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Abstract: In this paper, the Global Positioning System (GPS) interferometer pro-
vides the preliminarily computed quaternions, which are then employed as the
measurement of the extended Kalman filter (EKF) for the attitude determination
system. The estimated quaternion elements from the EKF output with noticeably
improved precision can be converted to the Euler angles for navigation applica-
tions. The aim of the study is twofold. Firstly, the GPS-based computed quater-
nion vector is utilized to avoid the singularity problem. Secondly, the
quaternion estimator based on the EKF is adopted to improve the estimation accu-
racy. Determination of the unknown baseline vector between the antennas sits at
the heart of GPS-based attitude determination. Although utilization of the carrier
phase observables enables the relative positioning to achieve centimeter level
accuracy, however, the quaternion elements derived from the GPS interferometer
are inherently noisy. This is due to the fact that the baseline vectors estimated by
the least-squares method are based on the raw double-differenced measurements.
Construction of the transformation matrix is accessible according to the estimate
of baseline vectors and thereafter the computed quaternion elements can be
derived. Using the Euler angle method, the process becomes meaningless when
the angles are at 90� where the singularity problem occurs. A good alternative
is the quaternion approach, which possesses advantages over the equivalent Euler
angle based transformation since they apply to all attitudes. Simulation results on
the attitude estimation performance based on the proposed method will be pre-
sented and compared to the conventional method. The results presented in this
paper elucidate the superiority of proposed algorithm.

Keywords: Global positioning system (GPS); quaternion; extended Kalman filter;
attitude determination

1 Introduction

The Global Positioning System (GPS) [1–3] is a satellite-based navigation system that provides a user
with the proper equipment access to useful and accurate positioning information anywhere on the globe. In
addition to the code observable commonly used for position and velocity determination, the carrier phase is
the other type of observable that can be extracted from the GPS signals. The carrier phase observables contain
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noise much smaller than that of code observables. Due to its higher accuracy and precision compared to code
observations, carrier phase observations can be used for relative positioning in centimeter level and has been
widely applied to surveying, attitude determination [4–14], precision approach and automatic landing.

Traditionally used in precise static relative positioning, and thereafter in kinematic positioning, the GPS
offers the interferometer [5] for attitude determination by processing the carrier phase observables, which
enables the relative positioning in centimeter level. The relative positioning techniques using the carrier
phase differential GPS (DGPS) based on interferometer principles can be adopted to solve for the
baseline vectors, defined as the vectors between the antenna, designated master and one of the slave
antennas, shown as in Fig. 1. The attitude of a vehicle can be precisely determined using the GPS carrier
phase observables received at two or more nearby antennas attached to the vehicle. In the beginning of
1990s, Van Grass and Braasch [4] conducted research on the GPS to the field of aircraft attitude
determination using carrier phase. In their work, the receiver-satellite double differenced observable was
employed. The solution of the baseline vector is the approximate interferometer coordinates, which
directly influence the performance of the GPS-based attitude determination. Real-time integer ambiguity
resolution techniques [5,8,9,11] and attitude determination are two main issues to be resolved for
determining the vehicle attitude when applying GPS double-differenced carrier phase. Very accurate
relative position estimate will be available once the integer cycle ambiguities are properly resolved.
Attitude determination using GPS does not have the error accumulation, which usually happens in the
inertial navigation system (INS) [2].

The rotation angles that relate a coordinate system fixed in the body (body frame) to a coordinate system
fixed in space are referred to as the attitudes. The space coordinate system is typically defined to be a local
level NED (north-east-down) frame, also referred to as the navigation frame. The purpose of attitude
determination essentially involves calculation of the three Euler angles, namely roll, pitch, and yaw. The
quaternion method [15–19] uses four parameters instead of nine as in the Euler angle method, by defining
the generalized complex number. The quaternion method possesses advantages over the equivalent Euler
angle based transformation since they apply to all attitudes with the error equations bounded by the
constraint equation. Furthermore, the numerical value of each parameter always lies within the range of
−1 to 1, so that the scaling problems in the computing mechanization can be easily handled.

