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Abstract:An inverse problem in practical scientific investigations is the process
of computing unknown parameters from a set of observations where the
observations are only recorded indirectly, such as monitoring and controlling
quality in industrial process control. Linear regression can be thought of as
linear inverse problems. In other words, the procedure of unknown estima-
tion parameters can be expressed as an inverse problem. However, maximum
likelihood provides an unstable solution, and the problem becomes more com-
plicated if unknown parameters are estimated from different samples. Hence,
researchers search for better estimates. We study two joint censoring schemes
for lifetime products in industrial process monitoring. In practice, this type
of data can be collected in fields such as the medical industry and industrial
engineering. In this study, statistical inference for the Chen lifetime products is
considered and analyzed to estimate underlying parameters. Maximum likeli-
hood and Bayes’ rule are both studied for model parameters. The asymptotic
distributionof maximum likelihood estimators and the empirical distributions
obtained with Markov chain Monte Carlo algorithms are utilized to build the
interval estimators. Theoretical results using tables and figures are adopted
through simulation studies and verified in an analysis of the lifetime data. We
briefly describe the performance of developed methods.

Keywords: Chen distributions; progressive type-II censoring; maximum like-
lihood; mean posterior; Bayesian estimation; MCMC

1 Introduction

Several types of monitoring data are available. One is the censoring scheme, which is a pop-
ular problem in life testing experiments. The oldest censoring projects are the so-called “type-I”,
and the other is “type-II”. In practice, there are usually two random variables, i.e., time and
the number of failures of items. This strategy of censoring projects shows how the examiner
imagines the experiment based on a predetermined time. A random number of units is accounted
for the first type-I of a censoring scheme, which means it may be assumed the exact time of
stopping experiment. While the predetermined number of failure units and a random time in the
type-II censoring scheme. In these two types of censoring schemes, companies cannot be removed
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from an experiment until the final stage or the number of units fail. This process allows the
detection of some units that are defective after running the experiment. The mixture of these
types of censoring schemes is the so-called hybrid censoring system [1]. To remove elements from
the test at any stage of the trial is known as a progressive censoring scheme [2]. The topic of
progressive censoring has developed in different scientific fields, and has attracted much attention
in recent years. Several authors have studied this type of data [3,4]. There are different types
of progressive censoring schemes. The idea of the progressive type-I censoring scheme is to test
time τ and determine the number m of failure units, and suppose n independent elements are
tested under the censoring scheme r = {r1, r2, . . . , rm}. The failure unit is removed at min(τ ,Tm),
where Tm is the stopping time of the number of failure units m. After each failure time (Ti, ri),
survival units are removed from the trial, where i = 1, 2, . . . ,J and J ≤ m. In a progressive type-
II censoring project, the number m of failure units and r = {r1, r2, . . . , rm} are determined, and
we suppose n independent units are examined and the experiment is stopped at Tm. After each
failure time (Ti, ri), survival units are removed from the test, where i = 1, 2, . . . ,m. The lifetime
products come from different production lines [5,6]. The exact likelihood inference using bootstrap
algorithms was studied [7], as was the type-II progressive censoring scheme [8,9] and two censoring
schemes [10]. Consider manufactured products that come from two production lines η1 and η2
under the same conditions. Assume two independent samples S1 and S2 are chosen from these
lines for experimental testing. The experiment runs under some consideration of time and cost,
and the experimenter reports that it terminates after a predetermined time or number of failures.
This is called a joint censoring scheme [11]. The procedure of joint progressive type-II censoring
was described previously, where the sample size S1 +S2 is taken as S1 from line η1 and S2 from
line η2. The integers m and r= {r1, r2, . . . , rm} are determined to satisfy the form S1+S2+

∑m
i=1 ri.

The element r1 is removed immediately from the experiment. We observe the first failure unit,
say T1 and has line W1 from line η1 or η2, say (t1,ω1). Also, the number r2 is removed from
the test after we examine the second failure unit, say T2 and has line W2, say (t2,ω2). The
experiment continues until (tm,ωm) is observed, where wi takes the value 1 or 0, depending on
lines η1 or η2. The result of the previous examination t= {(t1,ω1), (t2,ω2), . . . , (tm,ωm)} is called
the joint progressive type-II censoring procedure. The concept of a balanced joint progressive
type-II censoring scheme was considered by [12] for analytically more straightforward estimators
than the other type of progressive censoring procedure. Several authors have discussed statistical
inference using different distributions, such as two exponential distributions [12]. The procedure of
lifetime using Weibull distributions was investigated [13]. The interpretation of the balanced joint
progressive type-II censoring procedure starts with samples of size S1+S2, taken from production
lines η1 and η2, respectively. Integers m and the integers r = {r1, r2, . . . , rm} are determined to

satisfy m + ∑m−1
i=1 ri < min(S1,S2). The failure times and types are observed, say (ti,ωi), i =

