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Abstract: Many existing techniques to acquire dual-energy X-ray absorptiometry
(DXA) images are unable to accurately distinguish between bone and soft tissue.
For the most part, this failure stems from bone shape variability, noise and low
contrast in DXA images, inconsistent X-ray beam penetration producing shadow-
ing effects, and person-to-person variations. This work explores the feasibility of
using state-of-the-art deep learning semantic segmentation models, fully convolu-
tional networks (FCNs), SegNet, and U-Net to distinguish femur bone from soft
tissue. We investigated the performance of deep learning algorithms with refer-
ence to some of our previously applied conventional image segmentation techni-
ques (i.e., a decision-tree-based method using a pixel label decision tree [PLDT]
and another method using Otsu’s thresholding) for femur DXA images, and we
measured accuracy based on the average Jaccard index, sensitivity, and specifi-
city. Deep learning models using SegNet, U-Net, and an FCN achieved average
segmentation accuracies of 95.8%, 95.1%, and 97.6%, respectively, compared
to PLDT (91.4%) and Otsu’s thresholding (72.6%). Thus we conclude that an
FCN outperforms other deep learning and conventional techniques when seg-
menting femur bone from soft tissue in DXA images. Accurate femur segmenta-
tion improves bone mineral density computation, which in turn enhances the
diagnosing of osteoporosis.

Keywords: Segmentation; deep learning; osteoporosis; dual-energy X-ray
absorptiometry

1 Introduction

Osteoporosis, as a severe degrader of bone health and the leading cause of hip fracture in developed
countries, leaves a grave burden on health budgets. The repercussions of this disease are noted to be the
same among women and men and can affect them at any stage of life. More than 20% of people die from
fractures that occur from osteoporosis [1]. The medical imaging technology known as dual-energy X-ray
absorptiometry (DXA) can adequately diagnose this disease and is currently considered the gold standard
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for such diagnoses [2–4]. Meanwhile, quantitative computed tomography exists as an alternative method, but
it demands a large dose of X-rays and is overpriced.

Reliable osteoporosis analysis is dependent on accurate computation of bone mineral density (BMD).
Careful DXA image analysis and precise BMD calculation support the pinpoint segmentation of soft
tissue and bone. On the other hand, imprecise bone and soft tissue segmentation severely affect BMD
calculation and subsequent analysis of DXA image [3,4]. Unfortunately, erroneous bone region
identification is a widespread problem in femur DXA images for several reasons. First, DXA images use
low-dose X-rays, which makes them prone to noise. Second, the overlap of the hip muscles and pelvic
bone over the femur head generates different intensities for the various regions and the femur in the
image. Third, the irregular attenuation of an X-ray through the human body creates a negative shadow,
which causes gloomy regions in the images. Other factors influencing segmentation characteristics
include luminous intensity, scanning orientation, person-to-person variations, and image resolution [5].

Regardless of the numerous techniques that have been used so far, accurate automatic segmentation in
DXA imaging remains a challenge [6–13]. Manual segmentation is time-consuming, requiring the
involvement of an expert, and such an approach is untenable when it comes to analyzing a fairly large
population [7,9,10]. Edge-detection-based image segmentation methods are unreliable due to hurdles in
the final integration of tiny boundaries to find broad object edges in an image [7]. The calibration
procedure for specific DXA imaging devices and the diversity present in DXA data make it challenging
to specify an acceptable threshold value in threshold-based segmentation techniques, again creating a
less-than-ideal situation for segmentation in DXA imaging [7,8]. Active appearance models or active
shape models are often used in DXA image segmentation as well [11,13]. The convergence of landmark
points with an active shape model determines the ultimate location of an object. However, the active
shape model sometimes converges on inaccurate boundaries for an object due to variations between
patients. It is often challenging to describe the Mahalanobis distance in an active shape model with a
sparse covariance matrix. Meanwhile, an active appearance model uses a Gaussian space to match an
object’s shape through a statistical model. But assumptions made with Gaussian space matching often fail
due to bone structure variations, particularly in patients with osteophytes [14]. The abovementioned
techniques demand close initialization of the model to a segmentation subject. Furthermore, the structural
specification ambivalence produced by the partial-volume effect makes other segmentation techniques,
such as region growing, unsuitable for femur segmentation in DXA imaging [15]. Segmentation of X-ray
images using a watershed algorithm habitually results in over-segmentation [16]. Because of all the
intrinsic constraints associated with current methods, they are inappropriate for the segmentation of DXA
images. Thus, there remains a desperate need to find a self-activating DXA image segmentation approach
that grants higher accuracy.

