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Abstract: Late fusion multi-view clustering (LFMVC) algorithms aim to integrate
the base partition of each single view into a consensus partition. Base partitions
can be obtained by performing kernel k-means clustering on all views. This type
of method is not only computationally efficient, but also more accurate than multi-
ple kernel k-means, and is thus widely used in the multi-view clustering context.
LFMVC improves computational efficiency to the extent that the computational
complexity of each iteration is reduced from O n3ð Þ to O nð Þ (where n is the num-
ber of samples). However, LFMVC also limits the search space of the optimal
solution, meaning that the clustering results obtained are not ideal. Accordingly,
in order to obtain more information from each base partition and thus improve the
clustering performance, we propose a new late fusion multi-view clustering algo-
rithm with a computational complexity of O n2ð Þ. Experiments on several com-
monly used datasets demonstrate that the proposed algorithm can reach quickly
convergence. Moreover, compared with other late fusion algorithms with compu-
tational complexity of O nð Þ, the actual time consumption of the proposed algo-
rithm does not significantly increase. At the same time, comparisons with
several other state-of-the-art algorithms reveal that the proposed algorithm also
obtains the best clustering performance.
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1 Introduction

Many real-world datasets are naturally made up of different representations or views. Given that these
multiple representations often provide compatible and complementary information, it is clearly preferable to
integrate them in order to obtain better performance rather than relying on a single view. However, because
data represented by different views can be heterogeneous and biased, the question of how to fully utilize the
multi-view information in order to obtain a consensus representation for clustering purposes remains a
challenging problem in the field of multi-view clustering (MVC). In recent years, various kinds of
algorithms have been developed to provide better clustering performance or higher efficiency; these
include multi-view subspace clustering [1–3], multi-view spectral clustering [4–6], and multiple kernel
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k-means (MKKM) [7–11]. Among these, MKKM has been widely utilized due to its excellent clustering
performance and strong interpretability.

Depending on the stage of multi-view data fusion involved, the existing literature on MVC can be
roughly divided into two categories. The first category, which can be described as ‘early fusion’, fuses the
information of all views before clustering. Huang et al. [7] optimize an optimal kernel matrix as a linear
combination of a set of pre-specified kernels for clustering purposes. To reduce the redundancy of the
pre-defined kernels, Liu et al. [10] propose an MKKM algorithm with matrix-induced regularization. To
further enhance the clustering performance, a local kernel alignment criterion is adopted for MKKM in
[10]; moreover, the algorithm proposed in [11] allows the optimal kernel to be found in the neighbor of
the combinational kernels, which increases the search space of the optimal kernel.

Although the above-mentioned early fusion algorithms have greatly improved the clustering accuracy of
MKKM in different respects, they also have two drawbacks that should not be overlooked. The first of these
is the more intensive computational complexity, i.e., usually O n3ð Þper iteration (where n is the number of
samples). The second relates to the over-complicated optimization processes of these methods, which
increase the risk of the algorithm becoming trapped in bad local minimums and thus lead to unsatisfying
clustering performance.

The second category, which is termed as ‘late fusion’, maximizes the alignment between the consensus
clustering indicator matrix and the weighted base clustering indicator matrices with orthogonal
transformation, in which each clustering indicator matrix is generated by performing clustering on each
single view [12,13]. This type of algorithm can improve the efficiency and clustering performance;
however, these methods also simplify the search space of the optimal clustering indicator matrix, which
decreases clustering performance.

Accordingly, in this paper, we propose a new late fusion framework designed to extract more
information from the base clustering indicator matrix. We first assume that each base clustering indicator
matrix is a feature representation after the sample is mapped from the original space to the feature space.
Compared with the original features, this involves nonlinear relations between data [14]; moreover, this
approach can also filter out some noise arising from the kernel matrix. Therefore, the similarity matrix
constructed by the base clustering indicator matrix is superior to the original kernel matrix for clustering
purposes.

We refer to the proposed method as ‘late fusion multi-view clustering with learned consensus similarity
matrix’ (LF-MVCS). LF-MVCS jointly optimizes the combination coefficient of the base clustering indicator
matrices and the consensus similarity matrix. This consensus similarity matrix is then used as the input of
spectral clustering [15] to obtain the final result. Furthermore, we design an effective algorithm for
solving the resulting optimization problem, as well as analyzing its computational complexity and
convergence. Extensive experiments on 10 multi-view benchmark datasets are then conducted to evaluate
the effectiveness and efficiency of our proposed method.