1, 2, . . . ,m. Fig. 1 shows the main idea of a joint progressive type-II censoring scheme. This study
discusses the properties of Chen lifetime estimation procedures under a joint progressive type-II
censoring scheme. The Chen lifetime distribution with two parameters was introduced by [14].
This study’s objective is to build a balanced joint progressive type-II censoring procedure for
the Chen lifetime distribution and parameter estimation with the maximum likelihood estimator
(MLE) and Bayes methods. The developed methods are also used to measure the same Chen
lifetime products’ relative merits under the same conditions. Estimators are evaluated through
numerical data analysis and assessed through a simulation study. The remainder of this article
is organized as follows. The main principle and model formulation are given in Section 2. Point
MLE and interval estimators are introduced in Section 3. Section 4 discusses Bayes point and
credible intervals. Estimators under numerical examples and simulation studies are discussed
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in Section 5. We summarize some comments which are extracted from numerical methods
in Section 6.

Figure 1: Example of the structure of joint progressive type-II censoring procedures

2 Model Formulation

Assume two production lines, and a random sample of size S1 + S2, where S1 comes from
line η1 and S2 from line η2. The integers m and r = {r1, r2, . . . , rm} are determined to satisfy

m+∑m−1
i=1 ri < min(S1,S2). Suppose t1 is observed from some units that are taken from line η1,

then, r1 survival component is removed from S1 and r1 + 1 survival component is removed from
S2 when the second failure t2 is observed if t2 is chosen from the line η2. In that case, r2 + 1
survival component is removed from S1 − r1−1, and r2 survival component is removed from the
sample S2 − r2−1. The test continues in this manner until the mth failure tm is observed. If the

final failure is from line η1, then the survival components S1−m−∑m−1
i=1 ri are removed from η1,

and S2 − (m− 1)−∑m−1
i=1 ri are removed from η2. If the final failure belongs to line η2, then the

survival units S1−(m−1)−∑m−1
i=1 ri are removed from η1, and S2−m−∑m−1

i=1 ri are removed from
η2. Fig. 1 shows the scheme of joint balanced progressive type-II censoring. The observed data
t = {(t1,ω1), (t2,ω2), . . . , (tm,ωm)} are called balanced joint progressive type-II censoring samples.
Under consideration that S1 comes from the line η1, and it has independent and identically
distribution of lifetimes {X1,X2, . . . ,Xs1} and S2 comes from the line η2, and ithas independent
and identically distribution of lifetimes {X∗

1 ,X
∗
2 , . . . ,X

∗
s2}. These samples distributed with popu-

lations have probability density (PDFs) and cumulative distribution (CDFs) functions are given,
respectively, by the functions fj(.) and Fj (.), j= 1, 2. Then the balanced joint progressive type-II
sample t= {t1, t2, . . . , tm} is taken from {X1,X2, . . . ,Xm1,X

∗
1 ,X

∗
2 , . . . ,X

∗
m2
}, where m=m1 +m2, m1

is the number of failed units from line η1, and m2 is the number of failed units from line η2. The
observed balanced joint progressive type-II censoring sample is t= {(t1,ω1) , (t2,ω2) , . . . , (tm,ωm)} ,
where ωi takes the value 1 or 0, depends on line η1 or η2, m1 =

∑m
i=1 ωi and m2 =

∑m
i=1(1−ωi).

