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Abstract: In this paper, we analyzed squeezing in the information entropy, quan-
tum state fidelity, and qubit-qubit entanglement in a time-dependent system. The
proposed model consists of two qubits that interact with a two-mode electromag-
netic field under the dissipation effect. An analytical solution is calculated by con-
sidering the constants for the equations of motion. The effect of the general form
of the time-dependent for qubit-field coupling and the dissipation term on the tem-
poral behavior of the qubit-qubit entanglement, quantum state fidelity, entropy,
and variance squeezing are examined. It is shown that the intervals of entangle-
ment caused more squeezing for the case of considering the time-dependent para-
meters. Additionally, the entanglement between the qubits became more
substantial for the case of time dependence. Fidelity and negativity rapidly
reached the minimum values by increasing the effect of the dissipation parameter.
Moreover, the amount of variance squeezing and the amplitude of the oscillations
decreased considerably when the time dependence increased, but the fluctuations
increased substantially. We show the relation between entropy and variance
squeezing in the presence and absence of the dissipation parameter during the
interaction period. This result enables new parameters to control the degree of
entanglement and squeezing, especially in quantum communication.

Keywords: Entropy squeezing; variance squeezing; qubit-qubit entanglement;
moving qubits

1 Introduction

The principles of nonlocal correlation or entanglement mainly appear when two systems interact with
each other; one is a pure state, and the other is mixed. Researchers utilize the von Neumann entropy to
measure optimally the nonlocal correlation when a system reaches a pure condition. In this case, the
density operator takes the form of a separate product state [1,2]. The linear entropy for the two
symmetrical 2-level systems that interact with a 2-photon system developed in a squeezed condition is
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demonstrated in [3]. Additionally, a model consisting of a 2-three-level atom is investigated in [4], where the
atom-atom entanglement decreases by increasing the multiplicity of the photons in the absence of a time-
dependent coupling effect. A generalized model is considered to study the impact of the linear entropy of
two SC-qubits with a linear system, which interacts with a thermal field [5]. Furthermore, a nonlocal
correlation between subsystems has been studied. The results demonstrated that the effect of the nonlinear
terms is greater than that of the linear terms. Recently, the measurement of the nonlocal correlation has
achieved several purposes in the area of quantum information and computation, but the previous research
considering the time independence to explain this phenomenon is limited.

The connection between the AES (atomic entropy squeezing) and entanglement has different
applications in quantum computing and produces different observable physical phenomena [6–9]. The
performance of the nonlocal correlation highly resembles the performance of the absorption coefficient
and the GP. The AES for a 2LA coupling to fluctuating electromagnetic fields with a reflecting boundary
was studied. The results showed that having the border influences the AES. Additionally, the relationship
of the entanglement and FES (field entropy squeezing) of an effective 2-level system in the presence of a
Stark Shift FES was studied [10]. The work has been extended to scrutinize the impact of cavity damping
on the dynamics of the FES and the entanglement of the dissipation of two-photon JCM for a Kerr-like
medium [11]. Recently, the relationship of the AES and entanglement between two two-level atoms and
the N-level quantum system has been explored [12]. It was shown that the classical field has a potential
role in the evolution of AES and nonlocal correlation. It was found that there is a strong correlation
between the spin-orbit interaction and the strength of the AES, which depends on the initial state and the
number of squeezed components [13]. Additionally, the relation between the atomic Fisher information
and AES of the quantum system for an N-level atom that interacted with a two-level atom was also
determined [14]. Experimental results in quantum physics cannot be explained using a closed system
(hermitian Hamiltonian). Therefore, the results can be convincingly explained in cases of phenomena
observed experimentally in the case of the open system (non-hermitian Hamiltonian) [15]. The non-
hermitian generalization of Hamiltonian (NHH) can be used as a paradigm to define an open quantum
system [15]. Then, we get the complex eigenvalues of energy. The aforementioned NHHs are valid as a
rough and apparent description of an open quantum system, e.g., radioactive decay processes [16].
Therefore, this article explores the relation between the AES and linear entropy as a quantifier of the
entanglement and purity of two qubits interacting with a two-mode electromagnetic field.

The contents of this article are arranged as follows: We present the general solution based on solving the
differential equations which result from the Schrödinger equation in Section 2. The numerical results for the
entropy and variance squeezing in Section 3, and the state fidelity and qubit-qubit entanglement phenomena
will be discussed in Section 4. Finally, the results are presented in Section 5.