The purpose of the Kalman filter (KF) [2,20,21] is to provide an optimal (minimum mean-square error)
estimate of the system state vector. As the nonlinear version of KF, the extended Kalman filter (EKF) deals
with the case governed by the nonlinear stochastic differential equations. The EKF linearizes about a
trajectory that is continually updated with the state estimates. Both the KF and EKF have been widely
applied to the field of navigation, such as GPS receiver position and velocity determination, attitude

Figure 1: Interferometric configuration considering the plane wave approximation of a GPS interferometer [5]

2106 CMC, 2021, vol.66, no.2



determination, integrated navigation system design, and the carrier-smoothed-code (CSC) processing.
Utilization of the EKF as the estimator of attitude related parameters enhances the accuracy and reliability
of the attitude solution.

The remainder of this paper is organized as follows. In Section 2, preliminary background on the GPS
carrier phase observation model is reviewed; the computed quaternion vectors based on the GPS
interferometer is introduced. Section 3 presents the modelling of quaternion dynamics for the extended
Kalman filter. In Section 4, simulation experiments are carried out to evaluate the performance on
estimation accuracy using the proposed method as compared to the conventional one. Two numerical
examples are presented for illustration. Conclusions are given in Section 5.

2 GPS-Based Computed Quaternion Vectors Based on the GPS Interferometer

In a GPS interferometer, the receiver-satellite double-differenced carrier phase observable has been
commonly utilized to solve for the antenna baseline vector. The GPS carrier phase observables representing
sum of range, an unknown integer ambiguity and some ranging errors -can be represented by:

� ¼ r þ c � ðdt � dTÞ þ � � N � dion þ dtrop þ v’ (1)

where the parameters involved in Eq. (1) are defined as follows. r: True range between a satellite and
receiver; c: Speed of light; dt: offset of the satellite clock from GPS time; dT : Offset of the receiver clock
from GPS time; dion: Ionospheric error; dtrop: Tropospheric error; �: Carrier phase wavelength; N : Carrier
phase integer ambiguity; vq, v’: Measurement noises of code and carrier phases, respectively.

2.1 Formulation of the Transformation Using the Baseline Vectors

The receiver-satellite double differencing operator is defined asrDð�Þ ¼ Drð�Þ ¼ rð�Þ � Dð�Þ, where
Dð�Þ ¼ ð�Þ1 � ð�Þ2 denotes the between receiver single differencing operator for receivers 1 and 2, and

rð�Þ ¼ ð�Þi � ð�Þj denotes the between satellites single differencing operator for satellites i and j.
Referring to the configuration as in Fig. 2 [4,14], when using the carrier phase signal from satellite i, the
between-receiver single-differenced observable is a linear combination of two phase observables received
by two antennas

Z

Y

Master Antenna (M)

Baseline vector b

Slave Antenna (S)

Signals from

GPS satellite i

Signals from
GPS satellite j

Figure 2: GPS interferometer for determining the baseline vector using the receiver-satellite double-
differenced carrier phase observables [4,14]

CMC, 2021, vol.66, no.2 2107



D�i ¼ �i
1 � �i

2 ¼ b � ei þ �DNi (2)

where the effects of errors associated with the satellites are greatly reduced. Similarly, for satellite j, we have

D�j ¼ �j
1 � �j

2 ¼ b � ej þ �DNj (3)

where b is the baseline vector formed by two antennas, and e represents the line-of-sight unit vector from
antennas to a satellite. Taking two independent single-differenced observables leads to the receiver-
satellite double-differenced observable:

rD�ij
12 ¼ D�i � D�j ¼ b � ðei � ejÞ þ �ðDNi � DNjÞ ¼ b � ðei � ejÞ þ �rDNij

12 (4)

which eliminates or greatly reduces the satellite and receiver timing errors.

The signals received from n satellites by one GPS interferometer provide n� 1 independent double
differences. When the integer ambiguity parameter (rDNij

12) is resolved, the range-based equivalent of
Eq. (4) is depicted as follows:
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..

.
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2
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ðe1 � e2ÞT
ðe1 � e3ÞT

..

.
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2
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..
. ..

. ..
.
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2
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3
7775

bx
by
bz

2
4

3
5 (5)

which can be expressed in matrix formrDr ¼ Gb. The baseline vector can be obtained by the least-squares
approachb ¼ ðGTGÞ�1GTrDr. The solution of the baseline vector b ¼ ½ bx by bz �T is the approximate
interferometer coordinates, which directly influences the performance of the GPS-based attitude
determination.