The contributions of this paper can be summarized as follows:

� The proposed LF-MVSC integrates the information of all views in a late fusion manner. It further
optimizes the combination coefficient of each base clustering indicator matrix and consensus
similarity matrix. To the best of our knowledge, this is the first time that a unified form has been
obtained that can better reflect the similarity between samples via late fusion.

� The proposed optimization formulation has just one parameter to tune and avoids excessive time
consumption. We therefore design an alternate optimization algorithm with proved convergence
that can efficiently tackle the resultant problem. Our algorithm avoids complex computation owing
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to fewer optimization variables being utilized, meaning that that the objective function can converge
within fewer iterations.

2 Related Work

2.1 Multiple Kernel K-means

Let xif gni¼1� X be a dataset consisting of n samples, while [ �ð Þ : x 2 X ! H is the feature mapping,
which transfers x into a reproducing kernel Hilbert space H. Kernel k-means clustering aims to minimize
the sum-of-squares loss over the cluster assignment matrix Z 2 0; 1f gn�k , which can be formulated as
follows:

Z 2 min
0; 1f gn�k

Xn;k

i¼1;c¼1
Zic k [ X ið Þ � lc k22 s:t:

Xk

c¼1
Zic ¼ 1 (1)

Here, lc ¼
1

nc

Xn
i¼1

Zic[ X ið Þ is the centroid of the c� th 1 � c � kð Þ cluster, while nc ¼
Pn

i¼1 Zic is the

number of samples in the corresponding cluster.

In order to optimize Eq. (1), we can transform it as follows:

min
Z

Tr Kð Þ � Tr L
1
2ZTKZL

1
2

� �
s:t: Z1k ¼ 1n (2)

where K is a kernel matrix with Kij ¼ [ X ið ÞT[ X j

� �
, L ¼ diag n�1

1 ; …; n�1
k

� �� �
, while 1s 2 Rs denotes a

vector with all elements being 1. In Eq. (2), the variables Z are discrete, which makes the optimization

problem difficult to solve. Dhillon et al. [16] let H ¼ ZL
1
2 and relaxed Z to take the arbitrary real values

H . Thus, Eq. (2) can be rewritten as follows:

min
H

Tr K In �HHT
� �� �

s:t: HTH ¼ IK (3)

Here, IK is an identity matrix with size k � k. Due to L
1
2ZTZL

1
2 > IK , we impose an orthogonality

constraint on H . Finally, the optimal H for Eq. (3) can be obtained by taking the k eigenvectors
corresponding to the k largest eigenvalues of K : The Lloyd’s algorithm is usually executed on H for the
clustering labels.

In multiple kernel k-means (MKKM), all samples have multiple feature representations via a group of
feature mappings [ �ð Þf gmp¼1. More specifically, each sample can be represented as

[a Xð Þ ¼ a1[1 Xð ÞT ; …;
h i

am[m Xð ÞT 	T , where a ¼ a1; …; am½ 	T are the coefficients of each base

kernel. The kernel function over the above feature mappings can be written as:

Ka Xi;Xj

� � ¼ [a Xið ÞT[a Xj

� � ¼
Xm
p¼1

a2pKp Xi;Xj

� �
(4)

Assume that the optimal kernel matrix can be represented as Ka ¼
Pm
p¼1

Kp, we obtain the optimization
objective of MKKM as follows:
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min
H ; a

Tr Ka In �HHT
� �� �

s:t: H ¼ Rn�k ; HTH ¼ IK ; a
T1 ¼ 1; a > 0 (5)

A two-step iterative algorithm can be used to optimize the Eq. (5).
i) Optimize α with fixed H . Eq. (5) is equivalent to:

min
a

Xm
p¼1

a2pdp s:t: a
T1 ¼ 1; a 
 0 (6)

where dp ¼ Tr Kp In �HHT
� �� �

. According to the Cauchy-Schwartz inequality, we can obtain the closed-

form solution to Eq. (6) as ap ¼
1=

ffiffiffiffiffi
dp

p
Pm

p¼1 1=
ffiffiffiffiffi
dp

p 8p 2 m½ 	� �
.

ii) Optimize H with fixed α. With the kernel coefficients α fixed, H can be optimized by taking the k
eigenvectors corresponding to the k largest eigenvalues of Ka.

