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Abstract: As the corona virus (COVID-19) pandemic ravages socio-economic
activities in addition to devastating infectious and fatal consequences, optimal
control strategy is an effectivemeasure that neutralizes the scourge to its lowest
ebb. In this paper, we present a mathematical model for the dynamics of
COVID-19, and then we added an optimal control function to the model in
order to effectively control the outbreak. We incorporate three main control
efforts (isolation, quarantine and hospitalization) into the model aimed at
controlling the spread of the pandemic. These efforts are further subdivided
into five functions; u1(t) (isolation of the susceptible communities), u2(t) (con-
tact track measure by which susceptible individuals with contact history are
quarantined), u3(t) (contact track measure by which infected individualsare
quarantined), u4(t) (control effort of hospitalizing the infected I1) and u5(t)
(control effort of hospitalizing the infected I2). We establish the existence
of the optimal control and also its characterization by applying Pontryaging
maximum principle. The disease free equilibrium solution (DFE) is found to
be locally asymptotically stable and subsequently we used it to obtain the key
parameter; basic reproduction number. We constructed Lyapunov function to
which global stability of the solutions is established. Numerical simulations
show how adopting the available control measures optimally, will drastically
reduce the infectious populations.

Keywords: COVID-19; optimal control; Pontryaging maximum principle;
mathematical model; existence of control; stability analysis

1 Introduction

The novel coronavirus pneumonia which was officially named as Corona Virus Disease 2019
(COVID-19) by World Health Organization (WHO) was reported first in late December 2019, in
Wuhan, China [1]. The source of the virus is not yet known, but genetic investigation revealed
that COVID-19 virus has the same genetic characteristics with SARS-CoV2 (which was likely to
be originated from bats) [2]. It is also found to be significantly less severe than the other two

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.012301


3090 CMC, 2021, vol.66, no.3

coronaviruses; Severe Acute Respiratory Syndrome (SARS-COV) and Middle East Respiratory
Syndrome (MERS-COV) that caused an outbreak in 2002 and 2008 respectively [3]. The most
important routes of human to human transmission of COVID-19 are respiratory droplets and
contact transmission [4]. After the incubation period which is generally 2–14 days, the mild
symptoms may persist from high degree fever, cough and shortness of breath to being severely ill
and subsequently death [4].

As scientists all over the world are busy trying to develop a cure and vaccine, all hands must
be put together to support and comply with the standard recommendations that can lower the
transmissions of the disease. This is why, the following measures must be taken; social distancing,
self-isolation, use of personal protective equipment (such as face mask, hand globes, overall gown,
etc.), regular hand washing using soap or sanitizer, avoid having contact with person showing the
symptoms and report any suspected case. Moreover, relevant authorities must engage in widely
public orientation exercise for sensitization and enlightenment, banning of social (or religious)
gathering and local (or international) trip, contact tracing and isolation of infected individuals,
providing sanitizers at public domains like markets and car parks, fumigating exercise, and to the
large extent imposing lockdown.

The scourge does not only cause apocalyptic proportion in terms of infection, morbidity and
fatality, but also socio-economic consequences. To control the above mentioned problems, there
is need to have better understanding on the transmission dynamics of the disease. This could be
achieved by developing mathematical model that optimizes the possible control measures.

Optimal control is considered as an effective mathematical tool used to optimize the con-
trol problems arising in different field including epidemiology, aeronautic engineering, economics,
finance, robotics, etc [5]. Mathematical model offers an insight in to the transmission and control
of infectious disease [6–13]. Zhao et al. [14] developed a Susceptible, Un-quarantined infected,
Quarantined infected, Confirmed infected (SUQC) model to characterize the dynamics of COVID-
19 and explicitly parameterize the intervention effects of control measures. Song et al. [15]
established deterministic mathematical model (SEIHR) to suit Korean outbreak, in which he
estimated the reproduction number and the effect of preventive measures.

Tahir et al. [16] developed a mathematical model (for MERS) in form of nonlinear system of
differential equations, in which he considered a camel to be the source of the infection. The virus
is then spread to human population, then human to human transmission, then human to clinic
center and then human to care center. They used Lyapunov function to investigate the global
stability analyses of the equilibrium solutions and subsequently obtained the basic reproduction
number or roughly, a key parameter describing transmission of the infection.

