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Abstract: Quantum correlation plays a critical role in the maintenance of
quantum information processing and nanometer device design. In the past
two decades, several quantitative methods had been proposed to study the
quantum correlation of certain open quantum systems, including the geome-
try and entropy style discord methods. However, there are differences among
these quantification methods, which promote a deep understanding of the
quantum correlation. In this paper, a novel time-dependent three environ-
mental open system model is established to study the quantum correlation.
This system model interacts with two independent spin-environments (two
spin-environments are connected to the other spin-environment) respectively.
We have calculated and compared the changing properties of the quantum
correlation under three kinds of geometry and two entropy discords, espe-
cially for the freezing phenomenon. At the same time, some original and
novel changing behaviors of the quantum correlation under different time-
dependent parameters are studied, which is helpful to achieve the optimal
revival of the quantum discord and the similar serrated form of the freezing
phenomenon. Finally, it shows the controllability of the freezing correlation
and the robustness of these methods by adjusting time-dependent parameters.
This work provides a new way to control the quantum correlation and design
nanospintronic devices.

Keywords: Spin environment; quantum correlation; nanospintronic devices;
quantum information; freezing phenomenon

1 Introduction

As an important part of quantum theory, quantum correlation shows some unimaginable
properties of composite quantum systems that cannot be reproduced by classical systems. It has
been widely studied in many physical fields, such as quantum information [1] and condensed
matter physics [2]. Ollivier et al. [3], Henderson et al. [4] extend the mutual information concept
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of classical information theory to the quantum field and give the concept of quantum discord
(QD) to quantify the quantum correlation by the von Neumann entropy, it has been demonstrated
that entanglement represents a portion of the quantum correlation and can cover the latter for
a global pure state entirely [5]. The minimum is required for all in quantum discord calcula-
tion and the tool of tomography [6] is usually needed to quantify the von Neumann entropy.
Many efforts have been devoted to find the new quantification methods (QMS) in recent years,
including Hilber–Schmidt [7], Bures distance, trace-norm and Hellinger [8] and the Rènyi entropy
discord(RED) [9,10]. Generally, it is still an open problem about how to search the most optimal
quantification method for a deterministic model, because there are subtle discrepancies between
different methods. There are some subtle differences [9] not only between these geometry discord
(GD) under the same condition, but also between the QD and GD. In prior studies, the Rènyi
entropy had been found easy to implement experiment and probe as an equivalent definition
of quantified information in information theory (Shannon and the Rènyi definition), which has
aroused much attention to the Rènyi entropy discord (RED) [10].

In the realistic world, the quantum correlation of a quantum system unavoidably decreases
with the system information continuously losing due to the experimental observation and applied
field or the interaction between the surrounding environment and the system. Therefore, it is
necessary to study the quantum correlation of the quantum open systems (QQS) [11]. From
the dynamics process perspectives of these QQS, the dynamics of QQS can be represented as
a quantum channel mapping from an initial state to a final state. Meanwhile, these channels
generally show Markovian and non-Markovian dynamical behaviors and arouse many unique
properties of the quantum system for different QQS models, such as the revival and the freez-
ing [5,12] phenomenon of the quantum correlation. Under Markovian condition, the quantum
system exhibits the irreversible dynamics features governed by a nonunitary time evolution, and
quantum correlation also exhibits monotone decrease or disappearance at a finite time and
freezing phenomenon. However, the non-Markovian process shows the reversible dynamic features
for local time. It displays the system information feedback from environments to the system.
The freezing phenomenon may also appear for some QQS [3,12] models because the revival
phenomenon (feedback process). It is natural to ask, when the freezing phenomenon occurs, what
are the conditions corresponding to various quantization methods and whether these conditions
are the same.

In the application of quantum correlation, the quantum engineering has developed an alter-
native approach to improve the efficiency of computation, communication and metrology [1,13]
in the last 30 years. For an open quantum system, the main obstacle is that the relatively
fragile quantum correlation is easily destroyed, which has led to the research of how to control
and maintain quantum correlation. In the previous manuscript [13], the quantum effect (such
as memory effect) of the model is awakened by applying some time-dependent control fields
(the quantum time-dependent open systems.), such as sequentially switching on/off plus fields.
Therefore, it presents an interesting problem with the control of the quantum memory effect,
including revival and freezing quantum correlation.