Referring to Fig. 3, there are two body-frame-mounted non-collinear baseline vectors formed:

b1 ¼ SA �M and b2 ¼ SB �M, where the master antenna (M) position is located at ½ 0 0 0 �T in the

body frame, while the other two slave antennas SA and SB are at ½ 1 0 0 �T‘ and ½ cos c sin c 0 �T‘,
respectively. The parameter ‘ is the baseline length parameter used to adjust the length, and c is the
angles between two baseline vectors which are adjustable for design flexibility. The accuracy of the
attitude measurement depends on the baseline to noise ratio, and is also a function of antenna placement
and GPS satellite geometry. The coordinate transformation matrix from body to local frame R̂b2ncan be
formed once the baseline vector is determined through the following calculation.

R̂b2n ¼ B̂nðBbÞ�1 (6)

where B̂n ¼ ½b̂n1; b̂n2; b̂n1 � b̂n2� and Bb ¼ ½bb1; bb2; bb1 � bb2�. Since the conventional least-squares approach for
baseline vector estimation is inherently noisy, incorporation of the Kalman filter into the GPS
interferometer for performance improvement is accessible.

2.2 Transformation Matrix Involving the Euler Angles

In certain applications, the body angular velocities: p, q, r(which can be measured, for example, by body
mounted rate gyros) information is required. They can be determined from the Euler rates: _f, _h, _w. The
relationship between the body angular velocities and the Euler rates can be written as:

2108 CMC, 2021, vol.66, no.2



xb
nb ¼

p
q
r

2
4

3
5 ¼

_’� _w sin h
_h cos’þ _w cos h sin’
_w cos h cos’� _h sin’

2
4

3
5 ¼

1 0 � sinðhÞ
0 cosð’Þ sinð’Þ cosðhÞ
0 � sinð’Þ cosð’Þ cosðhÞ

2
4

3
5 _’

_h
_w

2
4

3
5 (7)

Once the Euler angle rates are available with sufficiently good accuracy, the body angular velocity can
be obtained. Taking the inverse transformation for Eq. (7), we have the Euler rates in terms of the body
angular velocities:

_’
_h
_w

2
4

3
5 ¼

1 sinð’Þ tanðhÞ cosð’Þ tanðhÞ
0 cosð’Þ � sinð’Þ
0 sinð’Þ secðhÞ cosð’Þ secðhÞ

2
4

3
5 p

q
r

2
4

3
5 (8)

The direction cosine matrix (DCM) Rb2n is employed as a transition matrix to describe the
transformation of a vector quantity defined in the body frame (denoted by ‘b’) to the geodetic frame
(denoted by ‘n’), fn ¼ Rb2nf

b. There are two common types of transformation approaches available for
solving vehicle attitudes, typically including Euler angle method and quaternion method. The
transformation matrix related b frame relative to n frame can be constructed in terms of the Euler’s angles
or the quaternion parameters.

Rb2n ¼
ChCw �C’Sw þ S’ShCw S’Sw þ C’ShCw

ChSw C’Cw þ S’ShSw �S’Cw þ C’ShSw
�Sh S’Ch C’Ch

2
4

3
5 (9)

where the subscripts n and b represent the local and body frames, respectively. Since Rb2n is an orthonormal
matrix, its inverse can obtained through its transpose:

Rn2b ¼ R�1
b2n ¼ RT

b2n (10)

In Eq. (9), the notations Sð�Þ � sinð�Þ and Cð�Þ � cosð�Þ are defined. Since the vehicle attitude is defined
by the angles between the NED frame and body frame, therefore, the rotation transformation matrix that
relates the body and NED frames provides the information for finding the vehicle attitude [2,4]. The
vehicle attitude can be obtained through the calculation:

M(0,0,0)
�SA

�SB

b1

b2

γ

Figure 3: Antenna differential position vector geometry
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h ¼ sin�1½�Rb2nð3; 1Þ�; ’ ¼ sin�1 Rb2nð3; 2Þ
cos h

� �
; w ¼ sin�1 Rb2nð2; 1Þ

cos h

� �
(11)

Using the Euler angle method, the singularity problem occurs when the angles are at 90�, the process
becomes meaningless.

2.3 Transformation Matrix Involving the Quaternion Elements

A quaternion is a four-dimensional extension to complex numbers, containing four real parameters. The
first is considered a scalar and the other three vector components in three-dimensional space:

q ¼ q1 þ q2iþ q3jþ q4k (12)

where a constant equation exists of the form q21 þ q22 þ q23 þ q24 ¼ 1. The transformation matrix from body
frame to navigation frame axes in terms of the unit quaternion parameters is given by

Rb2n ¼
q21 þ q22 � q23 � q24 2ðq2q3 � q1q4Þ 2ðq1q3 þ q2q4Þ
2ðq1q4 þ q2q3Þ q21 � q22 þ q23 � q24 2ðq3q4 � q1q2Þ
2ðq2q4 � q1q3Þ 2ðq1q2 þ q3q4Þ q21 � q22 � q23 þ q24

2
4

3
5 (13)

where q1~q4 are the quaternion vector components. The relations between the quaternion q and the two
vectors fb and fn are nonlinear.