Yang et al. [17] proposed a mathematical model to investigate the current outbreak of the
coronavirus disease (COVID-19) in Wuhan, China. The model described the multiple transmission
pathways in the infection dynamics, and emphasized the role of environmental reservoir in the
transmission and spread of the disease. However, the model employed non-constant transmission
rates which change with the epidemiological status and environmental conditions and which reflect
the impact of the ongoing disease control measures.

Chen et al. [18] modeled (based on SEIR) the outbreak in Wuhan with individual reaction and
governmental action (holiday extension, city lockdown, hospitalization and quarantine) in which
they estimated the preliminary magnitude of different effect of individual reaction and govern-
mental action. Sunhwa et al. [19] developed a Bats-Hosts-Reservoir-People (BHRP) transmission
network model for the potential transmission from the infection source (probably bats) to the
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human, which focuses on calculating R0. Elhia et al. [20] developed a mathematical model based
on the epidemiology of COVID-19, incorporating the isolation of healthy people, confirmed cases
and close contacts.

Most of these models have a general shortcoming of not taking into consideration
time dependent control strategies. For the model to be more realistic, it has to be time
dependent [21–26]. Here, we modified the work of Elhia et al. [20], by incorporating control
functions with the aim of deriving optimal control that drastically minimizes the spread of
the infection.

The paper is arranged in the following order: Chapter 1 gives the introduction, Chapter 2
gives preliminary definitions and theorems, Chapter 3 is the model formulation, Chapter 4 dis-
cusses the formulation and analysis of optimal control, Chapter 5 presents local and global
stability analyses of the solutions of the model and the derivation of the reproduction number
and lastly Chapter 6 gives numerical simulation results and then the discussion follows.

2 Preliminary Definitions and Theorem

Definition 1 (Optimal Control) [27]: A fairly general continuous time optimal control problem
can be defined as follows:

Problem i: To find the control vector trajectory u : [t0, tf ] ∈ R → R
n that minimizes the

performance index:

J(u)= ϕ
(
x
(
tf
))+ ∫ tf

t0
L (x (t) ,u (t) , t)dt. (1)

Subject to:

ẋ (t)= f (x (t) ,u (t) , t) , x (t0)= x0. (2)

where x = (x1,x2,x3, . . . ,xn)T , f = (f1, f2, f3, . . . , fn)T and ϕ : R
n × R → R is a terminal

cost function.

Problem ii: Find tf and u (t) to minimize:

J =
∫ tf

t0
1dt= tf − t0.

Subject to:

ẋ (t)= f (x (t) ,u (t) , t) , x (t0)= x0.

This special type of optimal control problem is called the minimum time problem.

Definition 2 (Hamiltonian): A time varying Lagrange’s multiplier function λ : [t0, tf ]→R, also
known as the co-state define Hamiltonian function H as:

H (x (t) ,u (t) ,λ (t) , t)=L (x (t) ,u (t) , t)+λ (t)T f (x (t) ,u (t) , t) , (3)

such that

J(u)= ϕ
(
x
(
tf
))+ ∫ tf

t0

{
H (x (t) ,u (t) ,λ (t) , t)−λT (t)x

}
dt. (4)
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Theorem 1 (Pontryagin Maximum Principle): If u∗ (t) ,x∗ (t)
(
t ∈ [t0, tf ]) is a solution of the

optimal control problem Eqs. (1) and (2) then there exists a non-zero absolutely continuous
function λ(t) such that λ (t) ,x∗ (t) ,u∗ (t) satisfy the system

dx
dt

= ∂H
∂λ

,
dλ

dt
=−∂H

∂x
, (5)

such that, for almost all t ∈ [t0, tf ] the function in Eq. (3) attains its maximum:

H
(
λ (t) ,x∗ (t) ,u∗ (t)

)=M (λ,x) ,

M
(
λ
(
tf
)
,x∗

(
tf
))= sup {H (λ,x,u) : u ∈U} . (6)

and such that at terminal time tf the conditions

M
(
λ
(
tf
)
,x∗

(
tf
))= 0, λ0(tf )≤, are satisfied.

If the functions λ(t),x(t),u(t) satisfy the relation Eqs. (5) and (6) (i.e., x (t) ,u (t) are Portrya-
gin extremals), then the condition

M (t)=M (λ (t) ,x (t))= const., λ0 (t)= const holds.

Remark 1: Becerra states that for a minimum, it is necessary for the stationary (optimality)
condition to give:

∂HT

∂u
= 0. (7)

3 Model Formulation

We know that most people are susceptible to COVID-19 and the patients in the incubation
period can infect healthy people. We denote the population of susceptible people with S, the
patients in the incubation period and the patients that are yet to be diagnosed by I, patients in
the hospital by H, removed people by R, respectively. Here the infectivity of the patients in the
incubation period and the patients that are yet to be diagnosed are assumed to be the same.