In recent years, the term deep learning has been widely used in the analysis of biological and biomedical
images, such as those dealing with the detection of cancerous and mitosis cells, skin lesion classification,
neural membrane segmentation, immune cell detection, the segmentation of masses in mammograms, and
so on [17–26]. The development of deep convolutional neural networks (CNNs) and recent maturation in
their use has led to fully convolutional networks (FCNs) [27] being effectively used for nodule detection
and segmentation in biomedical imaging systems such as computed tomography and magnetic resonance
images [28–32]. Despite the possible use of deep learning for image inspection in other medical imaging
systems, it has not been applied to DXA imaging.

In this work, our purpose is to research the feasibility of deep learning approaches for accurate
segmentation in DXA imaging. We introduce and investigate the performance of the most up-to-date and
novel deep learning approaches for a multiclass pixel-wise semantic model, such as one using SegNet, U-
Net, or an FCN, for femur segmentation from DXA images. To the best of our knowledge, this is the first
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deep-learning-based effort relevant to DXA image segmentation. We compare the results of this study to one
of our previous works on femur segmentation from DXA images using a machine-learning-based approach
called pixel label decision tree, which was reported in [33] and published by the Journal of X-Ray Science
and Technology.

We conducted a detailed investigation to figure out the capability of recent deep CNN approaches for
femur segmentation from DXA images. The best results were achieved with a deep FCN-based
architecture. This technique takes advantage of the fact that a DXA scan produces low-energy (LE) and
high-energy (HE) images that are then merged to create high-contrast images. Various algorithms can be
used with the combinations of HE and LE images to generate high-contrast results [33–37]. These DXA
images are saved as portable network graphic files.

The main intention of this study is to identify a highly accurate solution for femur segmentation from
DXA images. Improved DXA image segmentation will support accurate BMD calculation, and better
BMD calculation can strengthen the diagnosing capability of DXA machines. Besides that, improved
automatic DXA image segmentation will increase the use of DXA imaging devices. Through this study,
we show how convolutional networks can be trained from end to end, pixel to pixel, with a small clinical
dataset using transfer learning in semantic segmentation. Our key insight is to introduce a convolutional
network with efficient inference and learning on a small sample of DXA data.

The rest of the manuscript is ordered as follows. Section 2 covers the segmentation model. Section 3
shows the proposed model’s results and includes a discussion of the findings. Finally, Section 4 presents
our concluding remarks and possibilities for future work.

2 Methods

Femur data are attained from DXA scanning as LE and HE images. The X-ray images are captured by
the receptor and maintained in digital records for further processing. These two images undergo a process
that yields high-contrast electronic display images.

2.1 Display Image Generation

In medical image processing and computer vision, recent techniques based on deep neural networks
have accomplished state-of-the-art and impressive outcomes on large-scale datasets with millions of
images belonging to different categories. Regarding their impressive achievements, deep neural networks
have been shown to be susceptible to image quality [38]. Thus, image quality is an important
consideration in these approaches. Improving the visual quality of an image through measures such as
contrast enhancement and noise reduction has had an impressive effect on image classification and
segmentation [39,40]. We acquired DXA data in the form of LE and HE images and combined them to
form high-contrast display images. In this study, we consider a high-contrast bone mineral density image
(BMDI) generated from a DXA scan and its effect on deep learning segmentation results. These high-
contrast BMDIs can be generated from DXA scans as follows:

BMDI ¼
Rst � logHEi

HE0
� logLEi

LE0

ul � uh � Rst
; Bþ C

0
BB@

1
CCA; (1)
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HEi

; (2)

where ul and uh are constant values of LE and HE X-rays, respectively. The incident HE0 and LE0 are the
outcome energies from the X-ray s source, and LEi and HEi are detector counts at a particular scanning
position (i.e., the image pixel). The BMD value for the soft tissue region is always lower than the bone
region; therefore, Eq. (1) produces a brighter bone and darker soft tissue image. The Rst value (as shown
in Eq. (2) is calculated first and then used to generate the BMDI in Eq. (1). Similarly, C and B depict
image contrast enhancement and brightness. We used C and B as constant values preserved from the
experiments. We normalized the intensities of an image from 0 to 255, and the final image was extracted
as a portable network graphic file to be used in the deep learning model.