2.2 Multi-View Clustering via Late Fusion Alignment Maximization

Multi-view clustering via late fusion alignment maximization [12] (MVC-LFA) assumes that the
clustering indicator matrix obtained from each single view is Hp(p 2 m½ 	), while a set of rotation matrices

W p

	 
m

p¼1 are used to maximize the alignment of Hp(p 2 m½ 	) and the optimal clustering indicator matrix

H�. The objective function is as follows:

H�;
max

Wp

	 
m

p¼1;l
Tr H�TR
� �þ �Tr H�TF

� �
s:t: H� 2 Rn�k ; H�TH� ¼ Ik ;

Xm
p¼1

l2p ¼ 1;

lp 
 0;R ¼
Xm
p¼1

lpHpW p

(7)

where F denotes the average clustering indicator matrix, while λ is a trade-off parameter. Moreover,
Tr H�TF
� �

is a regularization of the optimal clustering indicator matrix that prevents H� from being too
far away from the prior average partition. This formula assumes that the optimal clustering indicator
matrix H� is a linear combination of the base clustering indicator matrix Hp(p 2 m½ 	). Readers are
encouraged to refer to [12] for more details regarding the optimization of Eq. (7).

The drawback of MKKM is its excessive computational complexity, which is O n3ð Þ. Although MVC-
LFA does reduce the computational complexity from O n3ð Þto O nð Þ, it also over-simplifies the search space
of the optimal solution, which in turn limits the clustering performance. We therefore propose a novel late
fusion multi-view clustering algorithm in Section Three, which offers a trade-off between clustering
efficiency and effectiveness.

3 Multi-View Clustering Via Late Fusion Consensus Similarity Matrix

3.1 Proposed Method

By taking the eigenvectors corresponding to the first k largest eigenvalues of Kp

	 
m

p¼1, we can obtain the
clustering indicator matrices Hp

	 
m

p¼1� Rn�k . Each row ofHp can be regarded as a feature representation of
each sample in the k dimension space. To construct the consensus similarity matrix S, we need to construct
the similarity matrix of each view. After normalizing each row ofHp (i.e., dividing by the 2-norm of the row),
the 2-norm of each row of the processed Hp becomes 1. We treat S pð Þ ¼ HpHp

T 2 Rn�n as the similarity
matrix of the p-th view.
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Based on the assumption that the optimal consensus similarity matrix resides in the neighbor of a linear
combination of all similarity matrices, our model can be expressed as follows:

min
S; a

Xm
p¼1

a2p k S �HpHp
T k2F ; s:t:

Xm
p¼1

ap ¼ 1; a 
 0 (8)

The solution to the above formula is clearly equal to a certain Sp, such that multi-view information is not
fully utilized. Accordingly, inspired by [9], we introduce a regularization item capable of improving the
diversity of all views for learning purposes. We let M p; qð Þ ¼ TrðH > Hp

THqÞ. A larger M p; qð Þ is
associated with a higher degree of correlation between the p-th and q-th points. Let M 2 Rm�m be the
matrix that stores diversified information of views, while Mpq ¼ M p; qð Þ. Thus, when Mpq is large, to
avoid the information redundancy caused by similar views, we can set the coefficient of view such that
apaqMpq is small. Based on the above, we add the following regularization item to the formula:

min
a

aTMa s:t:
Xm
p¼1

ap ¼ 1; ap 
 0

At the same time, we aim to have S satisfy the basic properties of the similarity matrix. Hence, we
impose certain constraints on S, namely: i) The degree of each sample in S is greater than or equal to 0, i.
e., Sij ≥ 0; ii) The degree of each sample in S is equal to 1, i.e., ST1 ¼ 1. We can accordingly obtain the
following formula:

min
S; a

Xm
p¼1

ap k S �HpHp
T k2F þ�aTMa; s:t:

Xm
p¼1

ap ¼ 1; a 
 0; Sij 
 0; ST1 ¼ 1 (9)

Not only can the clustering indicator matrices obtained by KKM, but also the similar basic partitions
constructed by any clustering algorithms, be the input of our model. The model developed thus far
represents a new multi-view clustering framework based on late fusion. Compared to other late fusion
algorithms, such as [12,13], our objective formula has three key advantages, namely:

Fewer variables need to be optimized, meaning that the total number of iterations is reduced and the
algorithm converges quickly.