After the outbreak of COVID-19, susceptible people are advised to lock themselves down at
home, and all close contacts of infected individuals tracked are quarantined. Therefore, we divide
the population of susceptible people into; susceptible people (S1), the quarantined susceptible
people (by close contacts tracked measure) (S2) and general isolated susceptible people (due to
community lockdown) (S3). Infected people population is divided into general infected people,
including the patients in the incubation period and the infected people that are yet to be diagnosed
(I1) and infected people that are quarantined (I2). Here we assume that all susceptible people
isolated at home cannot be infected and all infected people isolated at home cannot infect healthy
people. Thus, we establish the transmission dynamics of the disease as in Fig. 1.

The transmission dynamics can be described by the nonlinear system of first order differential
equations as follows:

dS1
dt

= α1S2− βS1I1
N−S2 −S3 − I2−H

− q1−μS1 +α2S3, (8)
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Figure 1: Transmission dynamics of the disease

dS2
dt

= q1−α1S2, (9)

dS3
dt

=μS1−α2S3, (10)

dI1
dt

= βS1I1
N −S2−S3 − I2 −H

− q2− γ I1, (11)

dI2
dt

= q2− γ I2, (12)

dH
dt

= γ I1+ γ I2 − δH, (13)

dR
dt

= δH, (14)

where,

q1 =min
{
S1,γ b

(I1+ I2)
S2 + I2

S2

}
and q2 =min

{
I1,γ b

(I1+ I2)
S2+ I2

I2

}
.

S1 (0)≥ 0, S2 (0)≥ 0, S3 (0)≥ 0, I1 (0)≥ 0, I2 (0)≥ 0, H (0)≥ 0, R (0)≥ 0.

When patients go to hospital and are diagnosed (I1 + I2), by the close contacts tracked
measure, susceptible people (q1) and infected people (q2) are quarantined by the proposition b.
Here the number of quarantined susceptible people (q1) and quarantined infected people (q2)
are less than the number of susceptible people (S1) and infected people (I1) respectively. Then

q1 =min
{
S1,γ b

(I1+ I2)
S2 + I2

S2

}
and q2 =min

{
I1,γ b

(I1+ I2)
S2 + I2

I2

}
.

After the isolation of 14 days
(

1
α1

)
, the quarantined susceptible individuals become sus-

ceptible. When quarantined infected people have symptoms, they are hospitalized and diagnosed

(I2). After the time of treatment
(
1
δ

)
, they are removed from the hospital. The communities

are isolated and healthy people are also advised to isolate themselves at home unless they have
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something urgent to deal with. Then μS1 and α2S3 denote the weak movements of population
from susceptible to isolated susceptible and from isolated susceptible to susceptible, respectively.

4 Optimal Control

Here the detail formulation and analysis of the optimal control problem with respect to the
model Eqs. (8)–(14) is given.

4.1 Formation of an Optimal Control
The aim of the control strategy is to prevent the susceptible population from becoming

infected and reduce the infected population by increasing hospitalization which eventually reduces
the number of new cases.

Let the control functions

u1 (t) ∈ [0,u1 (t)max] be the rate at which susceptible communities are isolated.

u2 (t) ∈ [0,u2 (t)max] be the contact track measure by which susceptible individuals with contact
history are quarantined.

u3 (t) ∈ [0,u3 (t)max] be the contact track measure by which infected individuals
are quarantined.

u4 (t) ∈ [0,u4 (t)max] be the control effort of hospitalizing the infected I1.

u5 (t) ∈ [0,u5 (t)max] be the control effort of hospitalizing the infected I2.

The dynamics of control system can be described by the following system of nonlinear ODE;

dS1
dt

= α1S2− βS1I1
N−S2 −S3 − I2−H

− u2 (t)q1− (μ+ u1 (t))S1+α2S3, (15)

dS2
dt

= u2 (t)q1−α1S2, (16)

dS3
dt

= (μ+ u1 (t))S1−α2S3, (17)

dI1
dt

= βS1I1
N−S2 −S3 − I2 −H

− u3 (t)q2− (γ + u4 (t)) I1, (18)

dI2
dt

= u3 (t)q2− (γ + u5 (t)) I2, (19)

dH
dt

= (γ + u4 (t)) I1+ (γ + u5 (t)) I2 − δH, (20)

dR
dt

= δH. (21)
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For a fixed terminal time tf , the problem to minimize the objective functional associated to
system Eq. (15) through Eq. (21) is

J (u (t))=
∫ tf

t0
[A1S1+A2q1+A3q2+A4I1+A5I2 + A6

2
u1

2(t)+ A7

2
u2

2(t)+ A8

2
u3

2(t)+ A9

2
u4

2(t)

+ A10

2
u5

2(t)]dt. (22)

where,

Ai ≥ 0, i= 1, 2, . . . , 10 denote the weights parameters that balanced the size of the terms.

