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Abstract: In this paper, the Galerkin finite element method (FEM) together
with the characteristic-based split (CBS) scheme are applied to study the
case of the non-linear Boussinesq approximation within sinusoidal heating
inclined enclosures filled with a non-Darcy porous media and nanofluids. The
enclosure has an inclination angle and its side-walls have varying sinusoidal
temperature distributions. The working fluid is a nanofluid that is consisting
of water as a based nanofluid andAl2O3 as nanoparticles. The porousmedium
is modeled using the Brinkman Forchheimer extended Darcy model. The
obtained results are analyzed over wide ranges of the non-linear Boussinesq
parameter 0≤ ζ ≤1, the phase deviation 00 ≤ Φ ≤ 1800, the inclination angle
00 ≤ γ≤ 900, the nanoparticles volume fraction 0%≤φ≤ 4%, the amplitude
ratio 0≤ a≤1 and the Rayleigh number 104 ≤Ra≤ 106. The results revealed
that the average Nusselt number is enhanced by 0.73%, 26.46% and 35.42% at
Ra= 104, 105 and 106, respectively, when the non-linear Boussinesq parameter
is varied from 0 to 1. In addition, rate of heat transfer in the case of a
non-uniformly heating is higher than that of a uniformly heating. Non-linear
Boussinesq parameter rises the flow speed and heat transfer in an enclosure.
Phase deviation makes clear changes on the isotherms and heat transfer rate
on the right wall of an enclosure. An inclination angle varies the flow speed
and it has a slight effect on heat transfer in an enclosure.

Keywords: CBS scheme; non-linear Boussinesq approximation; non-
uniformly heating; non-darcy flow; nanofluid

1 Introduction

Recently, the problem of the convective flow in closed cavities with different thermal boundary
conditions has been receiving many attentions. The non-uniform heating on the active walls
is resulting from various factors such as the collection of solar energy and the cooling of
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electronic components [1–4]. In the literature, there are several cases of the non-uniform tem-
perature distribution on the walls. Sivasankaran et al. [5] considered the distributions of the
sinusoidal temperature on the convective flow of a nanofluid with variations on the amplitude and
phase deviation of the sinusoidal temperature. Deng et al. [6] studied the case of two spatially
varying sinusoidal temperature on vertical side walls of a rectangular enclosure. Ahmed et al. [7]
presented the effects of the non-uniform temperature variations on magnetohydrodynamic (MHD)
mixed convection in an inclined cavity. Roy et al. [8] used FEM method to study the effects of
the uniform and non-uniform heating wall on natural convection flows. Aly et al. [9] adopted
ISPH method to simulate two different cases of sinusoidal heated and isothermal walls on mixed
convection flow in lid-driven cavity.

In the literatures, most of the studies working on the natural convection using Boussinesq
approximation due to its rapid convergence and easy implementation. De Vahl Davis [10] intro-
duced benchmark results for laminar flow in a square cavity. The comparison between Boussinesq
approximation and Non-Boussinesq approximation was introduced by Nilesh et al. [11] and
Szewc et al. [12]. Srinivasacharya et al. [13] examined the impacts of the non-linear Boussi-
nesq approximation on the micropolar boundary layer flow with non-Newtonian heating. They
noted that in the Darcy flow, the heat and mass transfer rate is more affected by the non-
linear parameter compared with the non-Darcy case. Elshehabey et al. [14] used the non-linear
Boussinesq approximation to study the magnetohydrodynamic flow within wavy geometries using
the ferrofluids. The used scheme is based on the finite element method. They found that the
non-linear parameter enhances the rate of the heat transfer while the average Bejan number is
reduced. Kameswaran et al. [15] studied the effects of the non-linear Boussinesq approximation on
non-Darcy nanofluid flow over a vertical wavy surface. Vasu et al. [16] considered the influences
of nonlinear Boussinesq approximation on unsteady mixed flow of a nanofluid over a sphere.
Kandaswamy et al. [17] used finite difference scheme to study the buoyancy—driven nonlinear
convection in a cavity with considering magnetic field effects. There are several applications from
fluid flows through porous media including geothermal energy systems and oil recovery. In the
recent years, there are numerous studies focused on the flow and heat transfer inside cavities
filled with porous medium and nanofluids [18–26]. Alsabery et al. [27] studied numerically the
natural convection flow of a nanofluid-filled inclined cavity consisting of a porous layer and a
nanofluid layer.