2 Analytical Solution

A time-dependent parameter and the atomic dissipation effect are added in our proposed model.
Therefore, the Hamiltonian of the system takes the following form:

Ĥ

�h
¼ 1

2

X2
j¼1

�icr̂ðjÞþ r̂ðjÞ� þ �jðtÞr̂ðjÞz þ 2xjðtÞ âþj âj
� �

þ
X2
j¼1

gðtÞ â1â2 r̂
ðjÞ
þ þ âþ1 â

þ
2 r̂ðjÞ�

� �
; (1)

The operators r̂ðjÞþ ðr̂ðjÞ� Þ and r̂ðjÞz ðj ¼ 1; 2Þ represent the Pauli matrices and fulfill the relationships of

commutation ½r̂ðjÞz ; r̂ðjÞ� � ¼ �2r̂ðjÞ� and ½r̂ðiÞþ ; r̂ðjÞ� � ¼ r̂ðjÞz dij. While âþj and âj represent the operators of

creation and annihilation for the cavity mode. ½X̂ ; X̂þ� ¼ Î , X ¼ â1 and â2, x1; 2 and �j, j ¼ 1; 2 are the
frequencies of the two modes and the atoms, respectively, while gðtÞ is the time-dependent coupling
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between the field and the atoms and c is the atomic corresponding decay rate. The behavior of the
Hamiltonian (1) can be explained by calculating the wave function and solving the differential equations
which are obtained from the Schrödinger formula. However, the dynamical operators can be calculated by
the Heisenberg relationship. Therefore, the statistical results can be analyzed by employing these
operators. The dynamical operator can be written as:

i
dâþ1 â1
dt

¼ gðtÞ
X2
j¼1

â1â2r̂
ðjÞ
þ � âþ1 â

þ
2 r̂ðjÞ� ;

i
dâþ2 â2
dt

¼ gðtÞ
X2
j¼1

â1â2r̂
ðjÞ
þ � âþ1 â

þ
2 r̂ðjÞ�

�i
d r̂ðjÞz
dt

¼ 2 gðtÞ â1â2 r̂
ðjÞ
þ � âþ1 â

þ
2 r̂ðjÞ�

� �
; j ¼ 1; 2

(2)

Therefore, the constants of motion are given by:

N̂j ¼ âþj âj þ
r̂ð1Þz þ r̂ð2Þz

2
; j ¼ 1; 2 (3)

By applying Eq. (3) to the Hamiltonian system (1), we can obtain:

Ĥ

�h
¼ xaðtÞN̂1 þ xbðtÞN̂2 þ R̂� ic

4
Î ; (4)

where, Î is the identity operator and R̂ is given by:

R̂ ¼
X2
j¼1

djðtÞ
2

r̂ðjÞz þ
X2
j¼1

gðtÞ â1â2 r̂
ðjÞ
þ þ â?1â

?
2 r̂

ðjÞ
�

� �
; (5)

where d1 and d2 are the detuning parameters defined by:

djðtÞ ¼ �jðtÞ � ic
2
� x1ðtÞ � x2ðtÞ: (6)

Here, we consider that �jðtÞ >> c [17]. We assume that the primary conditions of the atoms and the
field are:

j�ð0Þi ¼ je; ei � jbi; (7)

where je; ei represents an excited state and jbi is the pair coherent state [18], which is given by:

jbi ¼
X1
m¼0

Qm jmi; Qm ¼ M
bmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m!ðmþ qÞ!p ; M�2 ¼
X1
m¼0

jbj2m
m!ðmþ qÞ! (8)

The general solution j�ðtÞi for t > 0 takes the form,

j�ðtÞi ¼ je; eijAi þ je; gijBi þ jg; eijCi þ jg; gijDi (9)
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and

jAi ¼
X1
m¼0

y1ðm; tÞjmþ q; mi

jBi ¼
X1
m¼0

y2ðm; tÞjmþ qþ 1; mi

jCi ¼
X1
m¼0

y3ðm; tÞjmþ qþ 1; mi

jDi ¼
X1
m¼0

y4ðm; tÞjmþ qþ 2; mi

where yjðm; tÞ are the solution of the following system of differential equations,

d

dt
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2
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3
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4

