
Two-Phase Flow of Blood with Magnetic Dusty Particles in Cylindrical Region:
A Caputo Fabrizio Fractional Model

Anees Imitaz1, Aamina Aamina1, Farhad Ali2,3,*, Ilyas Khan4 and Kottakkaran Sooppy Nisar5

1Department of Mathematics, City University of Science and Information Technology, Peshawar, 25000, Pakistan
2Computational Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

4Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
5Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawaser, 11991,

Saudi Arabia
�Corresponding Author: Farhad Ali. Email: farhad.ali@tdtu.edu.vn

Received: 01 July 2020; Accepted: 25 September 2020

Abstract: The present study is focused on the unsteady two-phase flow of blood
in a cylindrical region. Blood is taken as a counter-example of Brinkman type
fluid containing magnetic (dust) particles. The oscillating pressure gradient has
been considered because for blood flow it is necessary to investigate in the form
of a diastolic and systolic pressure. The transverse magnetic field has been applied
externally to the cylindrical tube to study its impact on both fluids as well as
particles. The system of derived governing equations based on Navier Stoke’s,
Maxwell and heat equations has been generalized using the well-known
Caputo–Fabrizio (C–F) fractional derivative. The considered fractional model
has been solved analytically using the joint Laplace and Hankel (L&H) transfor-
mations. The effect of various physical parameters such as fractional parameter,
Gr, M and � on blood and magnetic particles has been shown graphically using
the Mathcad software. The fluid behaviour is thinner in fractional order as
compared to the classical one.
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1 Introduction

Biomagnetic fluid dynamic (BFD) is a new area in fluid mechanics. It focuses on the usage of the
magnetic particles as drug carriers in magnetic drug targeting, cancer tumor treatment and many more [1–
3]. The Biomagnetic fluid occurs in all living organisms and for its investigation, the BFD model was
initially recommended by Haik et al. [4]. Fluids that show non-linear relation between shear stress and
strain are termed as non-Newtonian fluids e.g., blood. Blood is the only biological electrically conducting
fluid and its mobility is influenced by an applied magnetic field. It contains plasma and red blood cells
(RBC) that are oxides of iron and have hemoglobin fragments in high concentrations [5,6]. Due to the
oxygenated state, blood exhibits a magnetic nature [7,8]. The non-Newtonian behaviour of blood due to
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the suspension of red blood cells in plasma and human thoracic aorta is analyzed by Caballero et al. [9].
Tripathi et al. [10] have examined the Non-Newtonian blood in a channel and attained analytical
solutions for the velocity, volumetric flow rate and wavelength. In the human left ventricle (LV), the
significance of the non-Newtonian blood has examined by Doost et al. [11]. Kumar et al. [12] evaluated
the difference between Newtonian and non-Newtonian blood models and concluded that the non-
Newtonian blood has more/less augmented wall shear stress as compared to the Newtonian blood.

Since blood is a biological fluid, biological heating is significant for metabolic heat generation [13]. The
phenomenon in biological fluids was first discussed by Bernard in 1876. Afterwards, bioheat transfer became
a topic applied in the practice of biology in a wide variety of applications such as chemotherapy [14,15],
human thermoregulation system [16] and others [17]. Sharifi et al. [18] investigated the heat transfer
applications in peripheral vascular disease using FHD principle through two inclined permanent magnets
in a channel. Jimoh et al. [19] studied third-grade fluid in hematocrit with slip velocity. Dutta et al. [20]
have developed an analytical study of heat propagation in biological tissues for constant and variable heat
flux at the skin surface with hypothermia treatment. Fu et al. [21] reviewed the heat transfer modelling in
thermoregulatory responses in the human body. Kengne et al. [22] discussed the bioheat transfer in the
spherical biological tissues. Zhang et al. [23] discussed the heat transfer in LN2 cryoprobe systems and
obtained effective results. David et al. [24] used the heat transfer in the warming of simulated blood by
the generation of electronic components. Zainol et al. [25] investigated the heat transfer model for the
prediction of human skin temperature using the bioheat equation.