According to the above problems and our previous works [9,12,14,15], a time-dependent open
system model is proposed, and several geometric and entropy-type incompatible quantum correla-
tions are further studied. At the same time, several different time-dependent parameter conditions
are studied to achieve the controllability of quantum correlation (resurrection correlation and
freezing correlation), including the coupling parameters q12(t) and q23(t) between the environment
and the time-dependent control field.
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2 The Different Quantification Method of QC

2.1 Geometry Discord
Based on the Hilbert–Schmidt distance, Dakic introduced the geometric measure of discord [7]

as Eq. (1):

DHS (ρ)=min
x

||ρ −x| |2 (1)

The minimum is under the set of zero-discord states χ .

Piani [16] later indicated that a factor could be introduced for the quantum correlation by a
factorized local ancillary state on the unmeasured party. Another geometric measure of discord
was put forward based on the classical Hellinger distance [17], which was defined as Eq. (2):

DHL

(
ρab

)
=min∏

a
||
√

ρab−
∏
a

√
ρab||2 (2)

Here the minimum is taken over all local von Neumann measurement
∏
a on party a and ||.||

is the Hilbert-Schmidt distance.

Recently, the Bures distance describing the geometric distance between any two quantum
states in projective Hilbert space has been used to quantify the quantum correlation. The
discord-type correlations Q of a state ρ is defined as Eq. (3) [5]:

QD ≡ inf
x′
D(ρ,x′) (3)

where the set of classical-quantum states x′ =∑i pi|i>< i|A⊗ωB
i , pi is a probability distribution,

{|i>A} denotes an orthonormal basis for subsystem A, ωB
i is an arbitrary ensemble of states for

subsystem B. D(ρ,x′) is the square of the Bures distance. Then, a common Bures distance between
two states ρ1 and ρ2 is defined as Eq. (4):

DBu (ρ1,ρ2)=
√
2(1−

√
F(ρ1,ρ2)) (4)

where F (ρ1,ρ2)= (Tr[
√√

ρ1ρ2
√

ρ1])2 is the Uhlmann fidelity [1].

2.2 Entropy Style Discord
For a given quantum state ρAB of a composite system AB, the quantum discord of the state

ρAB under measurement
∏B

k can be defined as Eq. (5) [3,4]:

D (ρAB)= I (ρAB)− J

(
ρAB

∣∣∣∣
B∏
k

)
=min∏B

k

∑
k

pkS
(
ρAk

)
+S (ρA)−S(ρAB) (5)

Here the von Neumann entropy S (X)=−tr(ρX ) is for the density operator ρX of system X
and ρA(B) = TrB(A)(ρAB) is the reduced density matrix by tracing out the degree of system B(A).

pk =Tr((
∏B

k )†ρAB
∏B

k ) and pAk =TrB((
∏B

k )†ρAB
∏B

k )/pk.

Usually, Rènyi entropy is defined as Sα (ρ) = 1
1−α

logTr[ρα], with the parameter α ∈ (0, 1) ∪
(1,∞) and the natural logarithm of the base 2. Notably, the Rènyi entropy can reduce to the
von Neumann entropy when α → 1. This has exhibited some superiority from quantum physics
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to gravity field, especially in the experimental probe problem of entropy [18]. Therefore, the RED
is defined as Eq. (6) [19]:

DR
α =LR

α (ρAB)−J R
α (ρAB) (6)

with α ∈
(
1
2 , 1

)
∪ (1,∞) and

LR
α (ρAB)= min

{σA,σB}
S̃Rα
(
ρAB||σA

⊗
σB

)
(7)

J R
α (ρAB)=max

{Pi}
min

{σA,σB}
S̃Rα
(
ρAB||σA

⊗
σB

)
(8)

Here the minimum is taken over all the density matrices σA and σB, and

ρ′
AB =

∑
i

(IA⊗Pi)ρAB(IA⊗Pi) (9)

with Pi performing rank-1 projective measurements.

S̃Rα (ρ| |σ)= 1
α− 1

log[Tr
(
σ

1−α
2α ρ 1−α

2α

)α

] (10)

Despite the different Rènyi generalizations of the quantum discord, we only focus on the
properties of quantum correlation, where the relationship of different Rènyi discord defini-
tion is not considered here. Thus we choose the Rènyi discord of Eq. (6) with the similar
form to Eq. (5).

