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Abstract: Reaction–diffusion systems are mathematical models which link to sev-
eral physical phenomena. The most common is the change in space and time of
the meditation of one or more materials. Reaction–diffusion modeling is a sub-
stantial role in the modeling of computer propagation like infectious diseases.
We investigated the transmission dynamics of the computer virus in which con-
nected to each other through network globally. The current study devoted to
the structure-preserving analysis of the computer propagation model. This manu-
script is devoted to finding the numerical investigation of the reaction–diffusion
computer virus epidemic model with the help of a reliable technique. The
designed technique is finite difference scheme which sustains the important phy-
sical behavior of continuous model like the positivity of the dependent variables,
the stability of the equilibria. The theoretical analysis of the proposed method like
the positivity of the approximation, stability, and consistency is discussed in
detail. A numerical example of simulations yields the authentication of the theo-
retical results of the designed technique.

Keywords: Computer virus dynamics; reaction–diffusion system; positive
solution; simulations

1 Introduction

Computer viruses are automated programs that, against the users’ wish, make copies of themselves to
spread to new targets and as a result infect the computers [1]. With the accelerated advancement of
modern technologies, the internet has assimilated into each part of our life, which is a great help for us,
as well as it also poses a serious problem to individual and corporate computer systems through cyber-
attacks [2]. A lot of effort has been dedicated to studying how to avoid harmful actions. To control
effectively the diffusion of computer viruses, it is very crucial to figure out the ways that nasty codes
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propagate over the Internet. In order to minimize the threat of virus spread, various strategies can be proposed
by using epidemic models. In 2018, Ali et al. [3] studied the Padé approximation method to describe the
propagation of a computer virus via the SEIR model. Due to the compelling analogy between a computer
virus and a biological virus, some classic computer virus epidemic models, such as SIRS, SIS, SIR, SLB,
SEIR, delayed, and stochastic models were proposed and studied. In epidemics, the most common fatal
infectious diseases are measles, malaria, HIV/AIDS, tuberculosis, influenza, etc., determine the individual
mechanisms and environmental conditions that have contributed to their spread. Epidemic modeling helps
to identify the specific areas of virus spread and also predict effective preventives and creative measures
to control it [4]. Mishra et al. [5] presented various mathematical models on computer viruses. In 2017,
Kumar [6] developed a SIRA dynamical model of the computer virus. In 2008, Doud et al. [7] proposed
computer virus plans and discovery methods by using different delays. In 2015, Ebenezer et al. [8]
presented the SIER mathematical model by the use of local and global sense dynamics of computer bugs
productivity. In 2019, Ozdemir et al. [9] proposed the SEIR-KS model of fractional order model for
computer virus transmission. In 2015, Oztürk et al. [10] presented the mathematical modeling of an
improved version of the SIR model. Rey [11] investigated the dynamics of computer virus spread in the
system of networks. In 2019, Lanz et al. [12] proposed the SEI1I2QR model in which they examine types
of malware acquired based on infection symptoms treatment. In 2016, Xu et al. [13] presented the SEIR
model to discuss the spread of malware in the presence of anti-virus capacity. In 2016, Liu et al. [14]
represented the SIQR model by utilizing two delays strategy. In 2008, Yuan et al. [15] described the
SEIR model by use of three crucial networking environmental factors. In 2012, Yang et al. [16] suggested
the SLBS model in which explains the prohibition of malware on the internet. In 2020, Dubey et al. [17]
studied the analytically schemes for malware spread through the network and proposed the CVP model.
In 2020, Arif et al. [18] investigated the stochastic dynamics of the computer propagation model by using
the different numerical techniques in which focus on the structure-preserving method. In our opinion, the
epidemic models for computer viruses can help to better understanding how the viruses diffuse on
networks. In this study, we extend a computer virus epidemic model by placing a diffusion term. We
determine the conditions under which epidemics are likely to occur. The computer virus has a latent
period, during which individuals are exposed to a computer virus but are not yet infectious. An infected
computer which is in latency, will not infect other computers immediately; however, it still can be
infected [19]. In this study, the following reaction–diffusion computer virus epidemic model is proposed
for numerical analysis which is an extended form of the model given by Persaei et al. [20].

