh

Ĉxh Cxh

T(SHb10)
1
Cxh

Ĉxh Cxh

3 L-Moments and Propose Class of Estimators

The occurrence of extreme values, for example, in agriculture engineering, hydrology, food
sciences. Meteorology and climatology, among others, observed nowadays in various parts of the
world may influence adversely on human culture. Therefore, it is essential to appraise the accurate
measurements of the numerical data in the presence of extreme values. As we have depicted
before that variance is one of the significant measures of data description. Variance estimation
dependent on traditional moments which is profoundly influenced by extreme values. Hence, a
quantifiable procedure is necessitated that will catch the extreme values in the assessment, however
less influenced by their quality. An elective strategy that has the vital ability to settle this issue is
the L-Moments. Because L-Moments are more robust than traditional moments in the presence
of extreme values [11].
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The general form of the population L-Moments for the auxiliary variable with respect to hth
stratum are as given below

λ1xh=E (X1:1)

λ2xh= (2)−1E (X2:2−X1:2)

λ3xh= (3)−1E (X3:3− 2X2:3+X1:3)

λ4xh= (4)−1E (X4:4− 3X3:4+ 3X2:4+X1:4)

Corresponding to these, we can write the sample based L-Moments such as λ̂1xh, λ̂2xh, λ̂3xh,

λ̂4xh, based on sample observations, respectively. Similarly, we can write the general form of the
L-Moments for study variable by replacing x with y. For more details regarding L-Moments,
interested readers may refer to [12]. Some notations for upcoming proposed work in light of
L-Moments with respect to hth stratum are

Xh = λ1xh, xh = λ̂1xh are the population and sample means (L-location) of auxiliary variable
based on L-Moments.

Yh = λ1yh, yh= λ̂1yh are the population and sample means (L-location) of study variable based
on L-Moments.

S2xmh = λ22xh, s
2
xmh = λ̂22xh are the population and sample variance of auxiliary variable based

on L-Moments.

S2ymh = λ22yh, s
2
ymh = λ̂22yh are the population and sample variance of study variable based on

L-Moments.

Sxmh = λ2xh, sxmh = λ̂2xh are the population and sample standard deviation (L-scale) of
auxiliary variable based on L-Moments.

Symh = λ2yh, symh = λ̂2yh are the population and sample standard deviation (L-scale) of study
variable based on L-Moments.

Cxmh= λ2xh
λ1xh

, Ĉxmh= λ̂2xh
λ̂1xh

are the population and sample coefficient of variation (L-CV) of the

auxiliary variable based on L-Moments.

Cymh= λ2yh
λ1yh

, Ĉymh= λ̂2yh

λ̂1yh
are the population and sample coefficient of variation (L-CV) of the

study variable based on L-Moments.

The calibration estimation is a method of adjusting the original design weights to expand
the accuracy of estimates by utilizing auxiliary information. Calibration based estimators utilize
calibrated/adjusted weights that are planned to minimize a given measure of distance to the
original weights while fulfilling a group of constraints with the auxiliary information. The authors
in [13] are pioneer of calibration estimation. After that much of the work has been done in this
filed such as [1,10,14]. These results motivated us to define the following calibrated estimator of
variance as

T(Pai) =
L∑
h=1

ΦPai
h s2ymh (12)
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where s2ymh is the sample variance of the study variable in hth stratum. Further, ΦPai
h are calibrated

weights that are selected in such a way that the sum of the chi-square type distance measure

L∑
h=1

(
ΦPai
h −Wh

)2
ΨhWh

(13)

is minimum, subject to the calibration constraints

L∑
h=1

ΦPai
h = 1 (14)

L∑
h=1

ΦPai
h Δ̂xmh=

L∑
h=1

WhΔxmh (15)