The consideration of Two-phase flow is due to the presence of numerous interfaces separating two
immiscible phases. The blood flow through a tiny tube at a very low shear is responsible for the two-
phase flow surrounded by a cell-depleted peripheral layer. Different types of particles have been
considered as the second phase in blood flow, but the most recommended and suitable particles are
magnetic particles. The magnetic particles in blood have a vital role in numerous medical applications
[26,27]. In drug delivery, a specific number of magnetic particles are used to transport the maximum
number of a drug to the area of its choice. Due to the mentioned applications of magnetic particles,
several researchers used the two-phase blood flow along with magnetic particles. Verma et al. [28]
described a dual-phase blood flow model in thin pipes with the fundamental core of deferred erythrocytes
and cell unrestricted film and found the results for the nonlinear problem numerically. The thermal and
mass concentration effect of the multiphase blood model in a stenosed artery has been investigated by
Tripathi et al. [29]. An analytical approach has been used for the results to comprehend the comportment
of blood flow rate, wall shear stress and flow resistivity. Arribas et al. [30] created a reliable two-phase
RBC model for the blood vessel and calculated the viscosity, phase dispersals and volume fractions using
the depletion theory. They have associated their results with numerical as well as experimental study and
found extraordinary conclusions. A two-phase model of blood with mild stenosis magnetic field and
thermal effects has been explored by Ponalagusamy et al. [31]. They have concluded that thermal and
shear stress slow down with increase in the levels of the plasma layer thickness and they are very
effective for the diseased arterial treatment. Ali et al. [32] examined the two-phase dusty fluid with heat
transfer in a fluctuating plate, and found that by enhancing the number of embedded particles, the dusty
fluid velocity increases.

Due to multidimensional features, the non-integer order calculus is attracting the attention of scientists
and researchers [33,34]. Fractional calculus is an important and fruitful tool for describing many systems
including memory effects. In the preceding few decades, fractional calculus is used for many purposes in
various fields, such as electrochemistry, transportation of water in ground level, electromagnetism,
elasticity, diffusion and in conduction of heat process [35]. In 2015, Caputo et al. [36] worked together in
the field of non-integer order calculus and presented a new expression for the non-integer order derivative
with the non-singular kernel. So, keeping in sight the importance of CF operators, many researchers used
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the CF operator in their studies such as in physics, biological mathematics, and many more. Ali et al. [37]
examined the magnetic flow of Walter’s-B fluid by using the CF non-singular operator. Salah Uddin et al.
[38] investigated the CF model of blood flow with Ferro particles in cylindrical coordinates and their
results were in agreement with the previously published works. Ali et al. [39,40] studied the
fractionalized model of blood flow having magnetic particles in cylindrical coordinates.

There is no attempt found in the literature relevant to Caputo–Fabrizio fractional approach to find the
closed-form solution for magnetite particles-based blood flow with thermal concentration. Hence, in the
present article, the work of Saqib et al. [41] has been generalized by taking the flow of blood as a
Brinkman type fluid with magnetic particles in cylinder. The governing equations for both fluid and
particles are modelled and using the Caputo–Fabrizio fractional-order approach, the closed-form solutions
have been obtained by using joint Laplace and Hankel transformations. The impact of different embedded
parameters on blood and particles velocities have been examined through graphs.

2 Mathematical Modeling

The blood flow is considered in a vertical cylinder having a radius r0 as represented in Fig. 1.

The magnetic particles are equally distributed throughout the blood flow. The cylinder has been
considered along the z-axis and r1-axis is chosen perpendicular to it. The direction of the motion of the
blood and magnetic particles are along the z-axis. The biological thermal effect has also been considered
and the radiation has been neglected. The induced magnetic field due to a very slight Reynold number
has been ignored [42]. For a time t ¼ 0, the system is considered to be at rest with ambient temperature
T1. For t > 0 the temperature rises to Tw. The force Femag is described by [43,44]

F
!

emg ¼ �rB0
2 uðr1; tÞ k!; (1)

where k
!

denotes the direction along the z-axis and V
!¼ u r1; tð Þ k! shows blood velocity.

Figure 1: The geometry of the flow
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The unsteady Brinkman-type blood flow in a cylinder is specified by:

q
@u r1; tð Þ

@t
þ cu r1; tð Þ

� �
¼ � @p

@z
þ l

@2u r1; tð Þ
@r12

þ 1

r1

@u r1; tð Þ
@r1

� �
þ KN up r1; tð Þ � u r1; tð Þ� �

� r0B
2
0u r1; tð Þ � gbT T � T1ð Þ;

(2)

the oscillating pressure gradient [45] is

� @p

@z
¼ P0 þ P1cosxt; (3)

where u r1; tð Þ is the blood velocity, up r1; tð Þ is the magnetic particles velocity. The term
KN up r1; tð Þ � u r1; tð Þ� �

is the force between the fluid and particle due to relative motion and magnetic
particles flow is conducted [46]:

m
@up
@t

¼ K uðr1; tÞ � upðr1; tÞ
� �

; (4)

