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Abstract: Dynamic channel assignment (DCA) is significant for extending vehi-
cular ad hoc network (VANET) capacity and mitigating congestion. However, the
un-known global state information and the lack of centralized control make chan-
nel assignment performances a challenging task in a distributed vehicular direct
communication scenario. In our preliminary field test for communication under
V2X scenario, we find that the existing DCA technology cannot fully meet the
communication performance requirements of VANET. In order to improve the
communication performance, we firstly demonstrate the feasibility and potential
of reinforcement learning (RL) method in joint channel selection decision and
access fallback adaptation design in this paper. Besides, a dual reinforcement
learning (DRL)-based cooperative DCA (DRL-CDCA) mechanism is proposed.
Specifically, DRL-CDCA jointly optimizes the decision-making behaviors of both
the channel selection and back-off adaptation based on a multi-agent dual reinfor-
cement learning framework. Besides, nodes locally share and incorporate their
individual rewards after each communication to achieve regional consistency
optimization. Simulation results show that the proposed DRL-CDCA can better
reduce the one-hop packet delay, improve the packet delivery ratio on average
when compared with two other existing mechanisms.

Keywords: Vehicular ad hoc networks; reinforcement learning; dynamic channel
assignment

1 Introduction

VANET is a specific application of MANET (Mobile Ad-hoc Network) in vehicle to vehicle/vehicle to
infrastructure communication scenario. As a research hotspot of intelligent transportation, VANETs lay a
crucial foundation for various intelligent vehicular functions. Traditional MANETs adopt the single-
channel communication mode where all nodes can only access one common channel for data
transmission. With the widespread use of connected vehicles in the future, the quantity of VANETSs nodes
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increase continuously, leading to progressively fierce competition in wireless resources. The single-channel
communication mode tends to cause severe resources conflicts when large numbers of nodes access the
channel concurrently. Therefore, the capacity of the wireless network using the traditional single-channel
communication mode is seriously limited by the quantity of channels.

As a widely used VANETs wireless communication protocol standard, WAVE (Wireless Access in
Vehicular Environment) provides a 75 MHz bandwidth in the 5.9 GHz frequency band for vehicle to
vehicle/vehicle to infrastructure communication and divides the 75 MHz bandwidth into seven channels.
These channels enable nodes to transmit data packets simultaneously under diverse channels. CH178 is the
control channel (CCH) that can only be used to transmit control and public security information. CH174,
CH176, CH180 and CH182 are service channels (SCHs), used to transmit both public security and private
service information. CH184 and CH172 are reserved for future use. IEEE 1609.4 is used for multi-channel
operations, such as channel synchronization, coordination, and switching of WAVE. WAVE providers
broadcast WAVE Service Advertisement (WSA) packets containing the offered services information and the
network parameters necessary to join the advertised Basic Service Set (BSS) [1]. After receiving the WSA,
the WAVE users interested in the service access the corresponding SCH in the SCH Interval (SCHI) to
obtain service data. However, we find that the quality of service (QoS) of VANET both in line-of-sight
(LOS) and none-line-of-sight (NLOS) scenarios are not ideal in the preliminary field experiment. This
channel coordination mode is not suitable for a vehicular direct communication scenario. For example, in a
unicast multi-hop routing scenario, the data transmitting node needs to transmit data on a specific SCH with
the next hop node selected by the routing protocol. The process of the optimal SCH selection and the
channel coordination therein is not clearly defined in IEEE 1609.4.

The limited communication range, the change of network topology, and the distributed execution of
channel assignments between the nodes make the global network state of VANETs unknown to the
nodes. Therefore, the channel assignment of local vehicular direct communication is actually an
optimization problem under an unknown state model. In addition, the lack of centralized control makes
DCA more challenging. This paper applies RL to the DCA problem in a dynamic environment because
of its widespread usage and outstanding performance in the field of optimal decision-making without
state models. In order to meet the dual requirements of VANETs for network capacity and latency, we
design a dual RL framework to jointly optimizes the decision-making behaviors of both the channel
selection and back-off adaptation, and achieve multi-agent collaboration by sharing their individual
rewards. Finally, our DRL-CDCA is compared with two other conventional baseline mechanisms under
the same simulation scenario. After simulation, it can be found that DRL-CDCA is superior to two other
conventional baseline mechanisms in the one-hop packet delay and the packet delivery ratio on average.