3 The Hamiltonian of Quantum System

Two independent spin particles 1 and 3 (each with spin 1/2) are constructed, forming a two
qubits system, and each spin particle interacts with one Fermi-environment (E1 or E3, with spin
1/2 for each particle), respectively [9]. These two Fermi-environments are related by interacting
with the third Fermi-environment E2 (each particle rotates 1/2). Simultaneously, a time-dependent
controlling field ξ(t) is applied to the environments with the time-dependent interaction parameters
q12(t) and q23(t) between the environments. This model can be realized by a spin cluster adsorbed
on graphene substrate [20]. The Hamiltonian of this open system is given as Eq. (11) (� = 1):

H =
∑
a=1,3

(ωasza+ basa ·Sa)+
∑

a=1,2,3

(αd + ξ(t))Szd + q12 (t)Sz1S
z
2+ q23 (t)Sz2S

z
3 (11)

where ωa (a = 1, 3) and αd (d = 1, 2, 3) are the frequencies of the qubit (characterized by spin
operators si) and the environments, respectively. q12(t) (q23(t)) is the time-dependent coupling
parameters between the environment 1 (3) and the environment 2. Each environment consists of
Nd particles and ξ (t) is the controlling field. The interaction intensity between the spin particle 1

(3) and the environment 1 (3) is b1 (b3); Szd =
∑Nd

k=1
σ zk,d
2 , Sxd =

∑Nd
k=1

σxk,d
2 , Syd =

∑Nd
k=1

σ
y
k,d
2 are the

collective spin operators of environments. σ z
k,d ,σ

y
k,d and σ x

k,d are the Pauli matrices.
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The reduced density operator ρs(t) of the system can be obtained by integrating out the
degrees of freedom of the environments for the density operator ρ(t) of the total system shown
as Eq. (12).

ρs (t)=TrE
(
e
∫ t
0 Ldt′ρ (0)

)

=
3∏

d=1

1
Zd

e−βdαdmdTrE′
(
e−i

∫ t
0 H

′dt′
(
A†
)

ρs (0) (A) |j1,m1 ><m1, j1× ||j3,m3 ><m3, j3|ei
∫ t
0 H

′dt′
)

(12)

where the super operator L satisfies d
dtρ (t) = Lρ (t) = −i[H,ρ(t)] and A† = |φ >=[∣∣∣12 > 1

∣∣∣ 12 > 3,
∣∣∣12 > 1

∣∣∣ −1
2 > 3,

∣∣∣−1
2 > 1

∣∣∣ 12 > 3,
∣∣∣−1
2 > 1

∣∣∣ −1
2 > 3

]
;
∣∣∣∣± 1

2 > (a= 1, 3) denotes the spin of

particle a.

Ding et al. [9] had the similar detailed calculation process with Eq. (12), because ρs (t) has a
complicated analytical expression.

4 The Quantum Correlation of X and SCI States

4.1 The Change of DHS ,DHL,DBR,QD and RED

Figure 1: The properties of Bures distance discord as a function of time t for X initial states. The
parameters are α1 = α3 = 110 ps−1, α2 = 200 ps−1, ω1 = ω3 = 250 ps−1; ω2 = 200 ps−1, q12(t) =
q23(t)= 50 ps−1, ξ(t)= 0, β1 = β3 = 1/300, β2 = 1/77, N1 =N3 = 10, N2 = 30 and b1 = b3 = 3 ps−1

for this and also the following Figs. 2–5



3112 CMC, 2021, vol.66, no.3

Figs. 1–5 show the revival and freezing phenomenon of the quantum correlation for X [5]
and SCI [21] initial states by DHS,DHL,DBR,QD and RED. The revival phenomenon displays the
periodical oscillation (the oscillation period depends on the parameter b [9]), with the maximum
of the revival strengthen monotonously decreasing with time t. The freezing phenomenon also
exists for different parameter conditions. Here, Tab. 1 compares some characteristics of different
QMS in terms of recovery and freezing of quantum correlation. The following properties can
be obtained:

(1) The numerical searches indicate that the maximal revival strengthen has the same or
approximately equal value for X and SCI initial states.

(2) The different changing behaviors of quantum correlation only exist for non-maximal revival
strengthens of X and SCI initial states.

Figure 2: The properties of Hellinger distance discord as a function of time t for X initial states

(3) Although all DHS,DHL,DBR and QD show the freezing phenomenon for the same and
different initial states, The freezing phenomenon of different quantifiers definitely answers a
question: “Is the freezing phenomenon purely a mathematical accident, due to the specific
choice of quantum-related quantifiers, or must it be manifested independently of the
measures used? [5]” (It only answer No to the geometric quantify measurement). At the
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same time, it also implies that the quantum-related freezing phenomenon is a universal
quantum feature and has profound physical significance.

(4) For the same SCI initial states, the DHL,DBR and QD show the conformity behavior of the
freezing phenomenon. This property also means that the DHL,DBR and QD are better than
DHS for the quantification of quantum correlation (References [5,16,17] have discussed
some bad properties of DHS).

(5) In the geometric quantification DHS,DHL and DBR, the value of the frozen platform
satisfies DBR >DHS =DHL. It also hints that the Bures distance quantification method [5]
is better than the other two measurement methods.