The joint likelihood rule under two progressive type-II censoring samples t= {(t1,ω1), (t2,ω2),
. . . , (tm,ωm)} is

L (t)∝ (R1 (tm))I1 (R2 (tm))I2 (h1 (tm))m1 (h2 (tm))1−m1

×
m−1∏
i=1

(h1 (ti))
mi (h2 (ti))

1−mi (R1 (ti)R2 (ti))ri+1 , (1)
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where

Ij = Sj− (m− 1)−
m−1∑
i=1

ri, j= 1, 2, (2)

and Rj(.) and hj(.) are reliability and hazard rate functions, respectively. Under the described
model, the probability density functions (PDFs) and cumulative distribution functions (CDFs) of
the tested unit and chosen from two lines η1 and η2 have Chen lifetime distributions with PDFs
given by

fj (t)= αjλjtαj−1 exp
{
tαj
}
exp

{
λj
(
1− exp

{
tαj
})}

, t> 0,
(
αjλj

)
> 0. (3)

Reliability and hazard rate functions, respectively, are given by

Fj (t)= 1− exp
{
λj
(
1− exp

{
tαj
})}

, (4)

Sj (t)= exp
{
λj
(
1− exp

{
tαj
})}

, (5)

and

hj (t)= αjλjtαj−1 exp
{
tαj
}
, (6)

where αj and λj are the respective shape and scale parameters of the Chen distribution. Hence,
a bathtub-shaped failure rate is noticed when αj ≥1, and an exponential form can be obtained
when αj = 1 [15]. Fig. 2d plots the properties of the Chen distribution. It is clearly seen that h (t)
provides a bathtub-shaped curve when α = 1.

(a) (b)

(c) (d)

Figure 2: Examples of the scaled Chen distribution for different values of α with λ= 1: (a) Chen
distribution; (b) Cumulative distribution; (c) Reliability function; and (d) Hazard rate function
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3 Maximum Likelihood Estimation

The joint likelihood function in Eq. (1) without a normalized constant under a Chen lifetime
distribution is defined as

L (α1,α2,λ1,λ2|t)

∝ (α1,λ1)m1 (α2,λ2)m2 exp

{
(α1 − 1)

m∑
i=1

ωi log ti+
m∑
i=1

ωit
α1
i +λ1

m−1∑
i=1

(ri+ 1)
(
1− exp

{
tα1i
})

+λ1I1
(
1− exp

{
tα1i
})+ (α2− 1)

m−1∑
i=1

(1−ωi) log ti+
m∑
i=1

(1−ωi)t
α2
i +λ2

m−1∑
i=1

(ri+ 1)

× (1− exp
{
tα2i
})+λ2I2

(
1− exp

{
tα2i
})}

. (7)

After taking the logarithms of both sides, the joint likelihood function in Eq. (7) becomes

� (α1,α2,λ1,λ2|t)

∝m1 (α1,λ1)+m2 (α2,λ2)+ (α1 − 1)
m∑
i=1

ωi log ti+
m∑
i=1

ωit
α1
i +λ1

m−1∑
i=1

(ri+ 1)
(
1− exp

{
tα1i
})

+λ1I1
(
1− exp

{
tα1i
})+ (α2 − 1)

m−1∑
i=1

(1−ωi) log ti+
m∑
i=1

(1−ωi)t
α2
i

+λ2

m−1∑
i=1

(ri+ 1)
(
1− exp

{
tα2i
})+λ2I2

(
1− exp

{
tα2i
})

, (8)

which is used to represent the point and interval estimators of underlying parameters.

3.1 MLEs
The likelihood rule is obtained from Eq. (8) by taking partial derivatives with respect to the

parameter vectors (α1,α2,λ1,λ2) and equating to zero.

The equation
∂� (α1,α2,λ1,λ2|t)

∂λ1
= 0 is reduced to

λ1 = m1∑m−1
i=1 (ri+ 1)

(
exp

{
tα1i
}− 1

)+ I1
(
exp

{
tα1m
}− 1

) . (9)

The equation
∂� (α1,α2,λ1,λ2|t)

∂λ2
= 0 is reduced to

λ2 =
m2∑m−1

i=1 (ri+ 1)
(
exp

{
tα2i
}− 1

)+ I2
(
exp

{
tα2m
}− 1

) . (10)
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The equation
∂� (α1,α2,λ1,λ2|t)

∂α1
= 0 is reduced to

m1

α1
+

m∑
i=1

ωi(1+ tα1i ) log ti−λ1

m−1∑
i=1

(ri+ 1)tα1i log ti exp
{
tα1i
}−λ1I1tα1m log tm exp

{
tα1m
}= 0. (11)

The equation
∂� (α1,α2,λ1,λ2|t)

∂α2
= 0 is reduced to

m2

α2
+

m∑
i=1

(1−ωi)(1+ tα2i ) log ti−λ2

m−1∑
i=1

(ri+ 1)tα2i log ti exp
{
tα2i
}−λ2I2t

α2
m log tm exp

{
tα2m
}= 0. (12)