We seek for optimal control u∗ such that

J
(
u∗
)=min {J (u) : u ∈U} ,

where

U is the set of admissible controls defined by

U = {ui (t) : 0≤ ui (t)≤ 1, i= 1, 2, . . . , 10, ui (t) is Lebesgue measurable} .
4.2 Existence of Optimal Control

The system of nonlinear ODE Eqs. (15)–(21) can be written as,

F (x (t) ,u (t))=Ax (t)+ u145 (t)x (t)+ u23 (t)q (x (t))+ g (x (t)) , (23)

where,

x (t)= (S1 (t) ,S2 (t) ,S3 (t) , I1 (t) , I2 (t) ,H (t) ,R (t))T ,

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ α1 α2 0 0 0 0
0 −α1 0 0 0 0 0
μ 0 α2 0 0 0 0
0 0 0 −γ 0 0 0
0 0 0 0 −γ 0 0
0 0 0 γ γ −δ 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u145(t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u1(t) 0 0 0 0 0 0
0 0 0 0 0 0 0
u1(t) 0 0 0 0 0 0
0 0 0 −u4(t) 0 0 0
0 0 0 0 −u5(t) 0 0
0 0 0 u4(t) u5(t) 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

u23 (t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −u2(t) 0 0 0 0 0
0 u2(t) 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −u3(t) 0 0 0
0 0 0 u3(t) 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, q (x (t))=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

γ b
(I1+ I2)
S2+ I2

S2

0

γ b
(I1+ I2)
S2+ I2

I2

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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g (x (t))=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− βS1I1
N −S2−S3 − I2 −H

0
0

βS1I1
N−S2 −S3 − I2−H

0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 3: The optimal control system Eq. (23) is Lipschitz continuous.

Proof∣∣F (x (t) ,u (t))−F
(
x∗ (t) ,u (t)

)∣∣
= ∣∣(A+ u145 (t))

(
x (t)−x∗ (t)

)+ u23 (t)
(
q (x (t))− q

(
x∗ (t)

))+ g (x (t))− g
(
x∗ (t)

)∣∣
≤ |A+ u145 (t)| ∣∣x (t)−x∗ (t)

∣∣+ ∣∣q (x (t))− q
(
x∗ (t)

)∣∣+ ∣∣g (x (t))− g
(
x∗ (t)

)∣∣
≤
(
‖A‖+max

[t0,tf ]
|u145 (t)|

)∣∣x (t)−x∗ (t)
∣∣+max

[t0,tf ]
|u23 (t)| ∣∣x (t)−x∗ (t)

∣∣+ ∣∣x (t)−x∗ (t)
∣∣

≤
(
‖A‖+max

[t0,tf ]
|u145 (t)| +max

[t0,tf ]
|u23 (t)| + 1

)∥∥x (t)−x∗ (t)
∥∥∥∥F (x (t) ,u (t))−F

(
x∗ (t) ,u (t)

)∥∥
≤M

∥∥x (t)−x∗ (t)
∥∥ ,

where,

M = ‖A‖+max
[t0,tf ]

|u145 (t)| +max
[t0,tf ]

|u23 (t)| + 1<∞.

4.3 Characterization of Optimal Control
To formulate the optimal control strategy, we define the Hamiltonian as:

H =A1S1 +A2q1+A3q2+A4I1+A5I2+ A6

2
u12 (t)+ A7

2
u22 (t)+ A8

2
u32 (t)

+ A9

2
u4

2 (t)+ A10

2
u5

2 (t)+
7∑
i=1

λifi

H =A1S1 +A2q1+A3q2+A4I1+A5I2+ A6

2
u12 (t)+ A7

2
u22 (t)+ A8

2
u32 (t)+ A9

2
u42 (t)