Using the transformation matrix to obtain quaternion parameters can be done through

q1 ¼ 0:5½1þ Rb2nð1; 1Þ þ Rb2nð2; 2Þ þ Rb2nð3; 3Þ�1=2
q2 ¼ ½Rb2nð3; 2Þ � Rb2nð2; 3Þ�=ð4q1Þ
q3 ¼ ½Rb2nð1; 3Þ � Rb2nð3; 1Þ�=ð4q1Þ
q4 ¼ ½Rb2nð2; 1Þ � Rb2nð1; 2Þ�=ð4q1Þ

(14)

By comparing Eq. (13) with Eq. (9), conversion of the quaternion parameters to Euler angles can be
implemented through the following relationships:

’ ¼ tan�1 2ðq1q2 þ q3q4Þ
1� 2ðq22 þ q23Þ

� �
; h ¼ sin�1 2ðq1q3 � q2q4Þ½ �; w ¼ tan�1 2ðq1q4 þ q2q3Þ

1� 2ðq23 þ q24Þ
� �

(15)

See [2] for more details on the quaternion method. The proposed algorithm for implementing the
computation of the quaternion vector derived from the baseline vectors based on the GPS interferometer
to be employed as the measurement of the EKF is provided in Fig. 4.

The interferometer offers the preliminarily computed quaternion vector using the GPS double-
differenced carrier phase observables. The implementation procedure is highlighted as the following
steps: (1) Determining the baseline vector using the receiver-satellite double-differenced carrier phase
observables: b̂e1 and b̂e2 from the GPS interferometer; (2) Construct the transformation matrix according to
Eq. (6); (3) Compute the quaternion elements.

3 Modelling of the Quaternion Dynamics for the Extended Kalman Filter

Consider a dynamical system whose state is described by a nonlinear, vector differential equation. The
process model and measurement model are represented as
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_x ¼ fðx; tÞ þ uðtÞ (16a)

z ¼ hðx; tÞ þ vðtÞ (16b)

It is assumed that f and h are known functions, uðtÞ and vðtÞ are two white-noise processes mutually
independent with zero means and:

E½uðtÞuTðsÞ� ¼ Qdðt � sÞ; E½vðtÞvTðsÞ� ¼ Rdðt � sÞ; E½uðtÞvTðsÞ� ¼ 0 (17)

where dðt � sÞ is the Dirac delta function, E ½�� represents expectation, and superscript “T” denotes matrix
transpose. The nonlinear filtering deals with the case governed by the nonlinear stochastic difference
equations. Assuming the process to be estimated and the associated measurement relationship may be
written in the form:

xkþ1 ¼ fðxk ; kÞ þ wk (18a)

zk ¼ hðxk ; kÞ þ vk (18b)

where the state vector xk 2 <n, process noise vector wk 2 <n, measurement vector zk 2 <m, and
measurement noise vector vk 2 <m. The vectors wk and vk are zero mean Gaussian white sequences
having zero cross-correlation with each other:

E½wkw
T
i � ¼ Qkdik ; E½vkvTi � ¼ Rkdik ; E½wkv

T
i � ¼ 0 (19)

whereQk is the process noise covariance matrix, Rk is the measurement noise covariance matrix. The symbol
dik stands for the Kronecker delta function:

1
2 )(ˆˆ −= bn

nb BBR

Compute quaternion elements
1/2

1 2 2 2
ˆ ˆ ˆ0.5[1 (1,1) (2,2) (3,3)]b n b n b nq = + + +R R R

2 2 2 1
ˆ ˆ[ (3,2) (2,3)] / (4 )b n b nq q= −R R

3 2 2 1
ˆ ˆ[ (1,3) (3,1)] / (4 )b n b nq q= −R R

4 2 2 1
ˆ ˆ[ (2,1) (1,2)] / (4 )b n b nq q= −R R

1 2 1 2
ˆ ˆ ˆ ˆ ˆ[ ]n n n n n, ,= ×B b b b b

][ 2121
bbbbb ,, bbbbB ×=

Baseline vector estimates based on GPS 

interferometer : e
1b̂ and e

2b̂
e

ne
n

121
ˆˆ bRb = ; e

ne
n

222
ˆˆ bRb =

Quaternion elements from
GPS interferometer

Figure 4: Flow chart for computation of the quaternion elements using the GPS double-differenced carrier
phase observables
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dik ¼ 1; i ¼ k
0; i 6¼ k