2.2 Data Augmentation and Transfer Learning

A huge dataset is required to appropriately train deep learning networks. The small-scale availability of
medical datasets is one of the most challenging dilemmas in a deep learning approach. In order to meet the
large dataset requirements of deep neural network training, a small data size can be increased using data
augmentation [41,42]. This is the most familiar and comfortable method to reduce deep neural network
overfitting problems.

Therefore, in this study, we applied the data augmentation process only to the training data (i.e., 80%
of the 900 images) as follows. We randomly selected a set of femur images from the training dataset (i.e.,
80% of the 900 images) and applied image translations and horizontal and vertical reflections along with
labeled ground truth images to increase the data size. We extracted random 192 × 96 patches from 384 ×
192 images and applied horizontal flip, vertical flip, and their subsequent scaling to 384 × 192 using
linear interpolation. The augmentation process increased the size of our available dataset up to
2,500 images. The translation process produced a black pixel gap in an image that was filled with an
air class. Thus, a total of 2,000 femur images with their correlate ground truth labels were used to
train our suggested segmentation methods.

Furthermore, we followed the transfer learning idea to intensify the training competence of our proposed
deep learning models. We employed the weights of the pre-trained model Visual Geometry Group
16 network using the immense ImageNet dataset [17]. Then we fine-tuned our prepared networks using
the augmented training data. A separate validation dataset (i.e., 20% of the original training dataset) was
used to optimize the proposed segmentation models. All the femur images were resized to 384 ×
192 pixels using bilinear interpolation [13].

2.3 Segmentation Models

An overview of DXA image analysis using deep learning methods is given in Fig. 1. In this study, we
present U-Net, SegNet, and FCN methods to segment femur in a DXA image. The FCNs estimate a dense
return from an arbitrary-sized feed in data. In this manner, both “learning and inference are carried out on the
entire image at a time by dense feedforward computation and backpropagation” [43]. The CNN-based deep
learning models are usually found with fully-connected layers. The name fully convolutional in the FCN
model points to convolutional layers without any fully connected layers in the model. We have used a
sigmoid activation function in the activation layer of the suggested deep learning segmentation networks
to classify each pixel in the femur image into three classes (i.e., bone, soft tissue, and air). More details
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about the U-Net, SegNet, and FCN techniques are given in [43–45]. The Adadelta optimization method was
used to train all the segmentation models with a batch size of 25. The initial learning rate was set as 0.2,
which was reduced during the training process with automatic updates throughout 200 epochs.

We used weighted cross-entropy to calculate the loss, which minimized the overall loss, H, throughout
the training stage as follows:

H ¼ �
XM

c¼1
yclog Ŷc

� �
; (3)

where y is the ground truth labels andŶ represents the predicted map of segmentation. C represents the class.
M is the number of classes (bone, tissue, and air). The implementation of this work was performed with
Python on the Ubuntu 18.04 operating system using the Keras library with the Theano backend.

2.4 Post-Processing

No post-processing was performed for the deep learning models. Contrasted to deep learning models,
conventional semantics segmentation techniques always require a boundary smoothing filter to smooth
femur bone boundaries labeled by the segmentation model and remove imperfections. In our previous
study, we used a binary smoothing filter to remove such imperfections from the segmented DXA images.
“Binary smoothing removes small-scale noise in the shape while maintaining large-scale features. For
more details about binary smoothing, visit our previous work referenced in” [33].

DXA Image
Analysis

BMD Calculation

Semantic
Segmentation

Supervised Learning

Deep Learning 

Algorithm

ROI Accuracy

Figure 1: Overview of dual energy X-ray absorptiometry image analysis using deep learning
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2.5 Evaluation and Performance Analysis

2.5.1 Evaluation Matrices
The difference between model-based prediction and ground truth annotations was noted by the number

of TN (true negatives), TP (true positives), FN (false negatives), and FP (false positives), where n is the total
number of observations such that n = TN + TP + FN + FP. The accuracy of each model was calculated
according to the following procedures.

The Jaccard index (JI) or intersection over union (IOU) is the estimated reliability of the segmented
object with ground truths.