(6) From the last two columns of Tab. 1, the SCI and X initial states of freezing condi-
tions have the same diagonal and anti-diagonal elements. However, only DBR can present
the contribution of the non-diagonal elements to the quantum correlation. This prop-
erty can not only be useful for the experimental measurement of the quantum corre-
lation but also shows the advantages of the Bures distance over the other geometric
quantification measurements.

Figure 3: The properties of Hilber–Schmidt distance discord as a function of time t for X
initial states

(7) Since searching for the minimum relative entropy distance of the states ρAB and ρ′
AB

from the set of all completely uncorrelated states σA⊗ σB is complicated, the analytic and
numerical solutions of Eq. (6) are quite difficult for general states. Considering our model,
the symmetries of the X initial states are researched under the symmetrical environment
(Avijit et al. [19] also discussed some special states). Fig. 5 shows the changing behaviors
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Figure 4: The properties of quantum discord as a function of time t for X initial states

Figure 5: The properties of Rènyi entropy discord as a function of time t for X initial state which
satisfies a= 0.4; b= c= 0.1; α = 0.32 and β = 0.08
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of RED for a X initial state with a = 0 : 4; b = c = 0 : 1; α = 0 : 32 and β = 0 : 08 under
different parameters α. Similar to the above discord, some properties in Fig. 4 are obtained
as follows. (i) The revival phenomenon also exists and displays the periodical oscillation
for different parameters α. (ii) For different α, the minimum value of RED is not equal
to zero and remains constant in several periods. So the freezing phenomenon also exists.
(iii) The value of RED is not monotonous with the parameter α [10]. (iv) The maximum
of RED increases with the increase of α. The comparison between RED and the other
methods is presented in Tab. 12. Notably, Eq. (12) does not give the changing behaviors
for α = 1 because of the divergence [10].

Table 1: Comparison of the various QMS

QMS Revival X
(SCI) initial
states

Max revival
monotony
decreasing

Frozen
X
(SCI)

Freezing
condition
a= b= 0.1
c= 0.4
α = β = 0.2

Freezing
condition
C11 = 0.8,
C33 = 0.6
C22 =−0.48
C01 = 0.2,
C10 = 0.16

DHS
√
(
√
)

√ √
(
√
)

√ ×
DHL

√
(
√
)

√ √
(
√
) × √

DBR
√
(
√
)

√ √
(
√
)

√ √
QD

√
(
√
)

√ √
(
√
) × √

RED
√
(
√
)

√ √
(
√
) ? ?

5 The Controllability of Quantum Correlation

In this section, we study the influence of time-dependent parameters q12(t), q23(t) and ξ(t)
on quantum correlation to show the controllability of quantum correlation. According to the
nature of the resurrection and freezing phenomenon in Figs. 1–5, the controllability of the max-
imum resurrection and freezing phenomenon of the X state is proved by the method of Bures
distance inconsistency.
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Figure 6: Under the condition of inconsistent Bures distance, the freezing phenomenon of X
initial states changes with time t. The red solid line displays the changing behaviors of quan-
tum correlation for jump function q12(t) and q23(t), satisfying q12(t) = q23(t) = 0 for t ∈
[1, 3]

⋃
[5, 7]

⋃
[7, 9]

⋃
[9, 11]

⋃
[13, 15]

⋃
[17, 19], otherwise q12(t) = q23(t) = 50 ps−1. The blue

dash line displays the changing behaviors of quantum correlation for q12(t) = q23(t) = 10 ps−1.
Other parameters are the same as Fig. 1

5.1 The Controllability of the Freezing Phenomenon
By using the Bures distance inconsistency, the freezing phenomenon is shown as a function of

the time t of X initial states, as shown in Fig. 6. Some special properties are obtained: (1) The red
solid line shows the similar serrated form of the freezing phenomenon with q12(t)= q23(t) flip back
and forth between 0 and 50 ps−1. (2) Comparing the behaviors of red solid line with blue dash
line, the platform can soon collapse for smaller q12(t) and q23(t) which may affect the appearance
of the freezing platform. Noticing the different styles of red solid line and blue dash line at the
time t= 2 s, it stems from q12(t) and q23(t) jumping from 50 to 0 ps−1 at this time and arouses the
collapse of the freezing platform. Then the freezing platform recovers with q12(t)= q23(t) jumping
to 50 ps−1 in the next time interval.
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In Fig. 7, the controllability of the freezing phenomenon is shown by using the outfield
ξ(t) = 1000 cos (θt). Determined from Figs. 7a–7c, θ = 3 gives the most stable freezing platform
(see Fig. 7b) when the external field oscillation frequency is equal to the oscillation frequency of
quantum correlation (see Fig. 6). This unique property stems from the sum values of the external
field ξ(t) pulsing α1(3) in the time period of emergence of freezing phenomenon, and the freezing