After replacing λ1 in (9)–(11) and λ2 in (10)–(12), we obtain

m1

α1
+

m∑
i=1

ωi(1+ tα1i ) log ti−m1

∑m−1
i=1 (ri+ 1)tα1i log ti exp

{
tα1i
}− I1t

α1
m log tm exp

{
tα1m
}∑m−1

i=1 (ri+ 1)(exp
{
tα1i
}− 1)− I1(exp

{
tα1m
}− 1)

= 0, (13)

and

m2

α2
+

m∑
i=1

(1−ωi)(1+ tα2i ) log ti−m2

∑m−1
i=1 (ri+ 1)tα2i log ti exp

{
tα2i
}− I2t

α2
m log tm exp

{
tα2m
}∑m−1

i=1 (ri+ 1)(exp
{
tα2i
}− 1)− I2(exp

{
tα2m
}− 1)

= 0. (14)

Nonlinear Eqs. (13) and (14) with only one parameter can be solved using any iteration method
such as Newton-Raphson or fixed point iteration. The parameter estimates α̂1 and α̂2 are obtained,
and parameter estimates λ̂1 and λ̂2 are obtained from Eqs. (9) and (10) after replacing α1 and α2
by α̂1 and α̂2. If m1 = 0 or m2 = 0, then the parameter values α1 and λ1 or α2 and λ2 cannot be
obtained [16].

3.2 Asymptotic Confidence Interval
To obtain interval estimates of unknown parameters requires the computation of the Fisher

information matrix, which is defined by the negative expectation of the partial second derivative
of the log-likelihood rule using (8),∑

=−E

(
∂2� (α1,α2,λ1,λ2|t)

∂θi∂θj

)
, (15)

where θ = (α1,α2,λ1,λ2). In practice, the Fisher information matrix with a large sample can be
approximated using the approximate information matrix,∑̂

0
=−

(
∂2� (α1,α2,λ1,λ2|t)

∂θi∂θj

)∣∣∣∣
θ̂=
(
α̂1,λ̂1,α̂2,λ̂2

)
.

(16)

Therefore, under the rule of asymptotic normality distribution of computing θ̂ = (α̂1, α̂2, λ̂1, λ̂2)
with mean (α1,α2,λ1,λ2) and variance covariance matrix

∑̂
0. The approximate confidence inter-

vals for model parameters are defined as

α̂1∓Zγ

√
e11,

α̂2∓Zγ

√
e22,
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λ̂1∓Zγ

√
e33, (17)

λ̂2∓Zγ

√
e44,

where the diagonal of the approximate variance-covariance matrix
∑̂

0 represents the values e11,
e22, e33, and e44, and Zγ has a standard normal distribution with right-tail probability γ . The
other variances are obtained using the partial derivative of the log-likelihood rule in Eq. (8),

∂2� (α1,α2,λ1,λ2|t)
∂λ2j

=−mj

λ2j

, j= 1, 2, (18)

∂2� (α1,α2,λ1,λ2|t)
∂α2

1

=−m1

α2
1

+
m∑
i=1

ωit
α1
i log2 ti−λ1

m−1∑
i=1

(ri+ 1)tα1i
(
1+ tα1i

)
log2 ti exp

{
tα1i
}

−λ1I1tα1m
(
1+ tα1i

)
log2 tm exp

{
tα1m
}
, (19)

∂2� (α1,α2,λ1,λ2|t)
∂α2

2

=−m1

α2
2

+
m∑
i=1

(1−ωi) t
α2
i log2 ti−λ2

m−1∑
i=1

(ri+ 1)tα2i
(
1+ tα2i

)
log2 ti exp

{
tα2i
}

−λ2I2tα2m
(
1+ tα2i

)
log2 tm exp

{
tα2m
}
, (20)

∂2� (α1,α2,λ1,λ2|t)
∂α1∂λ1

= ∂2� (α1,α2,λ1,λ2|t)
∂λ1∂α1

=−
m−1∑
i=1

(ri+ 1) tα1i log ti exp
{
tα1i
}

− I1tα1m log tm exp
{
tα1m
}
, (21)