Other late fusion algorithms hold that the optimal clustering indicator matrix is a neighbor of the
average clustering indicator matrix; however, this is a heuristic assumption that may not hold true in
some cases. By contrast, our assumptions in Eq. (9) are more reasonable and will be effective in any
multi-view clustering task.

We further introduce a regularization item to measure the correlation of views in order to increase both
the diversity and the utilization rate of multi-view information.

3.2 Alternate Optimization

In the following, we construct an efficient algorithm designed to solve the optimization problem in Eq.
(9). More specifically, we design a two-step algorithm to alternately solve the following:

Optimization α with fixed S.

When S is fixed, the optimization problem in Eq. (9) is equivalent to the following
optimization problem:
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min
a

aT �M þ Zð Þa; s:t:
Xm
p¼1

ap ¼ 1; ap 
 0 (10)

Here, Z ¼ diag k S �H1H1
T k2F ; …; k S �HmHm

T k2F
� �

. Moreover, �M þ Z is a nonnegative
definite matrix, meaning that the optimization in Eq. (10) w.r.t α is a quadratic programming problem
with linear constraint. We can solve this using the Matlab QP toolkit.

Optimization S with fixed α.

When α is fixed, the optimization problem in Eq. (9) w.r.t S can be rewritten as follows:

min
S

Xm
p¼1

ap k S �HpHp
T k2F ; s:t: Sij 
 0; ST1 ¼ 1 (11)

Note that the problem in Eq. (11) is independent of the value of j, meaning that we can optimize each
column of S as follows:

min
Sj

Xm
p¼1

apS
T
j Sj � a2pS

T
j S

pð Þ
j ; s:t: Sij 
 0; STj 1 ¼ 1 (12)

where S pð Þ
j is the j-th column of S pð Þ ¼ HpHp

T . Eq. (12) is equivalent to the following function:

min
Sj

1

2
k Sj � C j k22; s:t: Sij 
 0; ST1 ¼ 1 (13)

Here, Cj ¼
a2pS

pð Þ
j

a2p
. Eq. (13) is a problem on the simplex space, and its Lagrangian function is as

follows:

L Sj; c; s
� � ¼ 1

2
k Sj � C j k22 þc sTj 1� 1

� �
� sTSj (14)

where c and s are the Lagrangian multipliers.

According to its Karush-Kuhn-Tucker condition [17], we can obtain the optimal solution S� in the form
of Eq. (15):

S�
j ¼ C j � c�1

� �
þ (15)

Here, xð Þþ is a signal function, which sets the elements of x that are less than 0 to 0, while c� 2 R makes
1T > S�

j ¼ 1.

The algorithm is summarized in detail in Algorithm 1.

Algorithm 1: Late fusion multi-view clustering with learned consensus similarity matrix

Input: Hp

	 
m

p¼1and e.
Output: S.
1: Initialize α as 1m=m and t as 1.
2: while not converge do
3: for j ∈ {1,2, …, n} do
4: Update sj, by solving (13) with fixed α.
5: end for
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3.3 Complexity and Convergence

Computational Complexity. Obtaining the base clustering indicator matrices requires calculating the
eigenvectors corresponding to the k largest eigenvalues of the m kernel matrices, leading to a complexity of
O kmn2ð Þ. The proposed iterative algorithm further requires the optimization of the two variables α and S.
In each iteration, the optimization of α via Eq. (10) requires the solving of a standard quadratic
programming problem with linear constraint, the complexity of which is O m3ð Þ. Updating each sj by Eq.
(13) requires O nð Þ time. Moreover, the complexity associated with obtaining S is O n2ð Þ per iteration, as n
times are needed to calculate each sj. Overall, the total complexity of Algorithm 1 is O ðm3 þ n2ð ÞtÞ, where
t is the number of iterations. Finally, executing the standard spectral clustering algorithm on S takesO n3ð Þ time.