The main contributions of this paper are summarized as follows:

e As an important branch of machine learning, the existing RL theory has made some achievements in
many fields, but it is mainly based on the interaction between environment and robot and game
development. Owing to few people effort the application prospect of RL theory in the Internet
of vehicles, its development of RL theory in promoting joint channel selection and medium
access control (MAC) layer back-off for vehicle to vehicle (V2V) communication and networking
is not mature. We propose the first work to demonstrate the feasibility and potential of RL
based method in joint channel selection decision and access fallback adaptation design to enhance
V2V communication.

e In addition, we improve the original RL theory to combine RL theory with vehicle field, and design
and combine two components to adapt to and improve the decision-making performance of RL agent
in V2V communication: (I) A dual Q network structure for joint optimization of channel selection and
reverse adaptation; (II) A distributed consensus reward mechanism to promote cooperative decision-
making among learners Behavior.
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The remainder of this paper is organized as follows: Section 2 mainly introduces related work in channel
assignment. Section 3 mainly displays the previous field experiments and the problems found according to
the experimental results Section 4 describes the system model and problem formulation. Section 5 describes
the details of the mechanism proposed in this paper. The performance of our DRL-CDCA is compared to two
other existing mechanisms in Section 6. Finally, concluding remarks are presented in Section 7.

2 Related Work

Q-learning-based DCA proposed in Nie et al. [2] uses RL to solve DCA problem in a cellular mobile
communication system. Q-learning-based DCA is a single agent RL (SARL) mechanism, as well as a
centralized one. The base station as a centralized node assigns the channel to each communication node
pair. However, the channel assignment of VANETSs is not done by a central node like the base station of
Q-learning-based DCA; Instead, each node assigns the channel independently. Therefore, the centralized
channel assignment mechanism like Q-learning-based DCA for cellular mobile communication systems
cannot adapt to VANET. A novel deep RL (DRL)-based DCA (DRL-DCA) algorithm is proposed in Liu
et al. [3], where the system state is reformulated into an image-like fashion, and then, convolutional
neural network is used to extract useful features. DRL-DCA models the multibeam satellite system as the
agent and the service event as the environment. From the perspective of VANETs, DRL-DCA is
equivalent to the RSU (roadside unit)-based channel assignment mechanism, which is a centralized
channel assignment mechanism. Wei et al. [4] combines RL method Q-learning with deep neural network
to approximate the value function in complex control application. The RL-CAA mentioned in Ahmed
et al. [5], and the RLAM mentioned in Louta et al. [6] are also the centralized channel assignment
mechanisms in different application scenarios, and are not suitable for the distributed channel assignment
problem of the vehicular direct communication scenario studied in this paper. Therefore, this paper
models the Markov decision process of RL for distributed scenarios, and designs the DCA mechanism
based on the distributed RL model.

In recent years, some advanced MAC (medium access control) protocols [7-9] have been designed to
enhance the communication capabilities of VANET. An adaptive multi-channel assignment and coordination
(AMAC) scheme for the IEEE 802.11p/1609.4 is proposed in Almohammedi et al. [10], which exploits
channel access scheduling and channel switching in a novel way. However, AMAC’s channel selection
mechanism is still based on WBSS (WAVE Basic Service Set) service release-subscription, not for
vehicular direct communication scenarios. A mechanism called safety communication based adaptive
multi-channel assignment is proposed in Chantaraskul et al. [11] to adaptively adjust the channel
switching interval. However, there is no mention of the strategy of SCH selection in Chantaraskul et al.
[11]. An RSU-coordinated synchronous multi-channel MAC scheme for VANETS is proposed in Li et al.
[12], which supports simultaneous transmissions on different SCHs. However, in the scenario where the
vehicle-to-vehicle is directly connected, the MAC mechanism without RSU cooperation cannot be
realized. In Ribal et al. [13], deep reinforcement learning is applied to VANETs. Specifically, it is used to
implement the vehicle to RSU that meets QoS requirements. The RSU can distinguish different system
states according to its remaining battery, the quantity of the mobile nodes and the communication
requests before assigning suitable SCH to each OBU (on board unit). The method proposed in Ribal et al.
[13] still belongs to the RSU-based channel assignment mechanism, which cannot solve the channel
assignment problem in a fully distributed scenario.