The thermal equation is specified by:

qcp
k

@T1ðr1; tÞ
@t

¼ @2T1ðr; tÞ
@r12

þ 1

r1

@T1ðr1; tÞ
@r1

; t > 0; r1 2 0;R0ð Þ; (5)

subjected to the following IBCs

u1 r1; 0ð Þ ¼ 0 ; upðr1; 0Þ ¼ 0
u1 r0; tð Þ ¼ 0 ; up r0; tð Þ ¼ 0
T1 r1; 0ð Þ ¼ T1 ; T1 r0; tð Þ ¼ Tw

@u1
@r1

����
r1¼0

¼ 0

9>>>>=
>>>>;
; (6)

By incorporating the Non-dimensional variables

r1
� ¼ r1

r0
; t� ¼ mt

r02
; v ¼ u1

u0
; vp ¼ up

u0
; h ¼ T1 � T1

Tw � T1
; n0

� ¼ P0r02

lu0
; n1

� ¼ P1r02

lu0
; (7)

into Eqs. (2)–(5), then ignoring the * notation, we obtain:

@v r1; tð Þ
@t

þ c1v r1; tð Þ ¼ n0 þ n1 cosxtð Þ þ @2v r1; tð Þ
@r12

þ 1

r1

@v r1; tð Þ
@r1

� �
þ Pc vp r1; tð Þ � v r1; tð Þ� �

�Mv r1; tð Þ � Grhðr1; tÞ;
(8)

@vp r1; tð Þ
@t

¼ �m v r1; tð Þ � vp r1; tð Þ� �
; (9)

@hðr1; tÞ
@t

¼ 1

Pr

@2hðr1; tÞ
@r12

þ 1

r1

@hðr1; tÞ
@r1

� �
; (10)

vðr1; 0Þ ¼ 0 ; v1ðr1; 0Þ ¼ 0
vð1; tÞ ¼ 0 ; vpð1; tÞ ¼ 0
hðr1; 0Þ ¼ 0 ; hð1; tÞ ¼ 1

9=
;; (11)

For a generalized fractional model, the newly developed CF time-fractional derivative has been used to
covert the linear model to the fractional model, therefore Eqs. (8)–(10) reduces to:
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AB}t
av r1; tð Þ ¼ n0 þ n1 cosxtð Þ þ @2v r1; tð Þ

@r12
þ 1

r1

@v r1; tð Þ
@r1

� �
þ Pc vp r1; tð Þ � v r1; tð Þ� ��Mv r1; tð Þ

� c1v r1; tð Þ � Grhðr1; tÞ;
(12)

AB}t
avp r1; tð Þ ¼ �m v r1; tð Þ � vp r1; tð Þ� �

; (13)

AB}t
ahðr1; tÞ ¼ 1

Pr

@2hðr1; tÞ
@r12

þ 1

r1

@hðr1; tÞ
@r1

� �
; (14)

where }t
ahðe; tÞ ¼ 1

1� a

Zs

0

e
�aðs�tÞ
1�a

� �
h=ðe; sÞdt; 0 < a < 1 is the CF operator is [36]:

3 Solution of the Problem

For the solution of Eqs. (14)–(16) the non-dimensional IBC’s from Eq. (11) and the Laplace and Hankel
transformations are utilized.

3.1 Energy Equation Solution

Applying the joint L&H transforms using Eqs. (11)–(14), we get

hHðr1n; qÞ ¼ J1ðr1nÞ
r1nq

þ r1nJ1ðr1nÞPr5n Pr7n
q

þ Pr8nrn2

qþ a2nð Þ
� �

(15)

where

Pr8n ¼ a2n � Pr6n
a2n

; Pr7n ¼ Pr6n
a2nr1n2

; Pr6n ¼ Pr4n
Pr3n

;Pr5n ¼ Pr3n
Pr2n

; Pr4n ¼ r1n
2a1 � Pr2na2n;Pr3n ¼ r1n

2 � Pr2n;

Pr2n ¼ Pr :Pr1n; Pr1n ¼ a1n
Pr

; a2n ¼ a1rn2

a1n
; a1n ¼ a0 Prþr1n

2; a1 ¼ a0a; a0 ¼ 1

1� a

and hH rn; qð Þ is the Hankel Transform of h r; qð Þ [39,40].
Applying inverse L&H transformations to Eq. (15), and by using Lorenzo and Hartley’s’ and Robotnov

and Hartley’s’ functions, respectively [43], yields:

hðr1; tÞ ¼ 1þ 2
X1
n¼1

J0ðr1r1nÞr1n
J1ðr1nÞ Pr7n þ exp �a2n; tð ÞPr8nð Þ: (16)

3.1.1 Heat Transfer Rate (Nu)
The Non-dimensional Nusselt number is given by

Nu ¼ � @h r1; tð Þ
@r1

� �
r1¼1

: (17)