∂2� (α1,α2,λ1,λ2|t)
∂α2∂λ2

= ∂2� (α1,α2,λ1,λ2|t)
∂λ2∂α2

=−
m−1∑
i=1

(ri+ 1) tα2i log ti exp
{
tα2i
}

− I2t
α2
m log tm exp

{
tα2m
}
, (22)

and

∂2� (α1,α2,λ1,λ2|t)
∂α1∂λ2

= ∂2� (α1,α2,λ1,λ2|t)
∂λ2∂α1

= ∂2� (α1,α2,λ1,λ2|t)
∂α2∂λ1

= ∂2� (α1,α2,λ1,λ2|t)
∂λ1∂α2

= ∂2� (α1,α2,λ1,λ2|t)
∂λ1∂λ2

= ∂2� (α1,α2,λ1,λ2|t)
∂λ2∂λ1

= ∂2� (α1,α2,λ1,λ2|t)
∂α1∂α2

= ∂2� (α1,α2,λ1,λ2|t)
∂α2∂α1

. (23)
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4 Bayes with MCMC Methods

We need to use Bayes approaches with the MCMC method because of the dimensionality of
the model. Bayes estimation requires prior information about the model parameters, which are
considered in this study to be independent gamma priors. Then, the available prior information is
modeled as

θi
distributed as−−−−−−−−→ gamma (ai,bi) , (ai,bi > 0) , i= 1, 2, 3, 4, (24)

where θ = (α1,α2,λ1,λ2). The joint distribution of prior densities is formed by

P∗ (θi)=
4∏
i=1

baii
Γ(ai)

θ
ai−1
i exp{−biθi}. (25)

Following this, the information about the model parameters is obtained from the prior information
and the data, which provides the posterior distribution as

P (α1,α2,λ1,λ2|t)= P∗ (α1,α2,λ1,λ2|t)L (α1,α2,λ1,λ2|t)∫
α1

∫
α2

∫
λ1

∫
λ2
P∗ (α1,α2,λ1,λ2|t)L (α1,α2,λ1,λ2|t)dλ2dλ1dα2dα1

, (26)

where the denominator of the fraction can be removed since it contains no information about θ .
The proportional form from posterior distribution (26) with prior distribution (25) and likelihood
rule (7) is defined as

P (α1,α2,λ1,λ2|t)∝ α
m1+a1−1
1 α

m2+a2−1
2 λ

m1+a3−1
1 λ

m2+a4−1
2

× exp

{
−b1a1− b3λ1 + (α1− 1)

m∑
i=1

ωi log ti+
m∑
i=1

ωit
α1
i

+λ1

m−1∑
i=1

(ri+ 1)
(
1− exp

{
tα1i
})+λ1I1

(
1− exp

{
tα1i
})

− b2a2− b4λ2+ (α2− 1)
m∑
i=1

(1−ωi) log ti+
m∑
i=1

(1−ωi) t
α2
i

+ λ2

m−1∑
i=1

(ri+ 1)
(
1− exp

{
tα2i
})+λ2I2

(
1− exp

{
tα2i
})}

. (27)

The Bayes estimators are computed with respect to the loss rule; then the Bayes method
of any function π (α1,α2,λ1,λ2) under the rule of the squared-error loss (SEL) function is
presented by

π̂ (α1,α2,λ1,λ2)=EP (π (α1,α2,λ1,λ2))=
∫

α1

∫
α2

∫
λ1

∫
λ2

P (α1,α2,λ1,λ2|t)dλ2dλ1dα2dα1. (28)

The integrals in Eqs. (26) and (28) generally cannot be obtained in explicit form, but can
be solved by approximation, such as numerical integration or Lindley approximation. One of the
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most frequently applied methods is the MCMC method, which is used to compute point and
interval estimates as follows. The full conditional distributions can be described as

P1 (α1|t,λ1)∝ α
m1+a1−1
1 exp

{
−b1a1+α1

m∑
i=1

ωi log ti+
m∑
i=1

ωit
α1
i

−λ1

m−1∑
i=1

(ri+ 1) exp
{
tα1i
}−λ1I1 exp

{
tα1i
}}

, (29)

P2 (α2|t,λ2)∝ α
m2+a2−1
2 exp

{
−b2a2+α2

m∑
i=1

ωi log ti+
m∑
i=1

(1−ωi) t
α2
i

−λ2

m−1∑
i=1

(ri+ 1) exp
{
tα2i
}−λ2I2 exp

{
tα2i
}}

, (30)

P3 (λ1|t,α1)∝ λ
m1+a3−1
1 exp

{
−b3λ1+λ1

m−1∑
i=1

(ri+ 1)
(
1− exp

{
tα1i
})

+λ1I1
(
1− exp

{
tα1i
})}

, (31)

and

P4 (λ2|t,α2)∝ λ
m2+a4−1
2 exp

{
−b4λ2+λ2

m−1∑
i=1

(ri+ 1)
(
1− exp

{
tα2i
})

+λ2I2
(
1− exp

{
tα2i
})}

. (32)

Then the full conditional distributions are reduced to gamma distributions represented by
Eqs. (31) and (32), and two distributions similar to normal distributions, shown as Eqs. (29) and
(30). The MCMC methods have the forms of Gibbs algorithms, and the more general Metropolis-
Hastings (MH) under Gibbs algorithms [17]. The following algorithm describes MCMC methods.