+ A10

2
u5

2 (t)+λ1

(
α1S2− βS1I1

N −S2−S3 − I2 −H
− u2 (t)q1− (μ+ u1 (t))S1+α2S3

)
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+λ2 (u2 (t)q1−α1S2)+λ3 ((μ+ u1 (t))S1−α2S3)+λ4

(
βS1I1

N −S2−S3 − I2 −H
− u3 (t) q2

− (γ + u4 (t)) I1

)
+λ5 (u3 (t)q2− (γ + u5 (t)) I2)+λ6 ((γ + u4 (t)) I1

+ (γ + u5 (t)) I2− δH)+λ7δH. (24)

Theorem 4: Let x (t) = (S1 (t) ,S2 (t) ,S3 (t) , I1 (t) , I2 (t) ,H (t) ,R (t)) with associated optimal
control variables u1,u2,u3,u4,u5, then there exists a co-state variable satisfying:

λ̇i =−∂H
∂x

, i= 1, 2, . . . , 7.

Proof:

Applying the co-state (adjoint) condition of Eq. (5) yield

λ̇1 =− ∂H
∂S1

=
(

βI1
N −S2−S3 − I2 −H

+μ+ u1 (t)
)

λ1− (μ+ u1 (t)) λ3− βI1
N −S2−S3 − I2 −H

λ4−A1, (25)

λ̇2 =− ∂H
∂S2

=
(
u2 (t) q2
S2+ I2

+ βS1I1
(N−S2 −S3 − I2−H)2

−α1

)
λ1+

(
α1− u2 (t)q2

S2 + I2

)
λ2

−
(

βS1I1
(N −S2 −S3− I2 −H)2

+ u3 (t)q2
S2+ I2

)
λ4+ u3 (t)q2

S2+ I2
λ5, (26)

λ̇3 =− ∂H
∂S3

=
(

βS1I1
(N −S2−S3 − I2 −H)2

−α2

)
λ1+α2λ3− βS1I1

(N −S2 −S3− I2 −H)2
λ4, (27)

λ̇4 =−∂H
∂I1

=
(

βS1
N −S2−S3 − I2 −H

+ γ b
u2 (t)S2
S2+ I2

)
λ1− γ b

u2 (t)S2
S2+ I2

λ2+
(

γ b
u3 (t) I2
S2+ I2

− βS1
N −S2−S3 − I2 −H

+ γ + u4 (t)
)

λ4− γ b
u3 (t) I2
S2+ I2

λ5− (γ + u4 (t)) λ6− γ bS2
S2+ I2

− γ bI2
S2+ I2

−A4, (28)
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λ̇5 =−∂H
∂I2

=
(

βS1I1
(N−S2 −S3 − I2−H)2

+ γ bu2 (t) (S2 − I2)

(S2+ I2)2
S2

)
λ1− γ bu2 (t) (S2− I2)

(S2+ I2)2
S2λ2

+
(

γ bu3 (t) [(S2 + I2) (I1+ 2I2)− (I1+ I2) I2]

(S2+ I2)
2 − βS1I1

(N −S2−S3 − I2 −H)2

)
λ4

−
(

γ bu3 (t) [(S2 + I2) (I1+ 2I2)− (I1+ I2) I2]

(S2+ I2)2
− γ − u5 (t)

)
λ5

− (γ + u5 (t)) λ6− γ b [(S2− I2)S2+ (S2 + I2) (I1+ 2I2)− (I1+ I2) I2]

(S2+ I2)2
−A5, (29)

λ̇6 =−∂H
∂H

= βS1I1
(N−S2 −S3 − I2−H)2

λ1− βS1I1
(N−S2 −S3− I2 −H)2

λ4+ δλ6− δλ7, (30)

λ̇7 =−∂H
∂R

= 0, (31)

subject to the following transversality conditions;

λ1
(
tf
)= λ2

(
tf
)= λ3

(
tf
)= λ4

(
tf
)= λ5

(
tf
)= λ6

(
tf
)= λ7

(
tf
)= 0. (32)

Applying the optimality conditions, we get

∂H
∂u1

=A6u1 (t)−λ1S1+λ3S1 = 0, =⇒ u1 (t)= (λ1−λ3)S1
A6

, (33)

∂H
∂u2

=A7u2 (t)−λ1q1+λ2q1 = 0, =⇒ u2 (t)= (λ1−λ2)q1
A7

, (34)

∂H
∂u3

=A8u3 (t)−λ4q2+λ5q2 = 0, =⇒ u3 (t)= (λ4−λ5)q2
A8

, (35)