From our investigations, there are no attempts focused on coupling between non-linear Boussi-
nesq approximation and a non-Darcy porous media within sinusoidal heating inclined enclosures.
Hence, this paper introduces a numerical study using CBS scheme [28–32] for investigating the
impacts of sinusoidal heating on a non-linear Boussinesq approximation within inclined porous
enclosure filled with nanofluids. In this study, the water is treated as a base fluid and Al2O3 is
treated as nanoparticles. Brinkman Forchheimer extended Darcy model is used to treat the porous
medium. The finding results showed that the average Nusselt number is enhanced by 0.73%,
26.46% and 35.42% at Ra= 104, 105 and 106, when the non-linear Boussinesq parameter is varied
from 0 to 2. The case of non-uniformly heating gives more enhancements on the rate of heat
transfer compared to the case of uniformly heating.
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2 Model Description

Fig. 1 presents an initial schematic diagram for the current physical model. Here, the square
cavity has length H and it is inclined with an angle γ . The assumptions of the current
work are:

• The sinusoidal heating of the left and right walls are expressed as, respectively: T = Tc +
[Th−Tc]Ar sin

[
2πy
H

]
,T =Tc+ [Th−Tc]Ar sin

[
Φ+ 2πy

H

]
where Φ is the phase deviation.

In addition, the horizontal walls are considered to be adiabatic.
• The gravity acceleration vector is (−g sinγ ,−g cosγ ).
• The current unsteady flow is laminar and incompressible. The base fluid is water with
molecules diameter df = 0.385 nm and Al2O3 is the nanoparticles with diameter dp= 33 nm.

• The nanoparticles are considered to be having a uniform shape and equally size.
• The density is treated by the non-linear Boussinesq approximation and the other thermos-
physical properties of nanofluid are constants.

• Brinkman Forchheimer extended Darcy is used to model the porous medium.
• There is a case of a local thermal equilibrium between the nanofluid and porous medium.
• The thermophysical properties of base fluid and nanoparticles are presented in Tab. 1.

Figure 1: Physical model and coordinates system

Table 1: Thermo-physical properties of water and nanoparticles at T = 310 K

ρ

(
kg
m3

)
K (W/mK) Cp (J/kgK) β × 10−5K−1

Al2O3 3970 40 765 0.85
H2O 993 0.628 4178 36.2
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3 Mathematical Formulations

Taking into account all the previous assumptions, the partial differential equations governing
this physical mode are expressed as:

∂Um

∂X
+ ∂Vm

∂Y
= 0 (1)

1
ε

∂Um

∂τ
+ 1

ε2

[
Um

∂Um

∂X
+Vm

∂Um

∂Y

]
=− ∂P

∂X
+Pr

1
ε

μeff

μf

ρf

ρnf

[
∂2Um

∂X2 + ∂2Um

∂Y2

]

−
[
Pr
Da

μeff

μf

ρf

ρnf
+ Cf√

Da

√
U2
m+V2

m

]
Um+RaPr

(ρβ)nf

(ρβ)f

ρf

ρnf
(1.+ ζθfp)θfp sinγ (2)

1
ε

∂Vm
∂τ

+ 1
ε2

[
Um

∂Vm
∂X

+Vm
∂Vm
∂Y

]
=− ∂P

∂Y
+Pr

1
ε

μeff

μf

ρf

ρnf

[
∂2Vm
∂X2 + ∂2Vm

∂Y2

]

−
[
Pr
Da

μeff

μf

ρf

ρnf
+ Cf√

Da

√
U2
m+V2

m

]
Vm+RaPr

(ρβ)nf

(ρβ)f

ρf

ρnf
(1.+ ζθfp)θfp cosγ (3)

∂θfp

∂τ
+ 1

ε

(
Um

∂θfp

∂x
+Vm

∂θfp

∂y

)
= αnf

αf

(
∂2θfp

∂X2 + ∂2θfp

∂Y2

)
(4)

In the above system, (Um, Vm) are the velocity components in the (X ,Y )directions, τ is the

dimensionless time parameter, ε is the porosity, Pr = υf

αf
is the Prandtl number, Da = K

L2 is the

dimensionless Darcy number, ζ = β1nf
β0nf

(Th−Tc) is the non-linear Boussinesq parameter and Ra=
gβ0nf (Th−Tc)H3

νf αf
is the Rayleigh number. Further, the initial and boundary conditions are given by:

For τ = 0: U =V = 0, θfp = 0: 0≤X ≤1, 0≤Y ≤1

For τ >0: U =V = 0,
∂θfp
∂Y = 0: Y = 0 and 1

U =V = 0, θfp = asin (2πY ): X = 0

U =V = 0 θfp = a sin (2πY +φ) X = 1 (5)

where a is the amplitude of the sinusoidal heating. Here, it should be mentioned that the following
dimensionless variables are used to get the previous dimensionless system:

X = x
H
, Y = y

H
, τ= tαf

H2 , Um = uH
αf

, Vm = vH
αf

, P= pH2

ρnf α2
f

, θ= T −Tc
Th−Tc

(6)

There are numerous correlations for the nanofluids simulations were presented in the lectures.
To get more realistic simulation, the thermophysical properties are expressed as functions of the
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nanoparticles volume fraction and diameters of the molecules of H2O and Al2O3. Following the
experimental study presented by Corcione [33], the following correlations are introduced:

ρnf = (1−φ)ρf +φρp, αnf =
knf(

ρcp
)
nf

(7)

(
ρcp

)
nf = (1−φ)

(
ρcp

)
f +φ

(
ρcp

)
p (8)

(ρβ)nf = (1−φ) (ρβ)f +φ (ρβ)p (9)

μnf = μf

/(
1− 34.87

(
dp/df

)−0.3
ϕ1.03

)
(10)

knf = kf

(
1+ 4.4 (ReB)0.4Pr0.66

(
T
Tfr

)10(kp
kf

)0.03

ϕ0.66

)
(11)

ReB = ρf uBdp/μf (12)

uB = 2KBT
/(

πμf d
2
p

)
(13)

In the above equations, Tfr is the freezing point of water, uB is the Brownian velocity,

KB = 1.380648 × 10−23J/k is the Boltzmann’s constant, μf = 695 × 10−6kg/ms is the dynamic
viscosity of water. The local Nusselt numbers are calculated at the both left NuL and right NuR
walls, those formulas are expressed as:

NuL =−knf
kf

∂θnf

∂X

∣∣∣∣
X=0

(14)

NuR =−knf
kf

∂θnf

∂X

∣∣∣∣
X=1

(15)

However, the average Nusselt numbers are calculated only on the heated parts of both side
walls, as:

Nuav =
∫
heating half

NuLdY +
∫
heating half

NuRdY (16)

4 CBS Scheme

To obtain the numerical solutions for the current system, the characteristic-based split (CBS)
scheme presented in Lewis et al. [34] is applied. This scheme consists of four steps; those are
expressed as follows:

Step 1: Calculate the intermediate velocities:

Ũm

[
1

εΔτ
+A2+A3

√
U2
m+V2

m

]

= Un
m

εΔτ
− 1

ε2

[
Um

∂Um

∂X
+Vm

∂Um

∂Y

]n
+A1

[
∂2Um

∂X2 + ∂2Um

∂Y2

]n
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+A4
[(
1.+ ζθfp

)
θfp

]n sinγ+ UmΔτ

2ε2
∂

∂X
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Um

∂Um

∂X
+Vm

∂Um

∂Y

]n
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2ε2
∂

∂Y
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∂X
+Vm
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∂Y

]n
(17)
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εΔτ
+A2+A3

√
U2
m+V2

m
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m
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∂X
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]n
+A1
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∂2Vm
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∂Y2

]n
+A4

[(
1.+ ζθfp

)
θfp

]n cosγ
+ UmΔτ

2ε2
∂

∂X

[
Um

∂Vm
∂X

+Vm
∂Vm
∂Y

]n
+ VmΔτ

2ε2
∂

∂Y

[
Um

∂Vm
∂X

+Vm
∂Vm
∂Y

]n
(18)

Step 2: Pressure calculations:

1
ε

[
∂2(Pε)n+1

∂X2 + ∂2(Pε)n+1

∂Y2

]
=
[

1
εΔτ

+A2+A3

√
U2
m+V2

m

][
∂Ũm

∂X
+ ∂Ṽm

∂Y

]
(19)

Step 3: Velocity corrections:[
1

εΔτ
+A2+A3

√
U2
m+V2

m

]
Un+1
m =

[
1

εΔτ
+A2+A3

√
U2
m+V2

m

]
Ũm− 1

ε

∂(Pε)n+1

∂X
(20)