�

3.1 The Extended Kalman Filter

The nonlinear process model can be linearized along the currently estimated trajectory where the
influence of the perturbations on the trajectory can be represented by a Taylor series expansion about the
nominal trajectory.

d _x ¼ @fðx; tÞ
@x

����
x¼x̂

dx þ uðtÞ

The actual trajectory is the sum of the estimated trajectory and the small increment: x ¼ x̂ þ dx. The
corresponding difference equation by converting the continuous-time model into a discrete-time model is
given by

dxk ¼ Φk�1dxk�1 þ wk�1

When working with incremental state variables, the linearized measurement equation presented to the
EKF is dzk ¼ zk � hðx̂�k ; kÞ ¼ Hkdxk þ vk rather than the total measurement (nonlinear) zk . Consider the
incremental estimate update equation at step k

dx̂k ¼ dx̂�k þ Kk ½zk � hðx̂�k ; kÞ �Hkdx̂
�
k � (20)

in which the measurement residual is given by: zk � hðx̂�k ; kÞ �Hkdx̂�k , and the predictive measurement is
the sum of hðx̂�k ; kÞ and Hkdx̂�k . The residual involves the noisy measurement minus the predictive
measurement based on the corrected trajectory rather than the nominal one.

Adding x̂�k on both sides of Eq. (20) x̂�k þ dx̂k ¼ x̂�k þ dx̂�k þ Kk ½zk � ẑ�k �, we have the update
equation:

x̂k ¼ x̂�k þ Kk ½zk � ẑ�k � (21)

which shows that in an EKF it is accessible to keep track of the total estimates rather than the incremental
ones. Once x̂�k is determined, the predictive measurement ẑ�k can be formed as hðx̂�k ; kÞ, and the measurement
residual at k þ 1 is formed as the difference ðzk � ẑ�k Þ. Projection of x̂k to x̂�kþ1 can be done through the
nonlinear dynamics x̂�kþ1 ¼ fðx̂k ; kÞ. Without the external aiding such as an inertial sensor to provide a
reference trajectory, the process dynamics represent the total observer dynamics, as shown in Fig. 5.
Implementation algorithm for the discrete EKF equations is provided in Tab. 1.

Aiding sources

kx̂

kz

EKF

Measurement prediction

)ˆ(ˆ ––
= kk xhz

Reference Estimate of states

Figure 5: Configuration of the EKF
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3.2 The Extended Kalman Filter for Quaternion Estimation

It can be shown that the quaternion elements are propagated according to the differential equation:

_q1
_q2
_q3
_q4

2
664

3
775 ¼ 1

2

�q2 �q3 �q4
q1 �q4 q3
q4 q1 �q2
q3 q2 q1

2
664

3
775

p
q
r

2
4

3
5 (22)

The differential equations for describing the propagation of quaternion elements are given by

_q1 ¼ � 1

2
ðpq2 þ qq3 þ rq4Þ

_q2 ¼ 1

2
ðpq1 � qq4 þ rq3Þ

Table 1: Implementation algorithm for the discrete EKF equations

- Initialization: Initialize state vector x̂0 and state covariance matrix P0

- Time update

(1) Evaluate the predicted state vector through the process model

x̂�kþ1 ¼ fðx̂k ; kÞ
(2) Propagate the predicted error covariance matrix

P�
kþ1 ¼ ΦkPkΦT

k þQk

- Measurement update

(3) Evaluate the Kalman gain

Kk ¼ P�
k H

T
k ½HkP�

k H
T
k þ Rk ��1

(4) Perform update for state vector x̂k

x̂k ¼ x̂�k þ Kk ½zk � ẑ�k �
(5) Perform update for error covariance matrix Pk

Pk ¼ I� KkHk½ �P�
k

where ẑ�k ¼ hðx̂�k ; kÞ, and the linear approximation equations for system and measurement matrices are
obtained through the relations

Φk ¼ @f
@x

� �����
x¼x̂�k

¼

@f1
@x1

@f1
@x2

� � � @f1
@xm

@f2
@x1

@f2
@x2

� � � @f2
@xm

..