Furthermore, due to the uneven traffic flow density, VANET node density will also be affected. At the
same time, the routing is of multi hop and multi node, which brings severe challenges to the operation and
optimization of networking and transmission. Liu et al. [14] gives a novel multi-hop algorithm for wireless
network with unevenly distributed nodes. In this algorithm, each unknown node estimates its location using
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the mapping model by elastic net constructed with anchor nodes. However, as an important feature of
VANET, the randomness and uncertainty of the target motion are not discussed in depth. A referential
node scheme for VANET is proposed in Wang et al. [15], where further analysis for channel assignment
is not implemented.

It can be seen that a large part of the channel assignment mechanism for VANETS is a central channel
assignment mechanism, and some of the existing fully distributed channel assignment mechanisms are still
basically based on the WBSS service release-subscription, not for the vehicular direct communication scenario.

3 Preliminary Field Experiment

In the preliminary work of this paper, a field experiment for vehicle road collaborative application was
carried out in Tong Zhou automobile test field, Beijing. The filed testing environment is shown in Fig. 1. In
the experiment, the communication performance of VANET is measured in LOS and NLOS scenarios
respectively in different level of vehicle speed. As a representative index to evaluate network
performance, the QoS of the VANET was emphatically noticed.

Figure 1: Beijing Tong Zhou automobile test base

During the experiment, a vehicle equipped with on-board unit runs on the test road, while roadside units
are deployed in a relatively fixed location. On-board terminal and roadside terminal form network through
communication between on-board unit and roadside unit. Topology structure of VANETS’ testing is shown in
Fig. 2. When the experiment launching, the applications of driving road collaboration are developed by the
data exchange and share between roadside and vehicle. The tester monitors the on-board unit and roadside
unit with computer in and out of the vehicle respectively. Then QoS indicators are further calculated.

In this field experiment, QoS refers to the selection of delay time, delay variation, package loss rates, and
throughput. And the ordinary DCA strategy is employed in vehicular networking. The results in various
speed and visibility scenarios are shown in Fig. 3.

The results reveal that although the current strategy has almost successfully controlled the time delay in
less than 10 ms, the delay variation is changed frequently. Meanwhile, although packet loss does not appear
to be serious, considering that there is only one vehicle participating in the test and there is only one single
hop routing in this network, its test results can not reflect the universal situation of multi hop and multi
routing. In addition, the throughput is within 2 Mb/s in most case while the rated throughput of the
communication equipment is 4 Mb/s. Employing the existing DCA strategy, the throughput is 50% less
than the rated throughput in order to meet the communication accessibility.
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Figure 3: QoS test results in various speed and visibility scenarios
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The field experiment results illustrate that the existing DCA is difficult to adapt to VANET. To optimize
the channel allocation and networking problems in VANET, this paper proposes DRL-CDCA. Considering
the difficulty of deploying the multi hop and multi routing experiment under the condition of multi vehicles
in the test field, this paper explores the situation of multi hop and multi routing by simulation.

4 System Model and Problem Formulation

The current state s;, observed by RL agent i at the n-th time slot is related to pervious state s,_; and
action a,_;, which is a Markov Decision Process (MDP), and can be described by a 5-tuple array
(S, 4i, Pi, Ry y):

e S;: A set of states observed by RL agent i at different time slot, where s;, € §;, s;, is the system state

observed by the RL agent i at the n-th time slot.

e A;: A set of actions performed by RL agent i at different time slot, where a;, € 4;, a;, is the action
performed by the RL agent i at the n-th time slot.

e P;: The state transition probability, which is the probability distribution of the state transition after
taking action a in state 5. The probability of changing from s;, to s;(,;) after taking action a;, can
be expressed as p(Si(r1)|Sin, @in)-

e R;: The reward function, where r;,, € R;, r;, is the reward obtained by the RL agent i at the n-th time slot.

e y: The discount factor, which is used to assign the weight between real-time rewards and long-term
rewards. When y = 0, the agent only considers real-time rewards, and y = 1 means that long-term
rewards and real-time rewards are equally important.