2
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2
664
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where ujðmÞ ¼ gðtÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmþ qþ jÞðmþ jÞp
j ¼ 1; 2

By specifying xaðtÞ ¼ x0ðat þ t2bþ fÞ; xbðtÞ ¼ xf ðat þ t2bþ fÞ; gðtÞ ¼ gðat þ t2bþ fÞ; the
time dependence of the coefficients yjðm; tÞ; j ¼ 1; 2; 3; 4 takes the following form:

y1ðm; tÞ ¼Qm expð�ct
4

Þ ðl1ðmÞÞ2 � 2u21ðmÞð1� cos l1ðmÞeðtÞÞ
ðl1ðmÞÞ2

" #
;

y2ðm; tÞ ¼ � Qm expð�ct
4

Þ du1ðmÞð1� cos l1ðmÞeðtÞÞ
ðl1ðmÞÞ2

þ i
u1ðmÞ sin l1ðmÞeðtÞ

l1ðmÞ

" #
;

y3ðm; tÞ ¼ � y2ðm; tÞ;

y4ðm; tÞ ¼Qm expð�ct
4

Þ 2u1ðnÞu2ðmÞðcos l1ðmÞeðtÞ � 1Þ
ðl1ðmÞÞ2

;

(11)

where

ljðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdj2 þ ð3� jÞl23ðnÞ

q
; j ¼ 1; 2

l3ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1ðmÞÞ2 þ ðu2ðmÞÞ2

q
; eðtÞ ¼ at2

2
þ bt3

3
þ ft

(12)

Next, the density matrix will be calculated according to various statistical quantities, and therefore,
the physical phenomena can be explained. For the case where two atoms are identical and the trace is
taken, we have:

q̂AðtÞ ¼ TrF j�ðtÞih�ðtÞj; (13)

q̂AðjÞ ¼ TrAðiÞq̂atomsðtÞ; i; j ¼ 1; 2

q̂ðiÞ ¼ q11jþihþj þ q12jþih�j þ q21j�ihþj þ q22j�ih�j; (14)

Section 3 discusses the dynamical behavior of the entropy and variance squeezing based on the single-
atom density matrix (14).
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3 Entropy and Variance Squeezing

The uncertainty principle, which was first introduced by Heisenberg, shows the limits of the error in the
conventional measurements of non-commutating operators for measuring quantum states [19–23]. In
general, the uncertainty principle for any two Hermitian operators Â and B̂ yields the relationship
½Â; B̂� ¼ iĈ. Therefore, the Heisenberg uncertainty inequality is given by:

hðDÂÞ2ihðDB̂Þ2i � 1

4
jhĈij2; (15)

where hðDÂÞ2i ¼ ðhÂ2i � hÂi2Þ: As an important application for a Pauli operator Ŝx; Ŝy and Ŝz, which
describe the way a two-level atom interacts with the electromagnetic field, such that ½r̂x; r̂y� ¼ ir̂z; can be
used to define the uncertainty as Dr̂xDr̂y � 1

2jhr̂zij: The variance squeezing (VS) for component Dr̂a is
squeezed if r̂a fulfills the requirement of Eq. (15),

V ðr̂aÞ ¼ Dr̂a �
ffiffiffiffiffiffiffiffiffiffiffi
hr̂zi
2

����
����

s !
, 0;

Dr̂a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ah i2 � r̂2a

� �q
; a ¼ x or y:

(16)

Using the next formula, the AES can be written as:

Eðr̂aÞ ¼ dHðr̂aÞ � 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dHðr̂zÞ

p < 0; a ¼ x or y (17)

where Hðr̂aÞ is the atomic operators’ Shannon information entropies r̂x, r̂y and r̂z:

By applying the previous condition, the behavior of the ES and VS related to the uncertainty principle
can be examined.