Convergence. In each of the optimization iterations of our proposed algorithm, the optimizations of α
and S monotonically decrease the value of the objective Eq. (9). Moreover, this objective is also lower-
bounded by zero. Consequently, our algorithm is guaranteed to converge to the local optimum of Eq. (9).

4 Experiments

4.1 Datasets and Experimental Settings

Several benchmark datasets are utilized to demonstrate the effectiveness of the proposed method:
namely, Flower17 (www.robots.ox.ac.uk/∼vgg/data/flowers/17/), Flower102 (www.robots.ox.ac.uk/∼vgg/
data/flowers/102/), PFold (mkl.ucsd.edu/dataset/protein-fold-prediction), Digit (http://ss.sysu.edu.cn/py/),
and Cal (www.vision.caltech.edu/Image Datasets/Caltech101/). Six sub-datasets, which are constructed by
selecting the first 5, 10, 15, 20, 25 and 30 classes respectively from the Cal data, are also used in our
experiments. More detailed information regarding these datasets is presented in Tab. 1. From this table,
we can observe that the number of samples, views and categories of these datasets range from 510 to
8189, 3 to 48, and 5 to 102, respectively.

Algorithm 1 (continued).

6: S ¼ S þ ST

2
.

7: Update α, by solving (10) with fixed S.
8: t = t + 1.
9: end while k a tð Þ � a t�1ð Þ k22� e

Table 1: Benchmark datasets

Datasets Samples Kernels Clusters

Flower17 1360 7 17

Flower102 8189 4 102

ProteinFold 694 12 27

Digit 2000 3 10

Cal-5 510 48 5

Cal-10 1020 48 10

Cal-15 1530 48 15

Cal-20 2040 48 20

Cal-25 2550 48 25

Cal-30 3060 48 30
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4.2 Comparison with State-of-the-Art Algorithms

In our experiments, LF-MVCS is compared with several state-of-the-art multi-view clustering methods,
as outlined below.

Average multiple kernel k-means (A-MKKM): The kernel matrix, which is a linear combination of
the base kernels with the same coefficients, is taken as the input of the standard kernel K-means algorithm.

Single best kernel k-means (SB-KKM): Stardard kernel k-means is performed on each single kernel,
after which the best result is outputted.

Multiple kernel k-means (MKKM) [7]: The algorithm jointly optimizes the consensus clustering
indicator matrix and the kernel coefficients.

Robust multiple kernel k-means (RMKKM) [18]: RMKC learns a robust low-rank kernel for
clustering by capturing the structure of noise in multiple kernels.

Multiple kernel k-means with matrix-induced regularization (MKKM-MR) [9]: This algorithm
introduces a matrix-induced regularization designed to reduce the redundancy of the kernels and enhance
their diversity.

Optimal neighborhood kernel clustering with multiple kernels (ONKC) [11]: ONKC allows the
optimal kernel to reside in the neighborhood of linear combination of base kernels, thereby effectively
enlarging the search space of the optimal kernel.

Multi-view clustering via late fusion alignment maximization (MVC-LFA) [12]: MVC-LFA
proposes maximally aligning the consensus clustering indicator matrix with the weighted base clustering
indicator matrix.

Simple multiple kernel k-means (SMKKM) [19]: SimpleMKKM, or SMKKM, re-formulates the
MKKM problem as a minimization-maximization problem in the kernel coefficients and the consensus
clustering indicator matrix.

4.3 Experimental Settings

In our experiments, all base kernels are first centered and then normalized; therefore, for all samples xi
and the p-th kernel, we have Kp xi; xj

� � ¼ 1: For all datasets, the true number of clusters is known, and we set
this to be the true number of classes. In addition, the parameters of RMKKM, MKKM-MR and MVC-LFA
are selected by grid search according to the methods suggested in their respective papers. For the proposed
algorithm, its regularization parameters λ are chosen from a large enough range 2�15; 2�12; …; 215½ 	 by
means of grid search. We set the allowable error e to 1� 10�4, which is the termination condition of
Algorithm 1.