3.2 Solution of the Blood and Particle Velocities

To obtain the solution for the blood velocity and Magnetic particles velocity, the Laplace and Hankel
transforms have been applied on Eq. (15) using the corresponding transformed boundary conditions by

letting �m1 ¼ 1þ �ma0 ; �m2 ¼ a1
�m1

and we get:
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vpHðr1n; qÞ ¼ vHðr1n; qÞ qþ a1
�m1 qþ �m2ð Þ

� �
: (18)

Now for the blood velocity, Eq. (18) has been incorporated into Eq. (12) using the corresponding
transformations and boundary condition v ð1; qÞ ¼ 0 ; which yields:

a0q

qþ a1
þ c1 þ r1n

2 � Pc
qþ a1

�m1 qþ �m2ð Þ þ Pc þM

� �
vHðr1n; qÞ

¼ n0
q
þ n1q
q2 þ x2

� �
� GrhH r1n; qð Þ

� �
J1ðr1nÞ
r1n

� � (19)

The simplified form of Eq. (19) is

vHðr1n; qÞ ¼ n0
q
þ n1q
q2 þ x2

� �
� GrhH r1n; qð Þ

� �
J1ðr1nÞ
r1n

� �
�m1 qþ �m2ð Þ qþ a1ð Þ
q2X1n þ qX2n þ X3n

� �
(20)

After further simplification the Eq. (20) will take the following form as

vHðr1n; qÞ ¼ n0
q
þ n1q
q2 þ x2

� �
� GrhH r1n; qð Þ

� �
J1ðr1nÞ
r1n

� �
b3nX9n

qþ b1nð Þ �
b3nX8n

qþ b2nð Þ
� �

(21)

where

X0n ¼ c1 þ r1n
2 þ Pc þM

� �
�m1; X1n ¼ �m3 þ X0n � Pc; X2n ¼ �m3�m2 þ X0n�m2a1 � Pca1

2;

X4n ¼ �m1

X1n
; X5n ¼ X2n

X1n
; X6n ¼ X3n

X1n
; X 2

7n ¼ X 2
5n � 4X6n; b1n ¼ X5n þ X7n

2
; b2n ¼ X5n � X7n

2
;

X8n ¼ X4nb2n � a1X4nð Þ�m2 þ X4nb2na1; X9n ¼ X4n �m2 þ a1ð Þ � �m2a1X4n; b3n ¼ 1

b1n � b2n

In component form Eq. (21) is expressed as:

vHðr1n; qÞ ¼ F1H qð Þ þ F2H qð Þ� �
(22)

where

F1H qð Þ ¼ n0
b4nq�1

qþ b1n
� b5nq�1

qþ b2n

� �
þ n1

b4n
qþ b1nð Þ �

b5n
qþ b2n

� �
1

q2 þ x2ð Þ
� �

J1 r1nð Þ
r1n

and

F2H qð Þ ¼ b4nq�1

qþ b1n
� b5nq�1

qþ b2n

� �
J1 r1nð Þ
r1n

þ r1nJ1 r1nð Þ b6nq�1

qþ b1nð Þ �
b7nq�1

qþ b2n
� b10n
qþ a2n

þ b10n
q� b1n

þ b11n
qþ a2n

þ b10n
q� b1n

� �

b4n ¼ b3nX9n; b5n ¼ b3nX8n; b6n ¼ Pr5nPr7nb4n; b7n ¼ Pr5nPr7nb5n; b8n ¼ Pr8nb4n; b9n ¼ Pr8nb5n;

b10n ¼ b8n
b1n � a2n

; b11n ¼ b9n
b1n � a2n

:
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By applying inverse Laplace transform to Eq. (22), by using the Lorenzo and Hartley’s’ respectively [46],

L�1 &�t

&b þ ’

� �
¼ <b;t �’; sð Þ;

we get

vHðr1n; tÞ ¼ F1H tð Þ þ F2H tð Þ (23)

where

F1H tð Þ ¼ n0 b4n< 1;1ð Þ �b1n; tð Þ � b5n< 1;1ð Þ �b2n; tð Þ� �þ n1
b4n exp �b1n; tð Þ � cos xtð Þ�
b5n exp �b2n; tð Þ � cos xtð Þ

� �� �
J1 r1nð Þ
r1n

F2H tð Þ ¼ b4n< 1;1ð Þ �b1n; tð Þ � b4n< 1;1ð Þ �b2n; tð Þ� � J1 r1nð Þ
r1n

þ r1nJ1 r1nð Þ
b6n< 1;1ð Þ �b1n; tð Þ � b7n< 1;1ð Þ �b2n; tð Þ
�b10n exp �a2n; tð Þ þ b10n exp b1n; tð Þ
þb11n exp �a2n; tð Þ þ b10n exp b1n; tð Þ