When d ¼ c ¼ 0 and a ¼ b ¼ 0; f ¼ 1; it is obvious that the AES becomes feasible for Eðr̂xÞ several
times (at regions of collapses for the atomic population inversion [9]) and does not occur when Eðr̂yÞ. It is
noteworthy that the collapse periods have a direct relationship to the phenomenon of maximally entangled
between parts of the system. These periods have applications in quantum computing [24] and quantum
algorithm [25]. In addition, higher values of squeezing are found at the center of the collapse points, as
seen in Fig. 1a. When considering the effect of the linear time dependence d ¼ c ¼ 0 and
a ¼ 1; b ¼ 0; f ¼ 1, the intervals of squeezing for the function Eðr̂xÞ decrease to small regions, and
more oscillations of the AES function are built-up (see Fig. 1b). Fig. 1c shows that the maximum values
of squeezing increase, and more fluctuations in the squeezing function occur by employing the parameter
b. Additionally, the fluctuations of the oscillations increase substantially by adapting d ¼ c ¼ 0 and
a ¼ 1; b ¼ 0:5; f ¼ 1: For the off-resonance case d ¼ 4g and c ¼ 0; a ¼ 1; b ¼ 0:5; f ¼ 1; the
squeezing in the previous cases deteriorates after adding the detuning term in the system. The squeezing
phenomenon exists in a few regions, as shown in Fig. 1d. After inserting the dissipation term into the
interaction cavity, the squeezing periods appear after the start of the interaction and decrease quickly until
disappearing, as shown in Fig. 5a. Therefore, the entropy squeezing is affected by changing both the
detuning and the dissipation parameters. Generally, the squeezing disappears.

Fig. 2a shows the VS when d ¼ c ¼ 0 and a ¼ b ¼ 0; f ¼ 1. It is shown that the squeezing occurs in
many intervals, but the regions of the VS are less than those of the ES. On the contrary, when considering the
time dependence d ¼ c ¼ 0 and a ¼ 1, b ¼ 0, f ¼ 1, the squeezing increases compared with the beforehand
case and exists in many intervals (where the higher value of squeezing occurs at �0:08) as shown in Fig. 2b.
When d ¼ c ¼ 0 and a ¼ 1; b ¼ 0:5; f ¼ 1; the squeezing decreases, and the maximum values reduce to
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�0:06. Additionally, the fluctuations increase, with a slight shift in V ðr̂xÞ after the onset of the considered
time, as shown in Fig. 2c. Finally, the amount of squeezing and the amplitude of the oscillations decrease
considerably when the interaction time increases, but the fluctuations increase substantially, as shown in
Fig. 2d. When we take into account the dissipation term, the squeezing periods are only fully realized in
one period at the start of the interaction. The maximum values of the V ðr̂xÞ and V ðr̂yÞ functions increase,
and the amplitude of the vibrations decreases rapidly, as evident in Fig. 5d.

4 State Fidelity and Qubit-Qubit Entanglement

Next, we will analyze the degree of entanglement by employing fidelity since it is the primary criterion
for measuring the entanglement of the system components [26–29]. Recently it has been found that the
fidelity can measure the entanglement between parts of a system. It also plays an important role in
quantum information in terms of estimating purity periods and partial entanglement [30]. The state
fidelity of the present system can be written as

nðtÞ ¼ �ð0Þj�ðtÞh ij j2 (18)

First, the case d ¼ c ¼ 0 and a ¼ b ¼ 0; f ¼ 1 is considered. It is evident that the function nðtÞ varies
between 0 and 1, where fidelity starts from the pure state (nðtÞ ¼ 1) followed by partial entanglement. Then,
the function nðtÞ is fixed (stability) for a period, after which the function nðtÞ has periodically oscillations

Figure 1: The dynamics of the AES components EX and EYas a function of the scaled time τ, with the atoms
primarily in excited states, and the fields are prepared in a pair coherent states with γ = 0 and fixed parameter
b = 5. (a) δ = 0, α = β = 0, φ = 1, (b) δ = 0, α = 1, β = 0, φ = 1, (c) δ = 0, α = 1, β = 0.5, φ = 1, and (d) δ = 4 g,
α = 1, β = 0.5, φ = 1
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between the lower and higher values, as shown in Fig. 3a. For the case d ¼ c ¼ 0 and a ¼ 1, b ¼ 0 and
f ¼ 1 (velocity case), the oscillations increase, and the periods of the fixed intervals decrease. The results
indicate that there are rapid fluctuations after adding the time dependence to the interaction cavity.
Therefore, there is a strong entanglement between the parts of the system, as confirmed by Fig. 3b. While
the oscillations of the function nðtÞ increase sharply, the maximum values decrease, and the smaller
values gradually increase after taking into account the acceleration case d ¼ c ¼ 0 and a ¼ 1, b ¼ 0:5,
and f ¼ 1, as shown in Fig. 1c. After adding the detuning to the interaction cavity d ¼ 4g and c ¼ 0;
a ¼ 1, b ¼ 0:5 and f ¼ 1, the function nðtÞ approaches the pure state compared to that of the previous
cases, and the lower values increase. Thus, the entanglement decreases as expected from the effect of the
detuning parameter, as shown in Fig. 3d. After the dissipation term is inserted into the interaction cavity,
the maximum values decrease gradually over time. We also note that the correlation between parts of the
system decreases until the function nðtÞ reaches the stability state, as is evident in Fig. 5c.