JI ¼ TP

TP þ FP þ FN
; (4)

where “TP is the object area (correctly classified) common between segmented image and ground truth. FP
and FN are the numbers of bone and soft tissue pixels wrongly classified between two classes (bone and soft
tissue)” [33].

Sensitivity, “also known as the positive prediction rate (TPR), measures the proportion of positive pixels
identified accurately” [33]. “In a sensitivity test, the number of correctly classified bone tissue pixels in the
femur DXA image is compared to the ground truth” [33]:

Sensitivity TPRð Þ ¼ TP

GTb
� 100; (5)

where “TP is the total number of correctly classified pixels representing bone, and GTb is the ground truth in
bone pixels” [33].

Specificity, “also known as the true-negative prediction rate (TNR), measures the proportion of negative
pixels accurately identified” [33]. “In a specificity test, the number of correctly classified soft tissue pixels in
a femur DXA image is compared to ground truth” [33]:

Specificity TNRð Þ ¼ TN

GTt
� 100; (6)

where “TN is the total number of pixels correctly classified as soft tissue and GTt is the ground truth in
rejection of the bone pixels” [33].

The false-positive prediction rate (FPR) is the measure of soft tissue pixels wrongly classified
as bone:

FPR ¼ 1� TNRð Þ � 100: (7)

Meanwhile, the false-negative prediction rate (FNR) is the measure of bone pixels wrongly classified as
soft tissue:

FNR ¼ 1� TPRð Þ � 100: (8)

2.5.2 Model Segmentation Accuracy
“The test performance of each method per image was calculated by comparing the segmentation output

of a femur object to the ground truth” [33]. “We used sensitivity, specificity, and IOU tests to measure the
accuracy of an individual image” [33]. “A segmentation method was considered to have failed to segment
a femur object in a test image correctly if IOU < 0.92, sensitivity < 95%, or specificity < 93%” [33].
“The final accuracy of the model was calculated by comparing the number of accurately segmented
images out of the total number of test images” [33]:
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Accuracy ¼ 100� 1

n

Xn
1

xi where; xi ¼ 0; if JI , 0:92 k ’, 95 k t, 93
1 else

�
(9)

In the above equation, JI is the Jaccard index, φ is the image segmentation sensitivity, and υ is the image
segmentation specificity. The 2,500 (original + augmented) DXA images were divided for experiments as
follows: 60% were used for training, 20% were used for validation to optimize the parameters of all the
segmentation models, and remaining 20% were used for independent testing.

2.5.3 Comparison with Conventional Techniques
Previously, we used some conventional techniques (i.e., Otsu’s thresholding and a pixel label decision

tree) to segment femur in DXA images using handcrafted features. Thus, we compared the results of the
current deep-learning-based segmentation to our previous work. For more details, visit our previous work
referenced in [33].

3 Results and Discussion

We used the same dataset from our previous study titled “Femur Segmentation in DXA Imaging Using a
Machine Learning Decision Tree” [33], with some additional femur images acquired from a DXA scanner
(OsteoPro MAX, YOZMA B.M. Tech Co., Ltd., Republic of Korea). Radiology experts manually segmented
femur images as the ground truth. Manual annotations were extracted from the DXA system in the portable
network graphic file format along with high-contrast images to train and test our deep learning models. Each
and every pixel in a femur image was annotated and assigned a class label (i.e., either bone, soft tissue, or air).

This section presents the performance of the U-Net, SegNet, and FCN approaches using the test data
(i.e., 500 femur images). Tab. 1 shows the segmentation performance results in terms of average accuracy
computed using the JI, sensitivity, and specificity of all the test images. Some output examples of the
segmented femur DXA images are shown in Fig. 2 using different segmentation methods. A couple of
the predicted segmentation contours based on the different segmentation models are shown in Fig. 3.

Segmenting femur images with significantly higher accuracy (i.e., 98.5%) occurred from using an FCN
in comparison to the other segmentation models. Optimal results were produced with an FCN when it was
fine-tuned to the DXA data. We segmented 500 test femur images with an FCN and other deep learning
models. Each model demonstrated soaring performance over the conventional models in high-contrast
femur sections (the femur head and shaft), as well as in most challenging areas (e.g., the greater and
lesser trochanters). Data were collected on multiple devices, and the models covered the diversity of the
data and were robust.