Step 1: Start with an initial vector θ̂ = (α̂1, α̂2, λ̂1, λ̂2) and indicator ρ = 1.

Step 2: The values λ
(ρ)
j , j = 1,2 are generated from conditional distributions presented by

Eqs. (31) and (32), respectively.

Step 3: The values α
(ρ)
j , j = 1,2 are generated from conditional distributions presented by

Eqs. (29) and (30) with the MH algorithm using normal proposal distributions with mean α
(ρ−1)
j

and variance obtained from approximate information matrix, respectively.

Step 4: The vector θ (ρ) = (α
(ρ)

1 ,α(ρ)

2 ,λ(ρ)

1 ,λ(ρ)

2 ) is recorded; hence, ρ = ρ + 1.

Step 5: Steps (2) to (4) are repeated S times.
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Table 1: MVs and MSEs of estimators of Chen distributions with θ = (1.0, 1.5, 0.2, 0.1)

(S1,S2) (m, r) Pa. θ ML BMCMC prior 0 BMCMC prior 1

MVs MSEs MVs MSEs MVs MSEs

(30, 25)
(
15,

(
10, 0(13)

))
α1 1.311 0.325 1.352 0.321 1.241 0.241
α2 1.712 0.521 1.715 0.511 1.669 0.400
λ1 0.311 0.100 0.321 0.099 0.217 0.074
λ2 0.201 0.081 0.198 0.079 0.147 0.054(

15,
(
0(7), 10, 0(6))) α1 1.332 0.375 1.372 0.381 1.255 0.262

α2 1.732 0.566 1.754 0.559 1.670 0.412
λ1 0.325 0.113 0.344 0.110 0.242 0.076
λ2 0.231 0.092 0.210 0.088 0.177 0.073(

15,
(
0(14)

))
α1 1.340 0.382 1.379 0.390 1.266 0.257
α2 1.741 0.571 1.762 0.563 1.678 0.417
λ1 0.331 0.116 0.340 0.114 0.249 0.081
λ2 0.235 0.097 0.213 0.091 0.178 0.075(

20,
(
5, 0(18))) α1 1.209 0.201 1.214 0.199 1.174 0.124

α2 1.641 0.410 1.635 0.409 1.611 0.325
λ1 0.287 0.082 0.289 0.081 0.216 0.066
λ2 0.175 0.055 0.171 0.057 0.144 0.042(

20,
(
0(9), 5, 0(9)

))
α1 1.225 0.214 1.227 0.212 1.179 0.131
α2 1.652 0.422 1.651 0.417 1.625 0.331
λ1 0.292 0.087 0.290 0.089 0.222 0.071
λ2 0.181 0.059 0.182 0.058 0.151 0.049(

20,
(
0(19)

))
α1 1.231 0.217 1.235 0.216 1.181 0.136
α2 1.659 0.427 1.656 0.422 1.629 0.335
λ1 0.290 0.095 0.291 0.093 0.227 0.076
λ2 0.185 0.062 0.181 0.065 0.154 0.053

(50,50)
(
30,

(
20, 0(28)

))
α1 1.115 0.125 1.114 0.122 1.113 0.100
α2 1.574 0.214 1.569 0.217 1.552 0.158
λ1 0.252 0.055 0.249 0.054 0.213 0.036
λ2 0.136 0.041 0.129 0.039 0.121 0.018(

30,
(
0(29)

))
α1 1.126 0.137 1.118 0.141 1.118 0.109
α2 1.582 0.221 1.575 0.223 1.561 0.166
λ1 0.271 0.059 0.258 0.060 0.218 0.041
λ2 0.143 0.048 0.145 0.051 0.127 0.026

Step 6: If we need to the number of iterations to reach convergence in the equilibrium, which
called burn-in, say S∗; hence, the Bayes estimators of model parameters are represented by