@S

@t
¼ d1

@2S

@x2
þ d� bS Lþ Bð Þ þ c1Lþ c2B� dS; (1)

@L

@t
¼ d2

@2L

@x2
þ bS Lþ Bð Þ � c1L� �aL� dL; (2)

@B

@t
¼ d3

@2B

@x2
þ �aL� c2B� dB: (3)

with initial conditions

S x; 0ð Þ ¼ F 1 xð Þ � 0, L x; 0ð Þ ¼ F 2 xð Þ � 0, B x; 0ð Þ ¼ F 3 xð Þ � 0,

and homogenous Neumann boundary conditions. Where S x; tð Þ represents the class of uninfected computers,
L x; tð Þ represents latent computers and B x; tð Þ represents the seizing computers at time t. The constant rate of
connecting external computers with internet and disconnecting internal computers from internet is denoted
by d: b is the constant rate of infection and the term bS Lþ Bð Þ is the percentage of internal computers
infected at time t. �a is the constant rate of latent computer breakout. Latent computers are cured at the
constant rate of c1, while breaking out computers are cured at the constant rate of c2. d1; d2; d3 are
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constant rate of diffusion. All these parameters used in this model are positive. It is observed that the
variables of interest of the proposed computer virus model are the computer populations. Now it is the
basic need for the solution of system (Eqs. (1)–(3)) to be positive as values of unknown variables
involved are taken as absolute [21]. In the present era, several positivity persevering numerical techniques
are proposed by various authors because many dynamical continuous systems require the positive
solution [22,23]. The current work is dedicated to designing and analyzing a finite difference algorithm
which retains the positive solution of the state variables of the continuous system for the solution of
computer virus epidemic model (Eqs. (1)–(3)). This manuscript is sectioned as follows. The reproductive
number and equilibrium points of the system under study is explained in Section 2. In Section 3, a
numerical algorithm is designed to solve the computer virus epidemic system. In the same section, the
theoretical analysis of the proposed technique is performed. It is shown that the designed numerical
technique is capable of retaining the positivity of the solution. The stability and consistency of the
proposed algorithm are also authenticated in this section. Section 4 is devoted to the computation results.
The simulations are justified the theoretical results of the designed method.

2 Equilibria of the Model

The model Eqs. (1)–(3) admits two equilibrium points, VFE (virus free equilibrium) ¼ E0 ¼ 1; 0; 0ð Þ,
and the CVE (computer virus endemic equilibrium point) ¼ E1 ¼ S1; L1; B1ð Þ:

where, S1 ¼ 1

<0
¼ c2 þ dð Þ �aþ c1 þ dð Þ

b �aþ c2 þ dð Þ ; L1 ¼ <0 � 1ð Þ c2 þ dð Þ
<0 �aþ c2 þ dð Þ ; B1 ¼ �a <0 � 1ð Þ

<0 �aþ c2 þ dð Þ ; and reproductive

number of the model is <0 ¼ b �aþ c2 þ dð Þ
c2 þ dð Þ �aþ c1 þ dð Þ :

3 Numerical Modeling

Divide 0; L½ � � 0;T½ � into M2 � N with step sizes h ¼ L

M
and k ¼ T

N
. Grid points are

xj ¼ jh; j ¼ 0; 1; 2; . . . ;M ;

tn ¼ nk; n ¼ 0; 1; 2; . . . ;N ;

Snj , Lnj and Bn
j are denoted as finite difference approximations of S jh; nkð Þ; L jh; nkð Þ and B jh; nkð Þ

respectively.

Take Eq. (1)

Snþ1
j � Snj

k
¼ d1

Snþ1
j�1 � 2Snþ1

j þ Snþ1
jþ1

h2
þ d� bSnþ1

j Lnj þ Bn
j

� �
þ c1L

n
j þ c2B

n
j � dSnþ1

j ;

Snþ1
j � Snj ¼ d1k

Snþ1
j�1 � 2Snþ1

j þ Snþ1
jþ1

h2
þ dk � bkSnþ1

j Lnj þ Bn
j

� �
þ c1kL

n
j þ c2kB

n
j � dkSnþ1

j

Snþ1
j � Snj ¼ �1 Snþ1

j�1 � 2Snþ1
j þ Snþ1

jþ1

� �
þ dk � bkSnþ1

j Lnj þ Bn
j

� �
þ c1kL

n
j þ c2kB

n
j � dkSnþ1

j ;

��1 Snþ1
j�1 þ Snþ1

jþ1

� �
þ Snþ1

j 1þ 2�1 þ bk Lnj þ Bn
j

� �
þ dk

� �
¼ Snj þ dk þ c1kL

n
j þ c2kB

n
j ; (4)
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Similarly we have from Eq. (2) and Eq. (3) simultaneously.