Table 1: Segmentation performance of different methods on the test dataset

Method Trainable parameters Segmentation accuracy (%)

Otsu’s thresholding – 72.6

PLDT 158.76 M 91.4

SegNet 12.4 M 96.7

U-Net 11.6 M 96.1

FCN 135.4 M 98.5
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Figure 2: Dual energy X-ray absorptiometry image segmentation with different models: (a) a femur image,
(b) a femur image segmented by SegNet, (c) a femur image segmented by U-Net, (d) a femur image
segmented by a fully convolutional network, (e) a femur image segmented by a pixel label decision tree,
and (f) a femur image segmented by Otsu’s thresholding

Figure 3: Predicted femur boundaries with SegNet, U-Net, and a fully convolutional network. The red
contours represent ground truths, the yellow contours represent SegNet, the blue contours represent
U-Net, and the green contours represent the fully convolutional network
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We performed a BMD consistency check on model-segmented images in comparison to manually
segmented ones. First, we randomly selected 100 femur images and gave them to three persons to
manually segment the femur, select regions of interest, and calculate the BMD at three different regions,
that is, the femur neck, Ward’s triangle, and the greater trochanter. Second, an average value was
recorded from three expert readings at the three femur regions (i.e., the femur neck, Ward’s triangle, and
the greater trochanter) for each instance of the image. Then the estimations were compared with the
model-based segmentation to check the consistency of each model. Finally, we carried out a statistical
correlation study (by calculating the coefficient of determination, R2) of the BMD measurements between
the different segmentation methods and manual segmentation. The FCN segmentation method scored the
highest correlation record as shown in Tab. 2.

The results demonstrate that the FCN method yields higher sensitivity, specificity, and accuracy than the
other models. The FCN model provides a practical and powerful technique for the segmentation issue in
DXA imaging. Although a CNN model is considered an innovative and genuine segmentation method, it
requires an extensive amount of training data. We followed the transfer learning idea to raise the training
capability of deep learning models on a small number of femur DXA images. We employed the weights
of the pre-trained model Visual Geometry Group16 network by using the immense ImageNet dataset. Our
previous study presented on femur segmentation [33] shows that current deep learning models performed
better than previously applied models.

A conventional problem for deep learning is the fact that it is hard to train a CNN-based network with
limited data without using optimized techniques and data augmentation. For this reason, appropriate
optimization methods, data augmentation, and transfer learning can assist in training a reliable
segmentation network. Transfer learning fine-tunes the deep network that has been pre-trained on
medical or general images. Set side by side with data augmentation, transfer learning is an additional
distinct solution with many parameters. To address this issue, we successfully implemented the transfer
learning solution with DXA images that had already been segmented with another solution (i.e., those
from ImageNet).

During the correlation analysis of femur BMD measurement, we found a significantly higher correlation
(R2 = 0.962) between the measurement from an FCN-segmented femur images compared to the expert-
segmented ones. Further investigations may be able to identify the serviceability of FCN and other deep
learning models in the clinical diagnosis of osteoporosis and the prediction of fracture risk. All deep-
learning-based models were shown to perform better than previously applied techniques. The study has
demonstrated that convolutional networks can be effectively used with a high level of performance on a
small clinical dataset through transfer learning in semantic segmentation.

Table 2: Segmentation performance of different methods on the test dataset

Method R2

Neck Ward’s triangle GT Mean

Otsu’s thresholding 0.5105 0.9203 0.3734 0.6014

PLDT 0.9092 0.9998 0.9212 0.9434

SegNet 0.9819 0.9998 0.9592 0.9803

U-Net 0.9811 0.9996 0.9560 0.9789

FCN 0.9933 0.9999 0.9954 0.9962

Note: In Tab. 2 GT stands for greater trochanter and PLDT represents pixel label decision tree.
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4 Conclusion

We presented a deep-learning-based technique for femur segmentation in DXA imaging and focused on
improving segmentation accuracy. The predictive performance and efficiency of an FCN on femur data was
stunning. The practical use of the FCN method in DXA image segmentation has the potential to enhance the
validity of BMD analysis and clinical diagnosis of osteoporosis.

Our results demonstrate that the FCN model can be used for DXA image segmentation since it performs
well on femur DXA images with proper tuning of the model. One limitation of the deep learning approach is
that these models suffer from poor generalization when the input data comes from different DXA machines
(due to different acquisition parametrization, system models, system calibration, etc.). Our next research step
will focus on this issue.
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