θ̂iB =EP (θi|t)= 1
S−S∗

S∑
i=S∗+1

θ(i), i= 1, 2, 3, 4, (33)
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Table 2: Two ALs (PCs) of Chen distributions with θ = (1.0, 1.5, 0.2, 0.1)

(S1,S2) (m, r) Pa. θ ML BMCMCprior0 BMCMCprior1

ALs PCs ALs PCs ALs PCs

(30,25)
(
15,

(
10, 0(13)

))
α1 2.854 (0.89) 2.849 (0.90) 2.489 (0.91)
α2 3.752 (0.89) 3.762 (0.89) 3.089 (0.90)
λ1 0.615 (0.90) 0.619 (0.89) 0.542 (0.91)
λ2 0.401 (0.90) 0.409 (0.90) 0.396 (0.90)(

15,
(
0(7), 10, 0(6)

))
α1 2.875 (0.89) 2.882 (0.90) 2.521 (0.91)
α2 3.791 (0.90) 3.799 (0.89) 3.214 (0.91)
λ1 0.651 (0.91) 0.644 (0.89) 0.571 (0.91)
λ2 0.434 (0.89) 0.418 (0.90) 0.399 (0.92)(

15,
(
0(14))) α1 2.887 (0.90) 2.891 (0.90) 2.532 (0.91)

α2 3.798 (0.90) 3.794 (0.90) 3.218 (0.90)
λ1 0.662 (0.90) 0.671 (0.89) 0.580 (0.91)
λ2 0.441 (0.90) 0.417 (0.90) 0.400 (0.91)(

20,
(
5, 0(18))) α1 2.624 (0.90) 2.618 (0.91) 2.214 (0.92)

α2 3.521 (0.91) 3.524 (0.94) 3.000 (0.92)
λ1 0.521 (0.91) 0.518 (0.92) 0.410 (0.91)
λ2 0.328 (0.90) 0.333 (0.90) 0.301 (0.91)(

20,
(
0(9), 5, 0(9))) α1 2.631 (0.91) 2.624 (0.91) 2.217 (0.93)

α2 3.528 (0.90) 3.529 (0.93) 3.021 (0.92)
λ1 0.528 (0.91) 0.522 (0.92) 0.417 (0.91)
λ2 0.341 (0.92) 0.338 (0.91) 0.311 (0.92)(

20,
(
0(19)

))
α1 2.640 (0.93) 2.639 (0.93) 2.232 (0.93)
α2 3.524 (0.90) 3.531 (0.93) 3.024 (0.91)
λ1 0.529 (0.91) 0.531 (0.92) 0.422 (0.93)
λ2 0.345 (0.92) 0.341 (0.92) 0.310 (0.92)

(50,50)
(
30,

(
20, 0(28)

))
α1 2.542 (0.94) 2.555 (0.92) 2.198 (0.95)
α2 3.412 (0.931) 3.417 (0.94) 2.900 (0.92)
λ1 0.410 (0.91) 0.415 (0.92) 0.397 (0.94)
λ2 0.300 (0.93) 0.310 (0.93) 0.289 (0.92)(

30,
(
0(29)

))
α1 2.551 (0.91) 2.554 (0.92) 2.201 (0.93)
α2 3.426 (0.95) 3.425 (0.94) 2.909 (0.92)
λ1 0.417 (0.94) 0.421 (0.95) 0.400 (0.94)
λ2 0.315 (0.93) 0.318 (0.93) 0.309 (0.93)

with posterior variance of 
,

V (θi|t)= 1
S−S∗

S∑
i=S∗+1

(θ(i) − θ̂iB)2. (34)
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Step 7: The 100 (1− 2γ )% credible intervals can be obtained from the empirical distribution
of θi after putting the values in ascending order; hence, a credible interval is formed by(
θ̂iγ (S−S∗), θ̂i(1−γ )(S−S∗)

)
, (35)

where θ = (α1,α2,λ1,λ2).