The quantum entanglement between the subsystems is useful in quantum computing and quantum
information processing [31,32]. Using the Peres-Horodecki criterion, qubit-qubit entanglement is attained
from the evolution of negativity [33,34]. In the following function

iA ; jB qTA tð Þ�� �� kA; lB� � ¼ kA ; jB qSCAB
tð Þ�� �� iA; lB� �

; (19)

where qTA tð Þ represents the partial transpose of q
AB

tð Þ ¼ trfj�ðtÞih�ðtÞjg in terms of the first atom A.
Therefore, negativity takes the following form [35,36]

Figure 2: Variance squeezing as a function of the scaled time τ when the other conditions are the same as
those in Fig. 1
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NðqÞ ¼ max 0;�2
X
m

vmðtÞ
( )

; (20)

The sum is taken over each negative eigenvalue of qTA tð Þ. The entanglement of the solid-state system
takes place if N qð Þ is positive. The state N qð Þ ¼ 1 corresponds to the maximal entanglement, whereas
NAB ¼ 0 indicates that the atoms A and B are not related.

Using those same conditions of the previous sections, we first exclude the dissipation term, detuning,
and time dependence for the velocity and acceleration. It is observed that the negativity oscillates
periodically between 0and the maximum value, and the N qð Þ function reaches zero before and after the
points t ¼ np

� [5]. The results indicate that negativity reaches zero during the periods when the fidelity is
fixed by comparing Figs. 3a and 4a. When adding the time dependence to the interaction cavity, we find
that the fluctuations increase, and the oscillations become fast between the maximum and minimum
values. This finding indicates that the entanglement between the qubits becomes significant for the case
of time dependence (see Fig. 4b). The speed of the oscillations increases sharply, the smallest values
increase, and the maximum values decrease after considering the acceleration, as seen in Fig. 4c. After
adding the detuning to the interaction, the entanglement between the qubits decreases, and the center of
the oscillations becomes approximately 0.25. After taking into account the dissipation term, negativity
decreases gradually until it reaches its lowest value after some time as shown in Fig. 5d. In contrast, the
way correlations behave can be greatly influenced by the selection of time dependence, especially the
acceleration state and the parameter of dissipation term.

Figure 3: Fidelity as a function of the scaled time τ the other conditions are the same as those in Fig. 1
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Figure 4: Negativity N(ρ) for the parameters utilized of Fig. 1

Figure 5: (a) Entropy squeezing, (b) variance squeezing, (c) fidelity and (d) negativity N(ρ) for the
parameters δ = 0, α = β = 0, φ = 1, γ = 0.01
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5 Conclusion

The effect of time dependence on a system containing two qubits within a cavity consisting of a pair of
amplifier-type of electromagnetic fields in the presence of dissipation effect was studied. The constants of
motion were calculated, and the general solution was obtained by solving the Schrödinger differential
equations. The total density matrix was written via the wave function and was used to calculate and
analyze the influence of the time dependence and the dissipation parameter on the entropy and variance
squeezing. The results show that there was a superstructure between the atomic state fidelity and
negativity based on a comparison of Figs. 3 and 4. Moreover, the degree of entanglement was
proportional to the value of the time-dependent parameters. It was found that the degree of entanglement
decreased after taking into account the detuning and time-dependent parameters. The dissipation
parameter due to the interacting qubits and the electromagnetic field can be controlled, which helps
improve and alleviate the correlation between the qubits during the interaction period. The ES and VS
were examined. Furthermore, the squeezing phenomena occurred in the quadratures Eðr̂xÞ; V ðr̂xÞ and
rarely occurred in the quadratures Eðr̂yÞ; V ðr̂yÞ. The squeezing periods appeared after the start of the
interaction and decreased quickly until disappearing after adding the dissipation term into the
interaction cavity.
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