∂H
∂u4

=A9u4 (t)−λ4I1+λ6I1 = 0, =⇒ u4 (t)= (λ4−λ6) I1
A9

, (36)

∂H
∂u5

=A10u5 (t)−λ5I2 +λ6I2 = 0, =⇒ u5 (t)= (λ5−λ6) I2
A10

, (37)

u1∗ (t)=min
{
1,max

(
0,

(λ1−λ3)S1
A6

)}
, (38)

u2∗ (t)=min
{
1,max

(
0,

(λ1−λ2)q1
A7

)}
, (39)

u3∗ (t)=min
{
1,max

(
0,

(λ4−λ5)q2
A8

)}
, (40)



CMC, 2021, vol.66, no.3 3099

u4
∗ (t)=min

{
1,max

(
0,

(λ4−λ6)I1
A9

)}
, (41)

u5
∗ (t)=min

{
1,max

(
0,

(λ5−λ6)I2
A10

)}
. (42)

Solving the optimality system requires initial and transversality conditions together with
characterization obtained in Eqs. (38)–(42), in addition, from the Largrangian equation

L=A1S1+A2q1+A3q2+A4I1+A5I2+ A6

2
u12 (t)+ A7

2
u22 (t)+ A8

2
u32 (t)

+ A9

2
u42 (t)+ A10

2
u52 (t) ,

we can see that the second derivative with respect to u1,u2,u3,u4,and u5 is positive. This shows
that the optimal control problem is minimum at controls u1,u2,u3,u4,and u5 respectively.

Now by substituting Eqs. (38)–(42) into the system Eqs. (15)–(21) we have;

dS1
dt

= α1S2 − βS1I1
N−S2 −S3 − I2 −H

−min
{
1,max

(
0,

(λ1−λ2)q1
A7

)}
q1

−
(

μ+min
{
1,max

(
0,

(λ1−λ3)S1
A6

)})
S1 +α2S3, (43)

dS2
dt

=min
{
1,max

(
0,

(λ1−λ2)q1
A7

)}
q1−α1S2, (44)

dS3
dt

=
(

μ+min
{
1,max

(
0,

(λ1−λ3)S1
A6

)})
S1−α2S3, (45)

dI1
dt

= βS1I1
N −S2−S3 − I2 −H

−min
{
1,max

(
0,

(λ4−λ5)q2
A8

)}
q2

−
(

γ +min
{
1,max

(
0,

(λ4−λ6) I1
A9

)})
I1, (46)

dI2
dt

=min
{
1,max

(
0,

(λ4−λ5)q2
A8

)}
q2− (γ + u5 (t)) I2, (47)

dH
dt

=
(

γ +min
{
1,max

(
0,

(λ4−λ6)I1
A9

)})
I1+

(
γ +min

{
1,max

(
0,

(λ5−λ6)I2
A10

)})
I2−δH, (48)

dR
dt

= δH. (49)
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5 Stability Analysis

In this chapter, two equilibrium points; Disease Free and Endemic Equilibria are found.
Basic reproduction ratio is obtained. Global stability analyses of the equilibrium solutions are
carried out.

5.1 Equilibria
Since there does not appear the state variable R in Eq. (15) through Eq. (21), it suffices to

analyze the system Eq. (15) through Eq. (20).

Disease free equilibrium E0 is obtained by substituting I1 = I2 = H = 0 into Eqs. (15)–(20),
thus we have

E0 =
(
S01,S

0
2,S

0
3, I

0
1 , I

0
2 ,H

)
=
(
S01, 0,

μ+ u1
α2

S01, 0, 0, 0
)
.

The endemic equilibrium E∗ = (
S∗1,S

∗
2,S

∗
3, I

∗
1 , I

∗
2 ,H

∗) is obtained when I1 
= 0, I2 
= 0,
H 
= 0, thus

S∗3 =
μ+ u1

α2
S∗1, (50)

I∗2 = α1γ bu3− (γ + u5) (γ bu2+ γ + u4)

α1u3 (γ + u5)+ γ bu3 [u2 (γ + u5)−α1u3]+ (γ + u5)2 (u3− u2)
u3I∗1 . (51)

Since the endemic equilibrium is positive, then I∗2 >0 i.e.,

α1γ bu3− (γ + u5) (γ bu2+ γ + u4) > 0,

or

α1γ bu3 > (γ + u5) (γ bu2+ γ + u4) .