[
1

εΔτ
+A2+A3

√
U2
m+V2

m

]
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[
1

εΔτ
+A2+A3

√
U2
m+V2

m

]
Ṽm− 1

ε

∂(Pε)n+1

∂Y
(21)

Step 4: Temperature calculations:

θn+1
fp −θnfp

Δτ
=−1

ε

(
Um

∂θnfp

∂x
+Vm

∂θnfp

∂y

)
+A5

(
∂2θfp

∂X2 + ∂2θfp

∂Y2

)n

+ UmΔτ

2ε
∂

∂X

[
Um

∂θfp

∂X
+Vm

∂θfp

∂Y

]n
+ VmΔτ

2ε
∂

∂Y

[
Um

∂θfp

∂X
+Vm

∂θfp

∂Y

]n
(22)

where A1 =Pr1
ε

μeff
μf

ρf
ρnf

,A2 = Pr
Da

μeff
μf

ρf
ρnf

,A3 = Cf√
Da

,A4 =RaPr
(ρβ)nf
(ρβ)f

ρf
ρnf

,A5 = αnf
αf

.

Now, the Galerkin finite element method is applied to solve the previous equations. Firstly,
Fig. 2 shows the mesh generation of the present model. In addition the dependent variables are
expanding in terms of the shape function as:

Um ≈U1N1+U2N2+U3N3 =
NPE∑
i=1

[N i] {Umi}

Vm ≈V1N1 +V2N2+V3N3 =
NPE∑
i=1

[N i] {Vmi}
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Figure 2: Mesh generation of the present physical model

P≈P1N1+P2N2 +P3N3 =
NPE∑
i=1

[N i] {Pi} (23)

θfp≈ θ1N1+θ2N2 +θ3N3 =
NPE∑
i=1

[N i]
{
θf pi

}
where NPE refers to the node per element. A triangular-shaped element is used in this study with
an area given by:

A=
∫

dX dY= 1
2

⎡
⎣1 X1 Y1
1 X2 Y2
1 X3 Y3

⎤
⎦ (24)

The finite element discretization of the left hand side of Eqs. (17) and (18) is given by:

∫
Ω

[N i]T [N i]
NPE∑
i=1

{Umi}

⎡
⎢⎢⎣ 1

εΔτ
+A2+A3

√√√√√
[
NPE∑
i=1

[N i]{Umi}
]2

+
[
NPE∑
i=1

[N i]{Vmi}
]2
⎤
⎥⎥⎦ dXdY = [MP]

{
Ũm

}

(25)

where [MP] is the mass matrix, which is given by:

[MP]=
A

[
1

εΔτ +A2 +A3

√[∑NPE
i=1 [N i] {Umi}

]2+ [∑NPE
i=1 [N i] {Vmi}

]2]

12

⎡
⎣2 1 1
1 2 1
1 1 2

⎤
⎦ (26)
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Here, as it stated by Corcione [33], the mass matrix is ‘lumped’ due to interesting in the steady
state solutions as:

[MP]=
A

[
1

εΔτ
+A2+A3

√[∑NPE
i=1 [N i] {Umi}

]2+ [∑NPE
i=1 [N i] {Vmi}

]2]

3

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ (27)

Further, details of the time step calculations, the shape functions and the convergence criteria
are found in the valuable book presented by Corcione [33].

The accuracy of the current scheme is examined by valuable comparisons with previously
published results. Fig. 3 presents a comparison between the present study and those obtained by
Sivasankaran et al. [35] at a= 1,Pr= 0.71,Gr= 106,Da= 10−5, ε = 0.5. In Fig. 3, the formed four
circular cells from the streamlines contours at phase deviation Φ = 0 are almost similar between
the current results and results of Sivasankaran et al. [35]. Then, the current numerical scheme,
CBS scheme in FEM method, gives a well agreement with the previous published data.

Figure 3: Comparison of the present study and those obtained by Sivasankaran et al. [35] at
a= 1,Pr= 0.71,Gr= 106,Da= 10−5, ε = 0.5
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5 Results and Discussion

In this section, the numerical results for impacts of the non-uniformly heating on the unsteady
natural convection in an inclined cavity filled with a non-Darcy porous medium and nanofluids
are discussed. The wide ranges of the current physical parameters are the Rayleigh number 104 ≤
Ra≤ 106, the amplitude ratio 0≤ a≤1, the non-linear Boussinesq parameter 0≤ ζ ≤2, the phase
deviation 00 ≤Φ≤ 1800, the inclination angle 00 ≤ γ ≤ 900 and the nanoparticles volume fraction
0%≤ φ ≤ 4%.