5 Numerical Computation

5.1 Simulation Studies
Two estimation methods, classical ML and Bayes estimation under Chen lifetime distribution,

are discussed and developed in this study. We compare and assess these methods under the
MCMC algorithms. We report the results with various sample sizes (S1,S2), several sample sizes
of failure units m, and censoring procedures r. We fix parameters at (α1,λ1) = (0.5, 0.5) and
(α1,λ1) = (0.7, 0.4). The validity of numerical results is determined by the mean value (MV)
and mean squared-error (MSE) for point estimators. The probability coverage (PC) and average
interval length (AL) are used to measure interval estimators. The results are summarized in Tabs. 1
and 2 for two sets of prior information (non-informative prior 0 and informative prior 1). The
simulation study used 1000 balanced progressive type-II samples. For Bayes results, the producer
was considered under the rule of the squared-error loss function and 11000 iterations of MCMC,
with the first 1000 iterations as burn-in. The results are reported in Tabs. 1 and 2.

5.2 Data Analysis
Let Chen distribution with parameter values (α1,λ1) = (1.5, 1.1) and (α2,λ2) = (1.8, 0.9) and

the prior distributions with parameters (a1,b1) = (4, 2), (a2,b2)= (3, 2.0) , (a3,b3)= (2.0, 1.5) and
(a4,b4)= (2, 2.5) are used to apply Bayes approaches.

Table 3: Balanced joint progressive type-II censoring data

0.0274 0.0435 0.0519 0.0581 0.0740 0.1138 0.1387 0.1839 0.1859 0.1932
0 0 1 1 1 1 1 0 0 1
0.1945 0.2545 0.2613 0.2791 0.2911 0.2973 0.3281 0.3577 0.3955 0.4163
1 0 0 1 0 1 1 1 0 0
0.4671 0.4947 0.5935 0.5990 0.6411 0.6502 0.7318 0.7530 0.9014 1.0391
0 1 1 1 1 1 1 1 0 0

Table 4: Point and 95% confidence and credible intervals (ACIs and CIs)

Parameter θ ML BMCMC 95% ACIs Length 95% CIs Length

α1 = 1.5 1.117 1.241 (0.6725,1.5615) 0.889 (0.7206,1.5733) 0.853
λ1 = 1.1 1.147 1.109 (0.5478,1.6028) 1.055 (0.6101,1.6327) 1.022
α2 = 1.8 1.075 1.321 (0.5176,1.9768) 1.459 (0.6186,1.8626) 1.244
λ2 = 0.9 0.744 0.837 (0.2432,1.2438) 1.001 (0.3389,1.3381) 0.999

Under consideration two sample of size (S1,S2) = (40, 40), censoring scheme r = {
9, 0(28)

}
,

with the number of failures m= 30. Then the sample can be generated with sample size S1 = 30
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from a Chen distribution with parameters (1.5, 1.1) and with size S2 from a Chen distribution
with parameters (1.8, 0.9) using the algorithms [18]. The two progressive type-II samples are used
to generate balanced joint progressive type-II samples with respect to r = {9, 0(28)} and m = 30.
The joint sample and its type are reported in Tab. 3. The results of point estimation and interval
MLEs are reported in Tab. 4. We plot the monitoring of the MCMC and the corresponding
histogram in Figs. 3–10, which show the quality of the empirical posterior distribution generated
by MCMC methods.

Figure 3: Recording of parameter α1 generated by the MCMC algorithm

Figure 4: Summary of the analysis for α1 generated by the MCMC algorithm
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Figure 5: Recording of parameter α2 generated by the MCMC algorithm

Figure 6: Summary of the analysis for α2 generated by the MCMC algorithm
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Figure 7: Recording of parameter λ1 generated by the MCMC algorithm

Figure 8: Summary of the analysis for λ1 generated by the MCMC algorithm
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Figure 9: Recording of parameter λ2 generated by the MCMC algorithm

10
0

Figure 10: Summary of the analysis for λ2 generated by the MCMC algorithm
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6 Concluding Remarks

Products from different production lines were investigated using a joint censoring procedure
under the same conditions. The balanced joint censoring procedure has been shown considerable
attention over the last few years. In this study, we discussed products that follow a Chen lifetime
distribution. We discussed the ML and Bayes estimates to estimate the underlying parameters
of two Chen lifetime distributions. Numerical results were obtained to compare the theoretical
performance results. Some points are observed from numerical results, which are summarized
as follows.

From the results in Tabs. 1 and 2, show that the balanced joint progressive type-II censoring
procedure provides better excellent results for products have Chen lifetime distribution.

Estimation results under the Bayes method and informative prior distribution provide better
estimation than ML and non-informative prior methods according to the MSE.

For non-informative priors, there are no significant differences between MLEs and Bayes
estimates.

The effective sample size m can be increased by reducing the MSEs and interval lengths.
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