phenomenon is strengthened for an upper bound (about 800 ps−1) of the sum value. For θ = 1
(see Fig. 7a), there exists a longer time horizon for the sum value over upper bound at 6.5, 13,
19.5 s which comes from the slower change of the external field, showing a longer time freezing
phenomenon platform. But the in conformity between θ and the oscillation frequency of quantum
correlation arouses the decrease of the sum value at some time horizon. Finally, this unevenly
frozen platform appears in Fig. 7a. Conversely, Fig. 7c shows the vibration and unstable freezing
platform for θ = 5 arising from the faster change of the external field. Therefore, the additional
field comes from control action, inner interaction of environments.

(a)

(b)

(c)

Figure 7: The freezing phenomenon is shown as a function of time t for X initial states under
Bures distance discord when a field ξ(t)= 1000 cos(θt) is applied



3118 CMC, 2021, vol.66, no.3

5.2 The Steady of Freezing Platform
In this section, it is shown how two different situations affect quantum correlation and the

feasibility of the controllability of quantum correlation by parameters q(t) and ξ(t). Meanwhile,
there are some worthwhile open problems for the different external fields, such as different forms
of ξ (t) along x-axis and y-axis.

Figs. 7a–7c show the properties for the different frequencies θ = 1, 3, 5, respectively. The
parameters q12 (t)= q23(t)= 10 ps−1. The other parameters are the same as Fig. 1.

According to the characteristics of the information flow between the system and the envi-
ronment, since environment 2 provides a new information transmission channel, the system
information feedback from environment 1 and environment 3 affect each other. Therefore, by
considering the random fluctuations of the parameters q12(t) and q23(t), the stability of the frozen
platform caused by the random fluctuations of this new information transmission channel [22]
is discussed. Here, Gaussian noise is added to this channel to arouse the stochastic fluctuation
of q12(t) and q23(t), and the stability of the freezing platform Δ for X initial states and Bures
distance is defined as:

Δ=
∑B

g=1
∑A

k=1(DBR,g (tk)−D′
BR,g(tk))

AB
(13)

where DBR,g (tk) and D′
BR,g(tk) denote the quantum correlation for absence and presence of

Gaussian noise condition at time tk, respectively. The number g is the recalculation time of the
statistical average. Note that the time tk is only selected during the time interval during which
freezing occurs.

Figure 8: (Color online) The stability of the freezing platform for X initial states under Bures
distance discord when a Gaussian noise applied on the information exchange channels between
the environments which are described by the q12(23)(t). Whilst, k= 50, t= [1,3], q23(t)= q23(t) is
equal to 50 ps−1. The g= 50 times and the other parameters are the same as Fig. 1
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In Fig. 8, the stability of the frozen platform under different Gaussian noise intensity is
shown. The frozen platform appears at the time interval of 4s and collapses at the next time
interval of 6 s. The stability of the frozen platform shows a flipping behavior at a Gaussian noise
intensity of 35. This flipping behavior stems from two aspects: (1) In Sections 2–4, it is shown
that the stable freezing platform for |q| ≥ 50 ps−1, corresponding to the sum of q12(t) and q23(t)
and the amplitude of the noise which is different from the noise intensity can be negative. (2) For
the Gaussian distribution of noise, the probability of |q| < 50 increases with noise. Nevertheless,
the Gaussian distribution is flatter with the increase of noise, the probability of |q|< 50 decreases
when the noise intensity excesses a threshold 35 with the parameters of Fig. 8.

6 Conclusion

The quantum correlation of a novel time-dependent three environments open system model
has been discussed by using several common quantification methods of quantum correlation.
Although all quantitative methods show the revival behavior for X and SCI initial states, the
freezing phenomenon had been only displayed for some quantitative methods. Particularly, the
freezing phenomenon of the SCI initial state gives a powerful proof of the fact that it is not a
mathematical accident. Meanwhile, DHS shows the worst properties among the mentioned discords
for quantification of quantum correlation, as supported by the previous literature. According to
the general properties of revival and freezing phenomenon, we put forward two different methods
to show the controllability of quantum correlation, especially the controllability of freezing phe-
nomenon. It provides an effective way to control quantum correlation and design nanospintronic
devices. The present results put forward a worthy study for open problems, especially the role of
a multi-environment quantum system in quantum information.
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