. ..
. . .

. ..
.

@fm
@x1

@fm
@x2

� � � @fm
@xm

2
666666664

3
777777775

��������������
x¼x̂�k

; Hk ¼ @h
@x

� �����
x¼x̂�k

¼

@h1
@x1

@h1
@x2

� � � @h1
@xm

@h2
@x1

@h2
@x2

� � � @h2
@xm

..

. ..
. . .

. ..
.

@hm
@x1

@hm
@x2

� � � @hm
@xm

2
666666664

3
777777775

��������������
x¼x̂�k
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_q3 ¼ 1

2
ðpq4 þ qq1 � rq2Þ

_q4 ¼ 1

2
ð�pq3 þ qq2 þ rq1Þ

where the product terms in the parentheses are introduced by quaternion product between the angular rate and
the quaternion, which can be written in matrix form

_q1
_q2
_q3
_q4

2
664

3
775 ¼ 1

2

0 �p �q �r
p 0 r �q
q �r 0 p
r q �p 0

2
664

3
775

q1
q2
q3
q4

2
664

3
775

Therefore, the quaternion vector is propagated according to the differential equation

_q ¼ 1

2
Ωðxb

nbÞq (23)

where q ¼ ½ q1 q2 q3 q4 �T denotes the quaternion vector, and xb
nb ¼ ½ p q r �T describing the vector

of body angular velocities. The symbol Ωðxb
nbÞ ¼ ðxb

nb�Þ represents the skew symmetric matrix with
components of xnb in the body frame:

Ωðxb
nbÞ ¼

0 �r q
r 0 �p
�q p 0

2
4

3
5 (24)

The differential equations for describing the quaternion vector can be represented by

_q ¼ 1

2
Ωðxb

nbÞq ¼ 1

2
Wðxb

nbÞq ¼ AðtÞq (25)

where

Wðxb
nbÞ ¼

0 �p �q �r
p 0 r �q
q �r 0 p
r q �p 0

2
664

3
775 (26)

and

AðtÞ ¼ 1

2
Wðxb

nbÞ (27)

Eq. (26) may also be written as

Wðxb
nbÞ ¼ 0 �ðxb

nbÞT
xb

nb �Ωðxb
nbÞ

� �
(28)

Augmented by the propagation of the body angular rates, described by the random walk models, i.e.,
_p ¼ up; _q ¼ uq; _r ¼ ur, the differential equation has the form: _xb

nb ¼ ½ _p _q _r �T ¼ ½ up uq ur �T . The
resulting state vector consists of seven states, in which the first four components are the quaternion
elements, and the other three components are the body angular velocities.
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d

dt

q1
q2
q3
q4
p
q
r

2
666666664

3
777777775
¼ 1

2

0 �p �q �r 0 0 0
p 0 r �q 0 0 0
q �r 0 p 0 0 0
r q �p 0 0 0 0
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3
777777775
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q4
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q
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2
666666664

3
777777775
þ

0
0
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0
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uq
ur

2
666666664

3
777777775

(29)

The corresponding Jacobian matrix can be shown to be

F ¼ @f
@x

¼ 1

2

0 �p �q �r �e1 �e2 �e3
p 0 r �q e0 �e4 e2
q �r 0 p e3 e0 �e1
r q �p 0 �e2 e1 e0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

2
666666664

3
777777775

(30)

The corresponding discrete state transition matrix is given by Φk ¼ £�1½ðsI� FÞ�1� ¼
expðFDtÞ ffi Iþ FDt, where Dt is the step size.

Improved accuracy is accessible for the attitude solutions based on the EKF using the preliminarily
computed quaternion vector from the GPS interferometer as the measurement. The measurement
equations in this case are linear and are much simpler, and they are the four quaternion components

zk ¼
z1
z2
z3
z4

2
664

3
775 ¼

q1
q2
q3
q4

2
664

3
775þ

v1
v2
v3
v4

2
664

3
775

i.e., zi ¼ xi þ vi, i ¼ 1 . . . 4, where vi is the white noise measurement. The measurement model written in
matrix form is given by zk ¼ Hkxk þ vk, where vk ¼ ½ v1 v2 v3 v4 �T . With the GPS-based computed
quaternions available as the measurement, the measurement matrix Hk and noise vk can be expressed as