Firstly, the impacts of the phase deviation Φ on the streamlines and isotherms contours
are introduced in Fig. 4. It is seen that, the formed cells of the streamlines contours inside
the enclosure are varied according to the variations in the phase deviation Φ. In addition, the
values of the minimum and maximum of the stream function are strongly depended on the phase
deviation Φ. An increase of Φ from 0 to π/2 causes that the maximum of the stream function
decreases by 20.68% and the minimum of the stream function decreases from −1.5 to −2.4. The
main contributions of the phase deviation on the isotherms contours appear on the right side
of the cavity wall, since the phase deviation is involved in the right sinusoidal heating, only.
The phase deviation Φ changes the distributions of isothermal lines, while the isothermal lines
on the left side remain fixed without changes. Then, the uniform distribution of the isother-
mal lines between the left and right walls are varied according to the variations of the phase
deviation Φ.

Impacts of the non-linear Boussinesq parameter ζ on the streamlines and isotherms contours
are shown in Fig. 5. As the non-linear Boussinesq parameter ζ increases from 0 to 1, the formed
three cells of streamlines are decreased to be two formed cells. Also, the maximum of the stream
function is increasing about 66.6% and the minimum value is decreasing about 60%. In addition,
the temperature distributions are increasing inside the enclosure according to the increasing in
the non-linear Boussinesq parameter ζ . The physical explanation of these results is due to the
extra buoyancy force. The effects of the inclination angle of the enclosure on the streamlines
and isotherms contours are shown in Fig. 6. Here, the variations of the inclination angle change
the buoyancy force and obviously, the streamlines contours and their strengths are depending
strongly on the inclination angle. It seems that an increasing of the inclination angle has a slightly
influence on the temperature profiles. Fig. 7 shows the impacts of the Rayleigh number on the
streamlines and isotherms contours. At Ra= 104, two circular flow structures are formed with a
big cell on the upper-right area and a small corner cell on the lower-left area of the enclosure.
The distributions of the isothermal lines show that the convection is still weak and the conduction
mode is dominant. As the Rayleigh number increases to Ra= 105, the formed two circular flow
structures of the streamlines became wider with higher strengths. In this case, the convection
prevails and the symmetry of the isothermal lines loses. The continuous increase of the Rayleigh
number up to Ra= 106 changes the formed two circular flow structures to three circular flows. The
center diagonal cell is the biggest one and the other cells are located near the top right and bottom
left corners of the enclosure. The strength of the streamlines increases, strongly. Consequently, the
thermal boundary layers, heating and cooling zones are shrinking along the side walls and then
the heat transfer is enhanced.
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Figure 4: Streamlines and isotherms contours for variations of the phase deviation Φ at Ra =
105,Da= 10−3,γ = 300,φ = 2%, ζ = 1,a= 1
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Figure 5: Streamlines and isotherms contours for the variations of ζ at Ra = 105,Da = 10−3,
γ = 00,φ = 2%,Φ= 450,a= 1
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Figure 6: Streamlines and isotherms contours for variations of the inclination angle γ at
Ra= 105,Da= 10−3,Φ= 450,φ = 2%, ζ = 1,a= 1
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Figure 7: Streamlines and isotherms contours for variations of the Rayleigh number Ra at
Da= 10−3,γ = 300,Φ= 0,φ = 2%, ζ = 1,a= 1

The local Nusselt numbers along Y -axis at the left and right walls under impacts of the phase
deviation Φ, inclination angle γ and nanoparticles volume fraction φ are shown in Figs. 8–10,
respectively. As it is expected, effects of the phase deviation Φ on the local Nusselt number appear
clearly at the right wall comparing to the left wall. On the right side, the local Nusselt number
at the lower part Y ≤ 0.4 increases slightly as the phase deviation Φ increases and the reverse
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tendencies appear at upper part of the right wall Y > 0.4. On the right wall, the local Nusselt
number along Y-axis is significantly affected by the phase deviation Φ.
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Figure 8: Impacts of the phase deviation Φ on the local Nusselt number at the left and right walls
when Ra= 105,Da= 10−3,γ = 300,φ = 2%, ζ = 1,a= 1
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Figure 9: Impacts of the inclination angle γ on the local Nusselt number at the left and right
walls when Ra= 105,Da= 10−3,γ = 300,Φ= 450,φ = 2%, ζ = 1,a= 1