S∗2 = γ b
u3 (t)

(
I∗1 + I∗2

)
γ + u5

− I∗2 ,

S∗2 =
[

γ bu3
γ + u5

+
(

γ bu3
γ + u5

− 1
)

α1γ bu3− (γ + u5) (γ bu2+ γ + u4)

α1u3 (γ + u5)+ γ bu3 [u2 (γ + u5)−α1u3]+ (γ + u5)2 (u3− u2)
u3

]
I∗1 .

(52)

Also

γ bu3
γ + u5

− 1> 0 or
γ bu3
γ + u5

> 1.

H∗ = 1
δ

[
(γ + u4) I

∗
1 + (γ + u5) I

∗
2

]
,

H∗ = 1
δ

[
γ + u4+ α1γ bu3− (γ + u5) (γ bu2+ γ + u4)

α1u3 (γ + u5)+ γ bu3 [u2 (γ + u5)−α1u3]+ (γ + u5)2 (u3− u2)
(γ + u5)u3

]
I∗1 . (53)
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5.2 Local Stability of the Equilibria
We construct the Jacobian matrix from Eqs. (15)–(20) as:

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

−D1 −μ− u1 α1−D2 − u2D3 −D2 +α2 −D4 − u2D5 −D2 − u2D7 −D2
0 u2D3 −α1 0 u2D5 u2D7 0
μ+ u1 0 −α1 0 0 0
D1 D2+ u3D3 D2 D4− u3D6 − γ − u4 D2 − u3D8 D2
0 −u3D3 0 u3D6 u3D8− γ − u5 0
0 0 0 γ + u4 γ + u5 −δ

⎤
⎥⎥⎥⎥⎥⎥⎦

where,

D1 = βI1
N−S2 −S3 − I2−H

, D2 = βS1I1
(N −S2−S3 − I2 −H)2

, D3 = γ b (I1+ I2) I2
(S2 + I2)2

,

D4 = βS1
N−S2 −S3 − I2−H

, D5 = γ bS2
S2+ I2

, D6 = γ bI2
S2 + I2

,

D7 = γ b (S2− I1)S2
(S2 + I2)2

, D8 = (S2+ I2) (I1+ 2I2)− (I1+ I2) I2
(S2+ I2)2

.

Theorem 5: The disease free equilibrium E0 is locally asymptotically stable.

Proof:

JE0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−μ− u1 α1 α2 −βS1 (0) / [N −S3 (0)] 0 0
0 −α1 0 0 0 0
μ+ u1 0 −α1 0 0 0
0 0 0 βS1 (0) / [N−S3 (0)]− γ − u4 0 0
0 0 0 0 −γ − u5 0
0 0 0 γ + u4 γ + u5 −δ

⎤
⎥⎥⎥⎥⎥⎥⎦

The eigenvalue is obtained from;

det
∣∣JE0 −KI

∣∣= 0.

This implies;⎡
⎢⎢⎢⎢⎢⎢⎣

−μ− u1−K α1 α2 −βS1 (0) / [N−S3 (0)] 0 0
0 −α1−K 0 0 0 0
μ+ u1 0 −α1−K 0 0 0
0 0 0 βS1 (0) / [N−S3 (0)]− γ − u4−K 0 0
0 0 0 0 −γ − u5−K 0
0 0 0 γ + u4 γ + u5 −δ −K

⎤
⎥⎥⎥⎥⎥⎥⎦
= 0

K1 =−μ− u1,

K2 =−α1,

K3 =−α2 −μ− u1,
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K4 = βS1 (0)
N−S3 (0)

− γ − u4,

K5 =−δ,K6 = 0.

5.3 Basic Reproduction Number
For the DFE to be locally asymptotically stable, the eigenvalue K4 must be negative. That is:

βS1 (0)
N−S3 (0)

− γ − u4 < 0,

or

βS1 (0)
(γ + u4) (N −S3 (0))

< 1.

Now, define the basic reproduction ratio (R0) to be:

R0 = βS1 (0)
(γ + u4) (N −S3 (0))

. (54)

5.4 Global Stability Analysis
Here the global stability analyses of the two equilibrium points are carried out.

Theorem 6: The disease free equilibrium is globally asymptotically stable.

Proof:

Let the Lyapunov candidate function be,

V (S1,S2,S3, I1, I2,H)= 1
2
[
(
S1−S1

∗)+S2 +
(
S3−S3

∗)+ I1 + I2+H]2.

Clearly the above function V (S1,S2,S3, I1, I2,H) > 0.