Hk ¼
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

2
664

3
775

and the covariance matrix for the measurement noise is given by

vk 
 Nð0;RkÞ; Rk ¼
r11 0 0 0
0 r22 0 0
0 0 r33 0
0 0 0 r44

2
664

3
775

respectively. The measurement modelHk is a 4� 7 matrix. Although the measurement equations are linear, an
EKF is still required since the process model is nonlinear. The attitude estimation is implemented based on the
block diagram shown as in Fig. 6. Alternative models for body angular velocities in the process model.
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4 Illustrative Examples and Performance Evaluation

Simulation study has been carried out to evaluate the performance of the proposed approach in
comparison with the conventional method for GPS-based attitude determination. Two illustrative
examples were implemented through numerical experiments. Computer codes were developed using the
Matlab® software. The commercial software Satellite Navigation (SatNav) Toolbox by GPSoft LLC
(2003) [22] was employed for generation of the GPS satellite orbits/positions and thereafter, the satellite
pseudorange, and carrier phase observables, required for simulation. Furthermore, the Inertial Navigation
System Toolbox (2007) [23] was employed for generation of the Euler attitude angles of the three-
dimensional flight.

The error sources corrupting the GPS carrier phase observables include ionospheric error, tropospheric
delay, receiver thermal noise and multipath errors. The variances of the receiver noise are assumed to be 1 m2.
Most of the receiver-independent common errors can be corrected through the differential correction while
the multipath and receiver thermal noise cannot be eliminated. The antenna geometry is set up as in Fig. 2,
with the baseline length variable ‘ equal to 1 meter and c 90 degrees.

(a) Illustrative Example 1–the three-dimensional test on a rotating platform with constant position. The
time-varying body angular velocities for this simulation example are given as follows:

p ¼ 2p
15

sinð p
60

tÞ; q ¼ p
20

cosð p
100

tÞ; r ¼ p
100

cosð p
300

tÞ þ 0:01

with initial Euler attitude angles f0 ¼ h0 ¼ w0 ¼ 0. The Euler angles can be derived from the body angular
velocities by processing integration for Eq. (8) with the initial conditions as time progresses. The update rate
of the measurements is 1 Hz. The time interval dt ¼ 0:1 sec, initial state vector
x ¼ ½ 1 0 0 0 0 0 0 �T . The noise covariance matrix for this example is set as

EKF
Covert
to Euler
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Figure 6: Attitude estimation using the GPS-based computed quaternion
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Qk ¼

1e� 3
1e� 5

1e� 5
1e� 5

0:1
0:1

0:1

2
666666664

3
777777775
; Rk ¼ 10Im�m ðdeg2Þ

where m ¼ 4 is the number of measurements and equals the number of quaternion elements. After resolving
the integer ambiguity, the least-squares approach is utilized for constructing the baseline vector. Fig. 7
presents the body angular rates p, q and r for Example 1. There were 8 visible satellites available in the
clear open sky during the time period of simulation. Fig. 8 provides the skyplot at the final time.

The proposed method in which Kalman filtering is used provides estimate of the quaternion vector with
noticeable accuracy improvement. It should be noticed that it is risky to set the process noise variance zero to
avoid filter divergence. As a result, when the system reaches steady state, the steady-state gain will not
approach zero and, subsequently, the filter is able to catch the time-varying attitude dynamics. One still
needs to find the suitable values to meet the specific design/mission requirement. The estimation accuracy
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Figure 7: Body angular rates p, q and r for Example 1
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of the quaternion vectors are essential and directly influence the resulting accuracy of Euler attitude angles.
To confirm the correctness of the solutions, the estimated quaternion vectors were examined, as shown in
Fig. 9. Comparison of the attitude solutions is shown in Fig. 10; Tab. 2 summarizes the error statistic of
attitude solutions for both the conventional and proposed methods. It can be seen that estimation accuracy
by the proposed method has been remarkably improved.

(b) Illustrative Example 2-the three-dimensional flight. The scenario for the second example is a three-
dimensional flight. The 3D flight path is generated with the Inertial Navigation System toolbox, shown as in
Fig. 11. Tab. 3 provides the description of the motion for the flight path. The body angular velocities as time
progresses for this example are depicted in Fig. 12. In this example, the duration for simulation is
110 seconds with 8 visible satellites. The covariance matrices for the process and noise models,
respectively, are given by