In order to jointly optimize channel allocation and back-off adaptation, we apply dual MDP to the DCA
problem. The state, action and reward functions of each MDP in dual MDP are described in detail below.

4.1 State
We assume that the quantity of SCH is K. The state of each MDP in dual MDP are described by follow.

e Channel Selection: The state of channel selection MDP is s = {Cj, E,}, where
Cin = [Cliny - - - s Chin, - - -, Ckin] denotes the channel busy situation, and ¢y, is the number of CNPs
(communication node pairs) intending to transmit over the k-th SCH. E;, denotes the local
communication requirement of node i at n-th time slot.

e Back-off Adaptation: The state of back-off adaptation MDP is s, = {Ejy, Wi,—1)}, where Wi,_1)
denotes the back-off window size in the (n — 1)-th time slot.

4.2 Action

e Channel Selection: The action of channel selection MDP is k;,(1 < k;, < K), which represents the
index of the SCH selected in the n-th time slot by RL agent i.

e Back-off Adaptation: The action of back-off adaptation MDP is wy,, and wi, € {W1in, Wain, W3in }»
where wy;, denotes that agent i maintains the current bock-off window size as W, = Wj(,_1), Wi
denotes that agent i increases the back-off window size as W;, = 2Wj(,_1) + 1, ws;, denotes that

I/V[(n—l) —1

agent i reduces the back-off window size as W;, = >

4.3 Reward

We take consideration the dynamics user communication demand and communication performance as
indicators of model training. The reward function is designed as follows.
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N ¢ Zrec 0
Fin = (’e‘) <’“) (1)
8tra 8rra + Zque

where ¢ and g are two positive weights, g,,, denotes the number of packets transferred by agent i, g,.. denotes
the number of packets successfully delivered to the receiver, and g, denotes the number of packets waiting

in the buffer queue that need to be transferred in the #-th time slot. We use the packet delivery ratio (gm) to

gtm
denote the communication performance, and the sum of packets transferred and waiting in the buffer to
denote the user communication demand at the n-th time slot.

In order to achieve multi-agent collaborative optimization in a distributed manner, we propose a novel
reward formulation with a weighted sum strategy, termed consensus reward, which is constructed as:

Rin = rin + Z ﬂmj inj (2)

ri ER,

inj

where R), is the set of local rewards of the neighbor nodes of node 7, and rmj is the local reward of node J, 8
is the welght of 77,

inj

The model input S;, action 4;, and reward R; of the dual MDP are defined above. To obtain the optimal
strategy, the state transition probability P; and the discount factor y must be determined. Between them, y is
artificially set. The precondition for determining the state transition probability P; is the known environment
model. However, it is hardly to accurately obtain the system state at the next time slot in VANETs.
Consequently, the DCA problem is an unknown environment model problem. In this paper, Q-learning as
a widely used RL algorithm is used to achieve the optimal strategy. The base Q-learning strategy update
formula is as follows [16]:

Qn+l (Sim a[n) — Qn (Sina ain) + O([ in + ymaxa Qn( n+1 ) Qn (Sina ain)] (3)

where O, (s, ain) denotes the value function when taking action a;, in state s;,, and « is the learning rate that
denotes the magnitude of the strategy update.

5 Proposed Channel Assignment Mechanism
5.1 Strategy Execution and Update

The model input of DRL-CDCA is a vector of continuous values. Therefore, the state-action value
cannot be stored by Q-table. DRL-CDCA uses the neural network to approximate the state-action value.
Specifically, we construct two neural networks, i.e., dual neural networks, one of which de noted by
O, (85, kin; 0) is used for channel selection and the other denoted by O, (s}, wi,; @) for back-off
adaptation. 0 and w are the weights of the dual neural networks. Fig. 4 shows our methodological framework.