The widely used metrics of clustering accuracy (ACC), normalized mutual information (NMI) and
purity are applied to evaluate the clustering performance of each algorithm. For all algorithms, we repeat
each experiment 50 times with random initialization (to reduce randomness caused by k-means in the
final spectral clustering) and report the average result. All experiments are performed on a desktop with
Intel(R) Core(TM)-i7-7820X CPU and 64 GB RAM.

4.4 Experimental Results

Tab. 2 reports the clustering performance of the above-mentioned algorithms on all datasets. From these
results, we can make the following observations:

First, the proposed algorithm consistently demonstrates the best NMI on all datasets. For example, it
exceeds the second-best method (MVC-LFA) by over 8.56% on Flower17. The superiority of our
algorithm is also confirmed by the ACC and purity reported in Tab. 2.
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Table 2: Empirical evaluation and comparison of SimpleMKKMwith eight baseline methods on 11 datasets
in terms of clustering accuracy (ACC), normalized mutual information (NMI) and purity

Dataset A-MKKM SB-KKM MKKM
Huang
et al.
[7]

RMKKM
Du et al.
[18]

MKKM-
MR
Liu et al.
[9]

ONKC
Liu et al.
[11]

MVC-LFA
Wang et al.
[12]

SMKKM
Liu et al.
[13]

Proposed

ACC(%)

Flower17 51.29 42.41 43.84 49.78 57.66 53.40 59.86 58.40 64.15

Flower102 26.85 33.22 22.51 29.19 40.32 38.51 42.32 42.26 47.21

ProteinFold 29.05 33.53 27.56 27.81 35.15 36.03 32.47 34.84 36.20

Digit 88.82 73.05 47.20 42.85 90.34 90.83 88.83 90.34 96.63

Cal-5 35.95 35.95 27.67 31.37 36.11 35.90 37.73 36.03 43.33

Cal-10 31.79 33.60 22.17 25.69 32.67 32.38 34.08 32.62 44.31

Cal-15 30.55 33.34 19.72 21.96 31.80 30.85 33.10 31.47 39.47

Cal-20 29.47 33.87 18.45 21.96 31.47 30.02 32.36 31.24 39.16

Cal-25 29.15 33.44 17.26 22.47 30.47 29.33 31.50 30.91 41.96

Cal-30 28.53 33.80 16.45 20.46 30.44 29.11 31.39 30.75 38.23

NMI(%)

Flower17 49.87 45.08 44.65 50.41 56.07 52.59 57.90 56.66 66.46

Flower102 45.94 48.76 42.69 48.68 56.75 55.19 56.88 58.55 61.66

ProteinFold 40.32 41.09 38.27 37.73 44.30 44.92 42.03 44.39 46.66

Digit 80.74 66.26 48.74 47.74 83.14 83.70 80.78 83.31 93.52

Cal-5 70.26 70.06 66.01 65.94 70.29 70.24 70.99 70.33 73.35

Cal-10 61.77 62.78 55.50 55.99 62.23 61.98 63.04 62.22 68.74

Cal-15 57.20 58.86 49.35 50.43 57.99 57.39 58.95 57.97 62.63

Cal-20 54.23 56.49 45.48 47.43 55.50 54.38 56.07 55.39 60.11

Cal-25 52.09 54.50 42.35 45.28 53.10 52.32 54.02 53.46 60.57

Cal-30 49.95 53.39 40.08 43.12 51.54 50.45 52.45 51.95 57.00

Purity(%)

Flower17 52.26 44.62 45.30 51.03 59.13 54.24 61.30 59.42 65.87

Flower102 32.17 38.46 27.93 34.61 46.36 44.30 48.69 48.58 52.77

ProteinFold 37.32 39.19 34.31 33.29 42.44 43.10 39.37 41.62 41.20

Digit 88.82 73.40 50.05 45.85 90.34 90.83 88.83 90.34 96.66

Cal-5 37.32 37.36 28.42 33.14 37.63 37.27 39.48 37.50 45.10

Cal-10 33.62 35.83 23.53 27.16 34.83 34.37 36.26 34.54 46.56

Cal-15 32.27 35.34 21.16 24.12 33.71 32.73 35.12 33.27 41.96

Cal-20 31.50 35.80 20.07 24.07 33.41 31.93 34.40 33.28 41.47

Cal-25 31.12 35.35 18.79 23.92 32.64 31.58 33.93 33.11 44.82

Cal-30 30.49 35.71 17.83 22.55 32.42 31.03 33.58 32.75 40.78
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As a strong baseline, the recently proposed SMKKM [19] outperforms other comparison early-fusion
multiple kernel clustering methods. However, the proposed algorithm significantly and consistently
outperforms SMKKM by 9.80%, 3.11%, 2.27%, 10.21%, 3.02%, 6.52%, 4.66%, 4.72%, 7.11% and
5.05% respectively in terms of NMI on all datasets in the order listed in Tab. 1.