It is seen that as the phase deviation Φ changes from 00 to 1800, the heating zone moves
upward and the cooling zone moves downward and consequently, the local Nusselt number
oscillating according to the variation of Φ. The physical reason of these results return to the
sinousiodal heating on both left and right side-walls. In addition, the local Nusselt number along
Y-axis at the left and right walls varies according to the vaiation of the inclination angle γ . It is
observed that the tendency of the local Nusselt number at the left wall is different from the local
Nusselt number at the right wall under the impact of inclination angle γ and these behaviors are
due to the variation of the sinusoidal heating at different values of γ . Fig. 10 shows the impacts
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of the nanoparticles volume fraction φ on the local Nusselt number at the left and right walls
when Ra = 105,Da = 10−3,γ = 300,Φ = 450, ζ = 1,a = 1. It seems that adding the nanoparticles
by 4%, leads to slightly changes in the local Nusslet number along Y-axis, since the convection
domeninant at Ra= 105 and also the presence of the porous medium try to decrease the influence
of the nanoparticles concentration on the heat transfer. Fig. 11 presents the comparisons between
the linear Boussinesq approximation and non-linear Boussinesq approximation for local Nusselt
number on the left and right walls at Ra= 105,Da= 10−3,γ = 300,Φ = 450,φ = 2%,a= 1. This
comparison shows clearly the impact of using non-linear Boussinesq approximation on the rate
of heat transfer. It is seen that, the non-linear Boussinesq approximation has clear effects on
the local Nusselt number. As the non-linear Boussinesq approximation increases, then the local
Nusselt number increases dramatically.
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Figure 10: Impacts of the nanoparticles volume fraction φ on the local Nusselt number at the left
and right walls when Ra= 105,Da= 10−3,γ = 300,Φ= 450, ζ = 1,a= 1
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Figure 11: Comparisons between the linear Boussinesq approximation and non-linear Boussinesq
approximation for local Nusselt number on the left and right walls at Ra = 105,Da = 10−3,
γ = 300,Φ= 450,φ = 2%,a= 1
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Figure 12: Impacts of the amplitude ratio (a) and the phase deviation Φ on the average Nusselt
number at Ra= 105,Da= 10−3,γ = 300,φ = 2%

Figure 13: Impacts of the Rayleigh number Ra and the non-linear Boussinesq parameter ζ on the
average Nusselt number at Da= 10−3,γ = 00,Φ= 450,φ = 2%,a= 1

Figs. 12 and 13 show the average Nusselt number under the effects of the amplitude ratio a
with the phase deviation Φ and Rayleigh number Ra with the non-linear Boussinesq parameter
ζ , respectively. In Fig. 12, an increase of the amplitude ratio (a) increases the average Nusselt
number, while the phase deviation is slightly changing the average Nusselt number. In Fig. 13,
the maximum values of the average Nusselt number appear at a higher non-linear Boussinesq
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parameter ζ = 1 and a higher Rayleigh number Ra= 106. Also, effect of the non-linear Boussinesq
parameter appears clearly at higher values of the Rayleigh number.

6 Conclusions

The main objective of the current work is adapting CBS scheme in FEM method for inves-
tigating the influences of the non-linear Boussinesq approximation and sinusoidal heating on a
nanofluid flow-filled a porous enclosure. The enclosure is inclined and it has varying sinusoidal
temperature distributions on the side walls. Al2O3 is taken as nanoparticles and the water is
taken as a base fluid. The main attentions of this work are focusing on the influences of the
physical parameters including phase deviation, non-linear Boussinesq parameter, Rayleigh number,
an inclination angle, the nanoparticles volume fraction and the amplitude ratio. In addition, the
main findings of this study are:

• The location of phase deviation decides its contributions. The phase deviation varies the
isothermal lines and heat transfer at the right-side wall and the phase deviation has a slight
effect on the isothermal lines at the left-side wall.

• Amplitude ratio (a) growths the heat transfer and consequently the case of the non-
uniformly heating enhances the heat transfer comparing to the uniformly heating.

• The non-linear Boussinesq parameter raises the buoyancy force which strengths the fluid
flow and heat transfer inside the enclosure.

• The average Nusselt number is enhanced as the Rayleigh number increases when the non-
linear Boussinesq parameter varies from 0 to 1.

• The inclination angle varies the flow speed and it has a slight impact on the heat transfer
inside the inclined enclosure.
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