Weights 6 and w are updated as following:

Qn+l( makn’ue) Qn(Sma ln7 ) +O(|:Rin

+ ymaxg,, Qn (S i(n+1) ’kin; 9_) - Qn(an’ kin; 0)j|
Qn+1( mawin;w) — Qn(s?nywmg ) +OC|:

+ ymax,,,, Qn (sf)(n+l) Win; w7> - Qn (S?n, Win; w)}

“4)
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5.2 Channel Access Process

VANETSs nodes 7 and j exchange RTS/CTS in the CCH interval for channel coordination, and then nodes i
and j switch to the selected SCH £ for data transmission in the SCH interval. To better understand channel access,
an example shown in Fig. 5 is introduced. There are communication demands between nodes A and B, nodes C
and D in the CCH interval. Nodes A and C compete for the access to CCH. Assume that node A first obtains the
transmission opportunity. After node A successfully accesses CCH, it sends RTS to node B. When node B
receives RTS, it selects SCH channel. Assume that SCH [1] is selected as the transmission channel of nodes
A and B in SCH interval. Node B broadcasts CTS containing the information about channel coordination
between itself and node A. After receiving CTS, the neighboring nodes of node B update their local state.
Then node C attempts to access CCH again. Assume that SCH [3] is selected as the transmission channel of
nodes C and D in the SCH interval. In SCH interval, nodes A and C do not immediately send data to the
MAC layer. Instead, they randomly evade for a period of time when entering SCHI. The window size W}, of
the random back-off process is determined by w. Then nodes A and B switch to SCH [1], nodes C and D
switch to SCH [3], and transmit data in their own SCH. The receiving node will send feedback ACK as
soon as it receives the data packet. The overall algorithm is given in Algorithm 1.

6 Results and Discussion
6.1 Simulation Parameters

The simulation experiment in this paper is based on Veins, which is further based on two simulators:
OMNEeT++, an event-based network simulator, and SUMO, a road traffic simulator. The neural networks
of DRL-CDCA is supported by the third-party machine learning C++ library MLPACK. The simulation
scenario shown in Fig. 6 is a part of the scenario based on the city of Erlangen. The parameter settings
are given in Tab. 1.
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Algorithm 1: Algorithm for Multi-agent DRL-CDCA

Algorithm 1 Multi-agent DRL-CDCA

Initialize:

The weights of dual neural networks, training cycle F , update cycle J

Run:

1: Forn =0 - 400 Do

2: If CCH Interval Then

3: Send RTS/CTS, coordinates the SCH according network 6;
4. End If

S: If SCH Interval Then

6: Source determines the back-off window size W;;, according network @;
7: Back-off t € [0, W;,];

8: Source observers S;;,41) and send data packets;

9: End If

10: If Next CCH Interval Then

11: Source calculates local reward;

12: Source broadcasts payoff message;

13:  EndIf

14:  If Next SCH Interval Then

15: Source calculates the consensus reward;

16: Store transition [Sin, @in, Rin, Sin+1)] In €xperience memory;
17:  EndIf

18:  Every F steps, randomly sample a minibatch tuples from the memory;
19:  Train the dual Q-networks by RMSProp;

20:  Every J steps, copy weights into target network 8~ and @ ~;
21: End For

Channel Switching
e

CCH Interval 1! | SCH Interval
—H—e—pa L
ii Back-off SCH(1]
A "
!
|
B S T
SCH I SCHI[3]
c v t
D i
SCH[3] !!

Time

Figure 5: Channel access process

This paper compares the performance of the multi-agent DRL-CDCA with other two existing channel
assignment mechanisms as follow:

e The random assignment mechanism (Random): Each CNP randomly selects the SCH in each time slot.
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Table 1: Simulation parameters

Parameters Values

Density p [50, 200, 400] (veh)
Discount Factor vy 0.8

Learning Rate o 0.01

Training Cycle F 100 ms

Update Steps J 20

¢ 0 Vﬁmj 1

o The greedy selection mechanism (Greedy): Each CNP selects the SCH that is currently reserved by
the least other CNPs.

We use the following metrics to compare the performance of different mechanisms:

o Packet delivery ratio: The ratio of the number of ACKSs and the number of packets sent in the entire
simulation time, representing the adaptability of the channel assignment mechanism to the dynamic
network.

e One hop packet delay: The average time required for each data sent from the application layer of the
source to the application layer of the destination, which is critical for fast data transfer in VANETs.
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6.2 Results

Fig. 7 shows the convergence of the multi-agent DRL-CDCA, and it can be seen that the Q-value
remains unchanged until 1000 iterations [6—8]. In fact, the channel assignment decisions in VANET are
typically highly repetitive, so multi-agent DRL-CDCA can converge quickly.