Qk ¼

1e� 3
1e� 5

1e� 5
1e� 3

0:1
0:1

10

2
666666664

3
777777775
; Rk ¼ 10Im�m ðdeg2Þ

Fig. 13 presents the estimate of the quaternion components for Example 2. Fig. 14 shows the estimate of
Euler attitude angles and the corresponding errors; error statistics for the attitude solutions are summarized in
Tab. 4. In the two illustrative examples, the improvement by the proposed method has been demonstrated.
The results for the two examples demonstrate the effectiveness against the noisy measurement errors.
Incorporation of the EKF into the attitude determination system for estimating the quaternions elucidates
the superiority of the proposed algorithm.
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Figure 8: The skyplot at the final time for Example 1
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The standard EKF is sensitive to the changes of the process and measurement models, thus yielding poor
performance. Furthermore, the EKF framework does not possess capability to deal with the non-Gaussian
measurement errors/outliers. The EKF associates the contaminated measurements with an increase in the
measurement covariance, causing the reformulated error covariance. This modified covariance inflation is
known to cause an increase of error in the state estimation. Performance based on the EKF will degrade
when the noise strength is varying and/or the actual distribution deviates from the assumed Gaussian
model. To further improve the performance of the EKF, an adaptive mechanism or a robust technique can
be incorporated for performance improvement. Due to appropriate tuning, the adaptive EKF (AEKF)
exhibits robust behavior and therefore outperforms the standard EKF when the time-varying dynamic
process and measurement models are involved.
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Figure 9: Estimate of the quaternion components for Example 1
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Figure 10: Estimate of attitude angles and the corresponding errors for Example 1
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Table 2: Error statistics for the attitude solutions–Example 1

Axis Roll Pitch Yaw

Methods Conventional Mean (deg) −0.05610 0.00819 −0.024156

Variance (deg2) 1.92910 2.23251 0.38579

Proposed Mean (deg) −0.05924 0.00758 −0.01660

Variance (deg2) 0.13366 0.15787 0.027261
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Figure 11: The 3D flight path

Table 3: Description of the motion for the three-dimensional flight path (initial position: [0, 0, 0 meters] in
NED frame)

Segment number Description of the motion

1 Level acceleration for 10 seconds

2 Pitch up transition

3 15 second climb

4 Level off

5 Roll into a turn

6 90 degree turn

7 Roll back to straight and level

8 10 second straight segment to the West
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Figure 12: Body angular velocities p, q and r for Example 2

Table 4: Error statistics for the attitude solutions–Example 2

Axis Roll Pitch Yaw

Methods Conventional Mean (deg) 0.0234 −0.06765 −0.03536

Variance (deg2) 1.9301 1.57445 0.36217

Proposed Mean (deg) 0.0225 −0.06585 −0.03999

Variance (deg2) 0.13530 0.134683 0.091516
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Figure 13: Estimate of the quaternion components for Example 2
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Figure 14: Estimate of attitude angles and the corresponding errors for Example 2
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5 Conclusions

A novel GPS-based attitude determination method has been presented. The quaternion vector derived
from GPS interferometer has been used as the measurement of the EKF in the attitude determination
system. Although utilization of the carrier phase observables enables the relative positioning to achieve
centimeter level accuracy, nevertheless, the quaternion elements derived from the GPS interferometer are
inherently noisy. This is essentially due to the fact that the baseline vectors estimated by the least-squares
method are based on the noisy double-differenced measurements.

The preliminarily computed quaternion elements from the GPS interferometer is employed as the
measurement of the EKF based quaternion estimator. The model based approach using the EKF is
adopted for estimating the quaternion elements, which can then be converted to the Euler angles. Results
show that, by incorporating the EKF into the GPS interferometer, the errors in the solutions of the
baseline vectors, and thereafter the quaternion elements have been remarkably mitigated and the
estimation accuracy of the attitude solutions has been noticeably improved. The proposed method
provides several advantages, such as accuracy improvement, reliability enhancement, and real-time
characteristics.

Since the EKF is sensitive to the changes of the process and measurement models, when implementing
the EKF approach, poor knowledge of the noise statistics may seriously degrade the estimation performance,
and even provoke the filter divergence. For achieving improved estimation accuracy, the designers are
required to possess the complete a priori knowledge on both the dynamic process and measurement
models. In the two illustrated examples, both the process and measurement noise parameters remained
unchanged based on the stationary noise assumption. In the cases of high dynamic or multipath
contaminated environments, the noise parameters in the two models need to be -properly tuned. Further
investigation can be carried out using the AEKF as the noise-adaptive filter for tuning the noise
covariance matrices in the high dynamic or multipath environments.
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