��2 Lnþ1
j�1 þ Lnþ1

jþ1

� �
þ Lnþ1

j 1þ 2�2 þ �aþ c1 þ dð Þkð Þ ¼ Lnj þ bkSnj Lnj þ Bn
j

� �
; (5)

��3 Bnþ1
j�1 þ Bnþ1

jþ1

� �
þ Bnþ1

j 1þ 2�3 þ c2 þ dð Þkð Þ ¼ Bn
j þ �aLnj : (6)

where �1 ¼ d1k

h2
; �2 ¼ d2k

h2
and �3 ¼ d3k

h2
.

3.1 Consistency of the Proposed Scheme

This section is concerned about the verification of the proposed scheme to be consistent. For this,

ĻS ¼
Snþ1
j � Snj

k
� d1

Snþ1
j�1 � 2Snþ1

j þ Snþ1
jþ1

h2
� dþ bSnþ1

j Lnj þ Bn
j

� �
� c1L

n
j � c2B

n
j þ dSnþ1

j (7)

Snþ1
j ¼ Snj þ k

@S

@t
þ k2

2!

@2S

@t2
þ k3

3!

@3S

@t3
þ . . . (8)

Snþ1
jþ1 ¼ Snj þ k

@S

@t
þ h

@S

@x
þ k2

2!

@2S

@t2
þ h2

2!

@2S

@x2
þ 2hk

@S

@t

@S

@x
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3!

@3S

@t3
þ h3

3!

@3S

@x3

þ 3
h2k

3!

@3S

@x2@t
þ 3

hk2

3!

@3S

@x@t2
:

(9)

Snþ1
j�1 ¼ Snj þ k

@S

@t
� h

@S

@x
þ k2

2!

@2S

@t2
þ h2

2!

@2S

@x2
� 2hk

@S

@t

@S

@x
þ k3

3!

@3S

@t3
� h3

3!

@3S

@x3

þ 3
h2k

3!

@3S

@x2@t
� 3

hk2

3!

@3S

@x@t2
:

(10)

By putting all these definitions’ in Eq. (7), we have

ĻS ¼
k

k

@S

@t
þ k

2!

@2S

@t2
þ k2

3!

@3S

@t3
þ . . .

� �
� d1h2

h2
@2S

@x2
þ k

@3S

@x2@t
þ . . .

� �
� dþ b Lnj þ Bn

j

� �

Snj þ k
@S

@t
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@2S

@t2
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@3S
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þ . . .

� �
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n
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n
j þ d Snj þ k

@S

@t
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@2S

@t2
þ k3

3!

@3S

@t3
þ . . .

� �

¼ @S

@t
� d1

@2S

@x2
� dþ bSnj Lnj þ Bn

j

� �
� c1L

n
j � c2B

n
j þ dSnj �

d1h2

12

@4S

@x4

þ k b Lnj þ Bn
j

� �
þ d

� � @S

@t
� d1

@3S

@x2@t
þ 1

2!

@2S

@t2
þ k2

3!

@3S

@t3
þ . . .

� �
;

¼ � d1h2

12

@4S

@x4
þ k b Lnj þ Bn

j

� �
þ d

� � @S

@t
� d1

@3S

@x2@t
þ 1

2!

@2S

@t2
þ k2

3!

@3S

@t3
þ . . .

� �
! 0 as h2 ! 0; k ! 0:

Similarly we can check for ĻL and ĻB i.e.,

ĻL ¼ � d2h2

12

@4L

@x4
þ k ð�aþ c1 þ dÞ @L

@t
� d2

@3L

@x2@t
þ 1

2!

@2L

@t2
þ k2

3!

@3L

@t3
þ � � �

� �
! 0 as h2 ! 0; k ! 0:
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ĻB ¼ � d3h2

12

@4B

@x4
þ k ðc2 þ dÞ @B

@t
� d2

@3B

@x2@t
þ 1

2!

@2B

@t2
þ k2

3!

@3B

@t3
þ � � �

� �
! 0 as h2 ! 0; k ! 0:

Hence our proposed scheme is consistent and first order accurate in time and second order accurate in space.