Fig. 8 evaluates the performance of the DRL-CDCA and other two existing mechanisms with a variable
vehicular quantity. It is clear that the performance of all the channel assignment mechanisms become worse
as more vehicles appear on the road. Fig. 8(a) plots the change of the packet delivery ratio with different
vehicular quantity. In fact, with the increase of the vehicular quantity, the quantity of the data packets
also increases, leading to more frequent collisions of data packets. Consequently, the probability of
successful transmission gradually decreases. Fig. 8(b) plots the change of the one-hop packet delay with
different vehicular quantity. As the communication demand increases, the busy time of the channel also
increases, which leads to an increase in the back-off duration of the node, hence the one-hop packet delay
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Figure 8: Simulation results: (a) and (b) compare the performance of different methods in terms of the mean
and the standard deviation of packet delivery ratio and one hop packet delay under different vehicle densities.
(a) Packet delivery ratio, (b) One hop packet delay
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also increases as the number of vehicles increases. Our method can outperform other two conventional
baseline mechanisms even in a highly dense situation. For instance, when the vehicle density is set to
400, the packet delivery ratio of the multi-agent DRL-CDCA is 13.83% and 21.98% higher than Random
and Greedy, respectively. And the one-hop packet delay of our method is 73.73% and 73.65% lower than
that of the other two methods, respectively.

Fig. 9 evaluates the performance of the DRL-CDCA and other two existing mechanisms with a variable
vehicle speed. It can be found that the performance of all the channel assignment mechanisms become worse
as the vehicular speed increases. Fig. 9(a) plots the change of the packet delivery ratio with different
vehicular speeds. As the vehicle speed increases, the network topology of VANET changes rapidly, which
easily cause the destination node to leave the signal coverage of the source node or move back off the
building. This undoubtedly tends to cause packet reception failures and decrease of the packet delivery
ratio. Fig. 9(b) plots the change of the one-hop packet delay with different vehicle speeds. When vehicle
speed changes, it has little effect on the “busyness” degree of the channel. Meanwhile, when the node
accesses the channel, the random back-off process is almost unaffected by speed change. Therefore, the
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Figure 9: Simulation results: (a) and (b) compare the performance of different methods in terms of the mean
and the standard deviation of packet delivery ratio and one hop packet delay under different vehicular speeds.
(a) Packet delivery ratio (b) One hop packet delay

one-hop packet delay does not change much with changes in speed. The WAVE protocol stack is a
wireless communication standard whose design is based on the VANET high-speed mobile environment.
Its CCHI and SCHI are both 50 ms. When a neighboring node moves at a speed of 120 km/h, it only
moves 1.7 m within 50 ms. Therefore, during the channel coordination and data transmission processes,
the VANET topology hardly changes. As a result, the performance of each channel assignment
mechanism does not decrease much.

To sum up, the figures above confirm the advantage of our proposed method that can achieve higher
efficiency performances. Random does not consider the network state, and only selects the SCH in a
random manner. It may cause in very few nodes using a certain SCH, resulting in a huge waste of
wireless communication resources. And it may also cause a large number of nodes using another certain
SCH, resulting in severe data collisions that degrade network performance. Greedy may cause the SCH
with the smallest load to become the SCH with the largest load, and make other SCHs underutilized.
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Compared with other channel assignment mechanisms, the multi-agent DRL-CDCA is based on the dual Q-
networks trained by the past experience including consensus reward to make a collaborative optimization.
Obviously, the performance of multi-agent DRL-CDCA is significantly better than other channel
assignment mechanisms.

7 Conclusion

In this paper, a dual reinforcement learning (DRL)-based cooperative DCA (DRL-CDCA) mechanism is
proposed, which enable the nodes to learn the optimal channel selection and back-off adaptation strategy
from past experiences. Then the performances of the proposed mechanisms are compared with two other
existing mechanism under the same simulation scenario. The simulation results show that DRL-CDCA
improves the overall performance compared with other two conventional baseline mechanism obviously.
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