Note that Wh = Nh
N denotes the traditional stratum weight,

(
Δ̂xmh,Δxmh

)
are the sample

and population characteristics of the auxiliary variable in hth stratum and, Ψh are appropriately
selected weights that express the form of the estimator. In most situations, Ψh = 1. Minimization
of Eq. (13), subject to the calibration constraints set out in Eqs. (14) and (15), the optimum
weights shall be calculated by

ΦPai
h =Wh+

⎡
⎢⎣

(
WhΨhΔ̂xmh

) (∑L
h=1WhΨh

)
− (WhΨh)

(∑L
h=1WhΨhΔ̂xmh

)
(∑L

h=1WhΨh

)(∑L
h=1WhΨhΔ̂

2
xmh

)
−

(∑L
h=1WhΨhΔ̂xmh

)2

⎤
⎥⎦

×
[

L∑
h=1

Wh

(
Δxmh− Δ̂xmh

)]
(16)

and thus

T(Pai) =
L∑
h=1

Whs
2
ymh+ β̂(Pai)

[
L∑
h=1

Wh

(
Δxmh− Δ̂xmh

)]
(17)

where

β̂(Pai) =
(∑L

h=1WhΨhΔ̂xmhs2yh

)(∑L
h=1WhΨh

)
−

(∑L
h=1WhΨhs2ymh

)(∑L
h=1WhΨhΔ̂xmh

)
(∑L

h=1WhΨh

) (∑L
h=1WhΨhΔ̂

2
xmh

)
−

(∑L
h=1WhΨhΔ̂xmh

)2 (18)

The whole class T(Pai) is provided in Tab. 3.
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Table 3: Propose class of estimators

T(Pai) Ψh Δ̂xmh Δxmh

T(Pa1) 1 xh Xh

T(Pa2)
1
xh

xh Xh

T(Pa3)
1

sxmh
xh Xh

T(Pa4)
1

s2xmh
xh Xh

T(Pa5)
1

Cxmh
xh Xh

T(Pa6) 1 s2xmh S2xmh

T(Pa7)
1
xh

s2xmh S2xmh

T(Pa8)
1

sxmh
s2xmh S2xmh

T(Pa9)
1

s2xmh
s2xmh S2xmh

T(Pa10)
1

Cxmh
s2xmh S2xmh

4 Results and Discussion

In this section, the performance of the suggested estimators is investigated through a simula-
tion study.

4.1 Simulation Design
The simulation design is organized as follows: A random variable Xh and random variable Yh

are defined as follows:

Yh= v+RXh+ εXp
h , for hth stratum (19)

Figure 1: Pop-1, h= 1
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where

X1 ∼Gamma (2.6, 3.8) , for h= 1

X2 ∼Gamma (2.0, 3.1) , for h= 2

X3 ∼Gamma (1.5, 2.7) , for h= 3

X4 ∼Gamma (2.9, 3.1) , for h= 4

Figure 2: Pop-1, h= 2

Figure 3: Pop-1, h= 3

Further, we assume that p = 1.6, v = 5,R = 2 and ε has a standard normal distribution in
Eq. (19). We consider the population of size N= 1000 for hth stratum. The overall sample of size
nh = 400 is selected for purposes of the article. Using equal allocation of a sample of size 100 is
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selected from hth stratum. A scatter plot for each stratum is provided (see Figs. 1–4). These figures
clearly show the presence of extreme values and hence suitable for our proposed estimators.

Figure 4: Pop-1, h= 4

Table 4: PRE of proposed family with respect to T(SHa) for artificial data

φ T(SHa1) T(SHa2) T(SHa3) T(SHa4) T(SHa5)

T(Pa1) 4029.244 4023.545 4053.027 4040.295 32026.127
T(Pa2) 3908.058 3902.530 3931.126 3918.776 31062.389
T(Pa3) 3947.085 3941.502 3970.384 3957.911 31373.455
T(Pa4) 3861.196 3855.735 3883.988 3871.787 30690.034
T(Pa5) 4045.904 4040.181 4069.786 4057.001 32158.017
T(Pa6) 2715.207 2711.366 2731.234 2722.654 21581.018
T(Pa7) 2679.445 2675.656 2695.261 2686.794 21297.875
T(Pa8) 2704.947 2701.122 2720.914 2712.366 21500.474
T(Pa9) 2678.691 2674.902 2694.502 2686.038 21291.040
T(Pa10) 2704.851 2701.025 2720.817 2712.270 21499.319