3.2 Stability of Proposed Scheme

In this section, we will use von Neumann stability criteria to show our proposed implicit scheme from
Eqs. (4)–(6) is unconditionally stable. For this purpose, we will introduce the following terms,

Snj ¼ w tð Þeijh, Snþ1
j ¼ w t þ Dtð Þeijh, Snþ1

jþ1 ¼ w t þ Dtð Þei jþDjð Þh

And Snþ1
j�1 ¼ w t þ Dtð Þei j�Djð Þh

Put all these terms in Eq. (4), we have

��1 w t þ Dtð Þei jþDjð Þh þ w t þ Dtð Þei j�Djð Þh� �þ w t þ Dtð Þeijh 1þ 2�1 þ bk cnj þ dk
� �

¼ w tð Þeijh;
where cnj ¼ Lnj þ Bn

j

� �
:

w t þ Dtð Þ ��1 ei jþDjð Þh þ ei j�Djð Þh� �þ eijh 1þ 2�1 þ bk cnj þ dk
� �� �

¼ w tð Þeijh;
After proper calculation and rearranging terms, we have

w t þ Dtð Þ
w Dtð Þ ¼ 1

1þ 4�1sin
2 Djh

2
þ bk cnj þ dk

� � ;

Take absolute value on both sides, we have the following inequality,

w t þ Dtð Þ
w Dtð Þ

����
���� ¼ 1

1þ 4�1sin
2 Djh

2
þ bk cnj þ dk

� �
��������

��������
< 1: (11)

By using similar process for Eq. (5), and Eq. (6) simultaneously we have, we have

w t þ Dtð Þ
w Dtð Þ

����
���� ¼ 1

1þ 4�2sin
2 Djh

2
þ �aþ c1 þ dð Þk

� �
��������

��������
< 1; (12)

and

w t þ Dtð Þ
w Dtð Þ

����
���� ¼ 1

1þ 4�3sin
2 Djh

2
þ c2 þ dð Þk

� �
��������

��������
< 1: (13)

Inequalities from Eqs. (11)–(13) are showing that our proposed implicit scheme is unconditionally stable
by using von Neumann stability analysis.

3.3 Positivity

Theorem 1: For any positive k and h, Sn; Ln and Bn appertaining the to the Eqs. (4)–(6) are positive for
all n ¼ 0; 1; . . .
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Proof:We will use m-matrix theory and mathematical induction to show our scheme preserve positivity.
For this purpose rewrite Eqs. (4)–(6) in vector form, as

GSnþ1 ¼ Sn þþdk þ c1kL
n þ c2kB

n; (14)

HLnþ1 ¼ Ln þ bkSnj Lnj þ Bn
j

� �
; (15)

IBnþ1 ¼ Bn þ �aLn: (16)

If �Q represents any of G; H or I ; where these are all real square matrices, then �Q can be written in
general form as

�Q ¼

q3 q1 0
q2 q3 q2
0 q2 q3

� � �
0 0 0
0 0 0
0 0 0

..

. . .
. ..

.

0 0 0
0 0 0
0 0 0

� � �
q3 q1 0
q2 q3 q2
0 q2 q3

0
BBBBBBBB@

1
CCCCCCCCA

The off-diagonal and diagonal entries of G are g1 ¼ �2�1, g2 ¼ ��1 and

g3 ¼ 1þ 2�1 þ bk Lnj þ Bn
j

� �
þ dkÞ. The off-diagonal and diagonal entries of H are h1 ¼ �2�2,

h2 ¼ ��2 and h3 ¼ 1þ 2�2 þ �aþ c1 þ dð Þk. The off-diagonal and diagonal entries of I are i1 ¼ �2�3,
i2 ¼ ��2 and i3 ¼ 1þ 2�3 þ c2 þ dð Þk.

Thus G; H; I are m-matrices.

This implies G; H; I are non-singular matrices. So Eqs. (14)–(16) can be written as

Snþ1 ¼ G�1ðSn þ dk þ c1kL
n þ c2kB

nÞ; (17)

Lnþ1 ¼ H�1ðLn þ bkSnj Lnj þ Bn
j

� �
Þ; (18)

Bnþ1 ¼ I�1ðBn þ �aLnÞ: (19)

Suppose that Sn; Ln; Bn > 0; ⇒ Sn þ dk þ c1kL
n þ c2kB

n > 0;Ln þ bkSnj Lnj þ Bn
j

� �
> 0; and

Bn þ �aLn > 0:

Also G; H ; I are m-matrices. This guarantees that all the entries of G�1; H�1; I�1 are positive. The
product of two positive matrices is also positive.