The late fusion algorithm MVC-LFA also outperforms most other algorithms; however, the proposed
algorithm outperforms MVC-LFA by 8.56%, 4.78%, 4.63%, 12.74%, 2.36%, 5.70%, 3.68%, 4.04%,
6.55% and 4.55% respectively in terms of NMI on all datasets in the order listed in Tab. 1.

We further study the clustering performance on Cal for each algorithm depending on the number of
classes, as shown in Fig. 1. As can be observed from the figure, our algorithm is consistently at the top of
all sub-figures when the number of classes varies, indicating that it achieves the best performance.

In summary, our proposed LF-MVCS demonstrates superior clustering performance over all SOTA
multi-view clustering algorithms. From the above experiments, we can therefore conclude that the
proposed algorithm effectively learns the information from all base clustering indicator matrices, bringing
significant improvements to the clustering performance.

4.5 Runtime, Convergence and Parameter Sensitivity

Runtime. To investigate the computational efficiency of the proposed algorithm, we record the running
time of various algorithms on the benchmark datasets and report them in Fig. 2. The computational
complexity of the proposed LF-MVCS is O n2ð Þ; as can be observed, LF-MVCS has slightly higher
computational complexity than the existing MVC-LFA (with a computational complexity of O nð Þ). At
the same time, however, the runtime of LF-MVCS is lower relative to with other kernel-based multi-view
clustering algorithms.

Algorithm Convergence. We next theoretically analyze the convergence of our algorithm. Fig. 3
reflects the variation of the objective Eq. (9) with the number of iterations on four datasets: namely,
Flower17, ProteinFold, Digit, and Cal-30. It can be seen that the objective function achieves convergence
over very few iterations, thereby demonstrating that fewer optimization variables can make the algorithm
converge faster, which makes our algorithm more efficient than other algorithms.

Figure 1: ACC, NMI and purity comparison with variations in number of classes on Cal. (left) ACC; (mid)
NMI; (right) purity
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Parameter Sensitivity. The proposed algorithm introduces one hyper-parameter, i.e., the balancing
coefficient of the diversity regularization item λ. The performance variation against λ is illustrated in
Fig. 4. As the figure shows: i) λ is effective in improving the algorithm performance; ii) It also achieves
good performance over a wide range of parameter settings.

Figure 2: Runtime of different algorithms on eight benchmark datasets (in seconds). The experiments are
conducted on a PC with Intel(R) Core(TM)-i7-7820X CPU and 64 GB RAM in the MATLAB
environment. LF-MVCS is comparably fast relative to the alternatives while also providing superior
performance when compared with most other multiple kernel k-means based algorithms. Results for other
datasets are omitted due to space limitations
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Figure 3: The objective value of our algorithm on four datasets at each iteration

Figure 4: Illustration of parameter sensitivity against λ. The red curves represent the results of the proposed
algorithm, while the blue lines indicate the second-best performance on the corresponding dataset
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5 Conclusion

This paper proposes a simple but effective algorithm, LF-MVCS, which learns a consensus similarity
matrix from all base clustering indicator matrices. We determine that each base clustering indicator matrix
is a better feature representation than the original feature and kernel. Based on this finding, we derive a
simple novel optimization goal for multi-view clustering, which learns a consensus similarity matrix to
facilitate better clustering performance. The proposed algorithm is developed to efficiently solve the
resultant optimization problem. LF-MVCS outperforms all SOTA methods significantly in terms of
clustering performance. Moreover, our algorithm also reduces the computational cost on benchmark
datasets when compared with other kernel-based multi-view clustering methods. In future work, we plan
to extend our algorithm to a general framework, then use this framework as a platform to revisit existing
multi-view algorithms in order to further improve the fusion method.
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