φ T(SHa6) T(SHa7) T(SHa8) T(SHa9) T(SHa10)

T(Pa1) 6016.945 6035.710 5932.726 5970.067 5953.911
T(Pa2) 5835.975 5854.176 5754.290 5790.507 5774.838
T(Pa3) 5894.255 5912.638 5811.754 5848.333 5832.507
T(Pa4) 5765.996 5783.979 5685.291 5721.073 5705.592
T(Pa5) 6041.823 6060.666 5957.257 5994.752 5978.530
T(Pa6) 4054.668 4067.314 3997.916 4023.079 4012.192
T(Pa7) 4001.265 4013.744 3945.260 3970.092 3959.348
T(Pa8) 4039.348 4051.946 3982.810 4007.878 3997.032
T(Pa9) 4000.139 4012.614 3944.150 3968.974 3958.234
T(Pa10) 4039.204 4051.801 3982.668 4007.735 3996.889



CMC, 2021, vol.66, no.3 3023

The steps of simulation study can be carried out as:

Step-1: A sample of size nh is selected through SRSWOR from the hth stratum.

Step-2: Using Step-1, we find the value of variance estimate (say) φ̂ = α̂1, α̂2, β̂, where

α̂1 =T(SHa1),T(SHa2),T(SHa3),T(SHa4),T(SHa5),T(SHa6),T(SHa7),T(SHa8),T(SHa9),T(SHa10),

α̂2 =T(SHb1),T(SHb2),T(SHb3),T(SHb4),T(SHb5),T(SHb6),T(SHb7),T(SHb8),T(SHb9),T(SHb10),

β̂ =T(Pa1),T(Pa2),T(Pa3),T(Pa4),T(Pa5),T(Pa6),T(Pa7),T(Pa8),T(Pa9),T(Pa10).

Step-3: The Step-1 and Step-2 are replicated with K = 5000 times. Thus, φ̂1, φ̂2, . . . , φ̂k are
obtained.

Step-4: The mean square error (MSE) of the estimators is computed as MSE
(
φ̂

)
=

1
K

∑k
i=1

(
φ̂ − φ̂

)2

i
.

Step-5: The PRE is computed as PRE
(
φ̂

)
= MSE(α̂1,α̂2)

MSE
(
β̂

) ×100 and the results are provided in

Tabs. 4 and 5.

Table 5: PRE of proposed family with respect to T(SHb) for artificial data

φ T(SHb1) T(SHb2) T(SHb3) T(SHb4) T(SHb5)

T(Pa1) 3904.298 3867.100 3861.923 3848.535 3964.176
T(Pa2) 3786.870 3750.791 3745.770 3732.784 3844.947
T(Pa3) 3824.687 3788.248 3783.176 3770.061 3883.344
T(Pa4) 3741.462 3705.815 3700.855 3688.025 3798.842
T(Pa5) 3920.442 3883.090 3877.892 3864.448 3980.567
T(Pa6) 2631.009 2605.942 2602.454 2593.432 2671.359
T(Pa7) 2596.357 2571.620 2568.177 2559.274 2636.175
T(Pa8) 2621.068 2596.096 2592.620 2583.633 2661.266
T(Pa9) 2595.626 2570.896 2567.454 2558.554 2635.433
T(Pa10) 2620.974 2596.003 2592.528 2583.540 2661.171

φ T(SHb6) T(SHb7) T(SHb8) T(SHb9) T(SHb10)