⇒ R.H.S of Eqs. (17)–(19) are > 0:

So Snþ1; Lnþ1; Bnþ1 are also positive.

Hence our proposed implicit scheme preserve positivity.

4 Numerical Example and Simulations

In this section, we demonstrate a numerical example and simulations for the application of proposed
structure preserving technique. For this we consider the following initial conditions,
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S x; 0ð Þ ¼ 0:5x; 0 � x, 0:5
0:5 1� xð Þ; 0:5 � x � 1

	
; L x; 0ð Þ ¼ 0:2x; 0 � x, 0:5

0:2 1� xð Þ; 0:5 � x � 1

	

B x; 0ð Þ ¼ 0:2x; 0 � x, 0:5
0:2 1� xð Þ; 0:5 � x � 1

;

	

4.1 CVF Point

First we discuss the simulations of proposed structure preserving method at CVF point. For the CVF
point we take the following values of parameters involved in the model so that the value of <0 is less
than one.

d1 ¼ 0:01, d2 ¼ 0:01, d3 ¼ 0:01, a ¼ 0:6, d ¼ 0:1, b ¼ 0:3, c1 ¼ 0:1, c2 ¼ 0:3

Figs. 1–3 demonstrate the numerical solution of model by implementing the proposed technique at the
VFE point. It is given that the VFE point of the computer virus model is 1; 0; 0ð Þ. This point is stable when
the reproductive number values are less than one. So it is concluded that the computer virus epidemic model
under study possesses two main properties, positive solution, and stability of both equilibria. It is evident
from Figs. 1–3 that the simulation results are with the good agreement of theorem 1. The proposed
structure-preserving technique retains positive solutions and stability of the CVF point. The graphs of
susceptible, latent, and breaking out computers shows the convergence towards VFE point 1; 0; 0ð Þ.

4.2 CVE Point

Now we present the simulations of proposed structure preserving method at CVE point. For the CVE
point we use the following values of parameters involved in the model so that the value of <0 is greater
than one.

d1 ¼ 0:01, d2 ¼ 0:01, d3 ¼ 0:01, a ¼ 0:3, d ¼ 0:1, b ¼ 0:4, c1 ¼ 0:1, c2 ¼ 0:3:

Figure 1: The solution graphs of susceptible computers representing the behavior of proposed structure
preserving technique with values of step sizes h ¼ 0:1 and k ¼ 0:8
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Figs. 4–6 describe the graphical solution of the system by using the proposed technique at CVE point.
The CVE point is stable when the reproductive number values are greater than one. It is clearly shown from
the Figs. 4–6 that the proposed structure-preserving numerical technique sustains the positive behavior of the
solution of continuous system. Also, this method preserves the stability of the CVF point. It is validated from

Figure 2: The solution graphs of latent computers representing the behavior of proposed structure
preserving technique with values of step sizes h ¼ 0:1 and k ¼ 0:8

Figure 3: The solution graphs of breaking out computers representing the behavior of proposed structure
preserving technique with values of step sizes h ¼ 0:1 and k ¼ 0:8
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the solution graphs of susceptible, latent and breaking out computers in above figures as the sketches in these
figures show the convergence towards CVE point S�; L�;B�ð Þ.

Figure 4: The solution graphs of susceptible computers representing the behavior of proposed structure
preserving technique with values of step sizes h ¼ 0:1 and k ¼ 0:8

Figure 5: The solution graphs of latent computers representing the behavior of proposed structure
preserving technique with values of step sizes h ¼ 0:1 and k ¼ 0:8
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5 Conclusion

In this paper, we propose an extended reaction–diffusion epidemic model of computer virus dynamics
for the numerical investigation. An efficient and reliable numerical technique is designed which preserves the
stability of equilibria and positivity of the approximation. The stability, consistency, and positivity of the
proposed algorithm are shown mathematically and are validated graphically with the help of a numerical
example. The proposed algorithm can be used for the solution of reaction–diffusion models like predator-
prey models, chemical reaction models and infectious disease models. In future work, we shall extend the
modeling of a computer virus in the computer population in the well-known notations like fractional and
stochastic fractional-order derivatives [24–26].
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