Also V (S1,S2,S3, I1, I2,H)= 0, if (S1,S2,S3, I1, I2,H, )=
(
S1, 0,

μ+ u1
α2

S1, 0, 0, 0
)
.

dV
dt

= [(S1−S1∗
)+S2+

(
S3−S3∗

)+ I1+ I2 +H
] [dS1

dt
+ dS2

dt
+ dS3

dt
+ dI1

dt
+ dI2

dt
+ dH

dt

]
,

dV
dt

=−δH
[(
S1−S1∗

)+S2 +
(
S3−S3∗

)+ I1 + I2+H
]
.

Clearly,

dV
dt

= 0 if (S1,S2,S3, I1, I2,H, )=
(
S1, 0,

μ+ u1
α2

S1, 0, 0, 0
)
,

dV
dt

< 0 if (S1,S2,S3, I1, I2,H, ) 
=
(
S1, 0,

μ+ u1
α2

S1, 0, 0, 0
)
.
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Theorem 7: The endemic equilibrium is globally asymptotically stable.

Proof:

Let the Lyapunov candidate function be,

W (S1,S2,S3, I1, I2,H)= 1
2

[(
S1−S1∗

)+ (S2−S2∗
)+ (S3−S3∗

)+ (I1− I1∗
)+ (I2− I2∗

)+ (H −H∗)]2 .
Clearly, W (S1,S2,S3, I1, I2,H)≥0.

Also W (S1,S2,S3, I1, I2,H)= 0, if (S1,S2,S3, I1, I2,H)= (S1∗,S2∗,S3∗, I1∗, I2∗,H∗) .
dW
dt

= [(S1−S1∗
)+ (S2−S2∗

)+ (S3−S3∗
)+ (I1 − I1∗

)+ (I2− I2∗
)+ (H −H∗)]

×
[
dS1
dt

+ dS2
dt

+ dS3
dt

+ dI1
dt

+ dI2
dt

+ dH
dt

]

=−δH
[(
S1−S1

∗)+ (S2−S2
∗)+ (S3 −S3

∗)+ (I1− I1
∗)+ (I2− I2

∗)+ (H −H∗)] .
Clearly,

dW
dt

= 0, if (S1,S2,S3, I1, I2,H, )= (S1∗,S2∗,S3∗, I1∗, I2∗,H∗) ,
dW
dt

< 0, if (S1,S2,S3, I1, I2,H, ) 
= (S1∗,S2∗,S3∗, I1∗, I2∗,H∗)
6 Numerical Simulations

In this chapter numerical simulations are carried out to support the analytic results and to
show the significance of the controller. Most of the data used in the simulation for the parameters
and the variables is from china as in [7]. The values can be found in Tabs. 1 and 2 below.

Table 1: Model variables, descriptions and values

Model variables Descriptions Mean value

N Total population 1.3362× 109

S1 (0) Initial susceptible population 2.6723× 108

S2 (0) Initial quarantine susceptible population 3762
S3 (0) Initial isolated susceptible population 1.069× 109

I1 (0) Initial infected population 4101
I2 (0) Initial quarantine infected population 700
H (0) Initial hospitalized population 3886
R (0) Initial removed individuals 64
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Table 2: Model parameters, descriptions and values

Model parameters Description Value

α1 time of isolation at home for susceptible population 1/14
α2 Transfer rate from isolated susceptible population 5.05× 10−6

β Transmission rate of COVID-19 0.3567
μ Transfer rate from susceptible to isolated susceptible population 1.76× 10−4

γ Hospitalization rate of infected population 0.1429
δ Discharge rate from hospital 0.0949
b Isolation coefficient 12

It can be seen from Fig. 2, that when no any control measure is observed and people were
allowed to behave as usual the number of infected individuals will escalate. On the other hand
if the control measures were observed optimally, that is; susceptible communities are isolated,
susceptible individuals that have contact with infected individuals are quarantined, asymptomatic
individuals are quarantined, and infected individuals are traced and hospitalized, then the number
of infected individuals will drastically be reduced as shown in Fig. 3.
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Figure 2: Dynamics of the infected population when there is no control

Although these control measures aren’t easy to be observed but their significance can easily be
seen from the above graphs. It is clearly shown that when individuals and governments at various
levels put hands together the spread of the disease will be curbed. From the above two graphs it
can be seen that the number of people that will be removed from the population (either by death
or by natural recovery) will be reduced from about 2.5×108 when there is no control to less than
9000 people when control is observed optimally.
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Figure 3: Dynamics of the infected population when all control measures are optimally observed
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