T(Pa1) 2267.264 2312.984 2282.897 2314.902 2265.450
T(Pa2) 2199.072 2243.417 2214.235 2245.278 2197.313
T(Pa3) 2221.033 2265.820 2236.347 2267.700 2219.256
T(Pa4) 2172.703 2216.516 2187.684 2218.355 2170.965
T(Pa5) 2276.638 2322.547 2292.336 2324.474 2274.817
T(Pa6) 1527.852 1558.662 1538.387 1559.955 1526.630
T(Pa7) 1507.729 1538.133 1518.125 1539.409 1506.523
T(Pa8) 1522.079 1552.773 1532.574 1554.061 1520.862
T(Pa9) 1507.305 1537.700 1517.698 1538.976 1506.099
T(Pa10) 1522.025 1552.717 1532.520 1554.005 1520.808
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4.2 Real Life Data
To illustrate the behavior of the proposed estimators in this article, we consider a data set of

apple fruit, used by [15], where

X= number of apple trees (1 unit= 100 trees),

Y= level of apple production (1 unit= 100 tonnes).

It is worth mentioning that we consider 477 villages in 4 strata, respectively (like 1: Mar-
marian, 2: Agean, 3: Mediterranean, and 4: Central Anatolia) in 1999. We draw a scatter plot
for each stratum (see Figs. 5–8). The scatter plot of each stratum representing extreme values.
Some important characteristics of the data are provided in Tab. 6. The PRE of the estimators is
calculated using defined five steps and available in Tabs. 7 and 8.

Figure 5: Pop-2, h= 1

Figure 6: Pop-2, h= 2
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Figure 7: Pop-2, h= 3

Figure 8: Pop-2, h= 4

However, this investigation can assist with revealing insight into the value of the proposed
class. Actually, it gives a reasonable sign that more mind-boggling options than the traditional
moments based variance estimators can be helpful when the data is contaminated with extreme
values. Because each PRE result of the proposed estimator is greater than 100. Which means
that the proposed class beats the adapted ones thoroughly. Based on real and artificial numerical
illustration, we feel confident that the same could hold in other contexts of food sciences and
agricultural engineering.
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Table 6: Characteristics of apple data

Stratum-I Stratum-II Stratum-III Stratum-IV

N1 = 106 N2 = 106 N3 = 94 N4 = 171
X1 = 24375.59 X2 = 27421.7 X3 = 72409.95 X4 = 74364.68
Y1 = 1536.774 Y2 = 2212.594 Y3 = 9384.309 Y4 = 5588.012
Sx1 = 49189.08 Sx2 = 57460.61 Sx3 = 160757.3 Sx4 = 285603.1
Sy1 = 6425.087 Sy2 = 11551.53 Sy3 = 29907.48 Sy4 = 28643.42
Cx1 = 2.017964 Cx2 = 2.095443 Cx3 = 2.2201 Cx4 = 3.840575
Cy1 = 4.180894 Cy2 = 5.220807 Cy3 = 3.186967 Cy4 = 5.12587
n1 = 29 n2 = 29 n3 = 26 n4 = 47
Sxm1 = 16920.78 Sxm2 = 20100.85 Sxm3 = 54805.62 Sxm4 = 60429.63
Sym1 = 1289.806 Sym2 = 1923.234 Sym3 = 8149.858 Sym4 = 5003.631
Cxm1 = 0.6941691 Cxm2 = 0.733027 Cxm3 = 0.7568798 Cxm4 = 0: 812612
Cym1 = 0.8392945 Cym2 = 0.8692213 Cym3 = 0.8684559 Cym4 = 0.8954225

Table 7: PRE of proposed family with respect to T(SHa) for real life data

φ T(SHa1) T(SHa2) T(SHa3) T(SHa4) T(SHa5)