0
B@

1
CA

Applying the finite Hankel transform of order zero to Eq. (23), we get

vðr1; tÞ ¼ 2
X1
n¼1

J0ðr1r1nÞ
r1nJ1ðr1nÞ

� �
F1 tð Þ þ F2 tð Þð Þ (24)

where

F1 tð Þ ¼ n0 b4n< 1;1ð Þ �b1n; tð Þ � b5n< 1;1ð Þ �b2n; tð Þ� �þ n1
b4n exp �b1n; tð Þ � cos xtð Þ�
b5n exp �b2n; tð Þ � cos xtð Þ

� �� �

F2 tð Þ ¼ b4n< 1;1ð Þ �b1n; tð Þ � b4n< 1;1ð Þ �b2n; tð Þ� �þ b6n< 1;1ð Þ �b1n; tð Þ � b7n< 1;1ð Þ �b2n; tð Þ
�b10n exp �a2n; tð Þ þ b10n exp b1n; tð Þ
þb11n exp �a2n; tð Þ þ b10n exp b1n; tð Þ

0
@

1
A

Now for the solution of magnetic particles velocity applying the inverse L&H transformations to Eq.
(16), yields:

vpðr1; tÞ ¼ 2
X1
n¼1

v r1; tð Þ� 1

�m1

< 1;�1ð Þ ��m2; tð Þ
þ< 1;0ð Þ ��m2; tð Þ

� �� �
: (25)

From Tab. 1 it can be seen that by growing the fractional parameter an enhancement in (Nu) occurs
for time.

Table 1: Time and a variation on Nusselt number

a t Nu

0.3 2 2.503

0.5 2 2.684

0.7 2 3.012

0.9 2 3.412

1 2 3.576
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4 Graphical Results and Discussion

The considered work aims to study the generalized two-phase blood flow of Brinkman type fluid in a
cylindrical tube. The analytical solutions have been attained for energy, velocity as well as for the
magnetic particles contained in the blood. Various parameters have been discussed physically on
velocities of the blood, particles and temperature. Fig. 1 shows the physical model of the considered
problem. Fig. 2 shows the effect of fractional parameter on the temperature profile. It can be concluded
from the figure that by using the fractional parameter, we obtained different temperature profiles by
keeping the other parameters constant and this effect is called the memory effect, which is impossible in
integer-order. In this graph, we obtained dual behaviour of temperature memory for different values of a
and the same behaviour has been noticed as reported by Ali et al. [39].

Fig. 3 shows the effect of the fractional parameter a on velocity profiles. The corresponding results for
regular blood and particles velocity are compared with the fractional order in a fixed time and with classical
order and the fluid and particles memory has been discussed.

Fig. 4 shows the impact of the Magnetic parameter on blood velocity and particle velocity. From the
figures, it has been concluded that for the higher values of M, the flow of blood, as well as magnetic
particles, retards. It is physically true that by increasing M, the Lorentz forces increase, which produces
resistive forces due to which the flow retards. This effect is very useful in various medical fields such as
Magnetic drug targeting and separation techniques by the magnetic field for the cure of different types of
diseases and to maintain the normal aspects of the human body.

Fig. 5 shows the impact of the Brinkman type parameter c1 on the velocities of blood and particles. It is
observed that the velocity decreases with the increasing values of c1. This is because c1is the ratio between
resistive forces and density. By increasing c1, the opposite forces increase, which retards the fluid velocity
and is directly related to the blood flow. These results are strongly in agreement with Saqib et al. [41].

Figure 2: Variation in Temperature for diverse values of a for Pr = 22.64 at t ¼ 1

2260 CMC, 2021, vol.66, no.3



Figure 3: Blood and Particle velocities sketch of a at t = 2, Gr ¼ 3:2� 102; Pr ¼ 22:64

Figure 4: Blood velocity sketch of M at t = 2, Gr ¼ 3:2� 102;Pr ¼ 22:64
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5 Conclusions

The Caputo–Fabrizio time-fractional derivative has been used. The effect of relative parameters has been
shown graphically. Closed-form expressions have been obtained by using the Laplace transform and Hankel
transform techniques. Based on the graphical study, it has been concluded that the velocity profile decreases
in the response of an external applied magnetic field and Brinkman parameter. This phenomenon might play
an important role in Magnetic wounds. Furthermore, by increasing the fractional parameter, the fluid memory
becomes thicker.
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