T(Pa1) 60745.99 58011.08 46175.25 52506.23 344276122.52
T(Pa2) 60323.30 57607.42 45853.95 52140.87 341880544.34
T(Pa3) 59891.91 57195.45 45526.03 51768.00 339435644.33
T(Pa4) 47586.12 45443.70 36171.95 41131.40 269692941.07
T(Pa5) 61314.87 58554.36 46607.68 52997.95 347500261.41
T(Pa6) 20766.74 19831.78 15785.56 17949.88 117694922.83
T(Pa7) 20393.02 19474.88 15501.48 17626.85 115576839.25
T(Pa8) 20312.28 19397.78 15440.11 17557.06 115119246.35
T(Pa9) 16618.67 15870.46 12632.46 14364.46 94185815.80
T(Pa10) 20947.46 20004.37 15922.94 18106.09 118719145.99

φ T(SHa6) T(SHa7) T(SHa8) T(SHa9) T(SHa10)

T(Pa1) 696700.06 677047.85 606140.97 640044.69 655240.63
T(Pa2) 691852.21 672336.75 601923.25 635591.07 650681.26
T(Pa3) 686904.55 667528.65 597618.70 631045.75 646028.03
T(Pa4) 545768.58 530373.77 474827.99 501386.89 513290.82
T(Pa5) 703224.65 683388.39 611817.47 646038.70 661376.94
T(Pa6) 238175.28 231456.93 207216.56 218806.96 224001.87
T(Pa7) 233888.98 227291.54 203487.41 214869.22 219970.65
T(Pa8) 232962.97 226391.65 202681.76 214018.51 219099.74
T(Pa9) 190600.68 185224.30 165825.85 175101.11 179258.36
T(Pa10) 240247.96 233471.15 209019.83 220711.09 225951.21
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Table 8: PRE of proposed family with respect to T(SHb) for real life data

φ T(SHb1) T(SHb2) T(SHb3) T(SHb4) T(SHb5)

T(Pa1) 221326.6 244744.1 247714.1 371784.6 220241.8
T(Pa2) 219786.6 243041.1 245990.4 369197.6 218709.3
T(Pa3) 218214.8 241303.0 244231.3 366557.3 217145.3
T(Pa4) 173378.9 191723.3 194049.9 291242.0 172529.2
T(Pa5) 223399.4 247036.1 250033.9 375266.3 222304.4
T(Pa6) 75663.17 83668.69 84684.04 127099.02 75292.32
T(Pa7) 74301.50 82162.96 83160.03 124811.70 73937.33
T(Pa8) 74007.33 81837.66 82830.78 124317.54 73644.59
T(Pa9) 60549.74 66956.20 67768.73 101711.48 60252.97
T(Pa10) 76321.61 84396.81 85420.99 128205.08 75947.54

φ T(SHb6) T(SHb7) T(SHb8) T(SHb9) T(SHb10)

T(Pa1) 191172.6 214522.1 215987.1 280450.4 190268.8
T(Pa2) 189842.4 213029.4 214484.2 278498.9 188944.8
T(Pa3) 188484.8 211505.9 212950.4 276507.3 187593.6
T(Pa4) 149757.4 168048.5 169196.2 219694.3 149049.4
T(Pa5) 192963.0 216531.1 218009.8 283076.8 192050.6
T(Pa6) 65354.66 73336.95 73837.79 95875.33 65045.66
T(Pa7) 64178.51 72017.15 72508.97 94149.92 63875.08
T(Pa8) 63924.42 71732.02 72221.89 93777.16 63622.18
T(Pa9) 52300.32 58688.18 59088.97 76724.60 52053.04
T(Pa10) 65923.40 73975.16 74480.35 96709.67 65611.71

5 Conclusions

Usually, in test reviews, it uses traditional moments-based techniques to obtain improved
designs and more accurate estimators. However, in the presence of extreme values, traditional
moments-based techniques may provide misleading results. In this paper, a calibration approach
is utilized and developed two adapted families of estimators. Then a new class of L-Moments
based variance estimators has been proposed which provides a better estimate of variance in
the presence of extreme values. The performance of adapted and proposed estimators has
been assessed through artificial and apple fruit data set. Based on satisfactory results, we
recommend survey practitioners utilize the proposed class of variance estimators in variou
environmental researches.
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