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Abstract: In mobile edge computing (MEC), one of the important challenges is
how much resources of which mobile edge server (MES) should be allocated
to which user equipment (UE). The existing resource allocation schemes only
consider CPU as the requested resource and assume utility for MESs as either
a random variable or dependent on the requested CPU only. This paper presents
a novel comprehensive utility function for resource allocation in MEC. The utility
function considers the heterogeneous nature of applications that a UE offloads to
MES. The proposed utility function considers all important parameters, including
CPU, RAM, hard disk space, required time, and distance, to calculate a more rea-
listic utility value for MESs. Moreover, we improve upon some general algo-
rithms, used for resource allocation in MEC and cloud computing, by
considering our proposed utility function. We name the improved versions of
these resource allocation schemes as comprehensive resource allocation schemes.
The UE requests are modeled to represent the amount of resources requested by
the UE as well as the time for which the UE has requested these resources. The
utility function depends upon the UE requests and the distance between UEs
and MES, and serves as a realistic means of comparison between different
types of UE requests. Choosing (or selecting) an optimal MES with the optimal
amount of resources to be allocated to each UE request is a challenging task.
We show that MES resource allocation is sub-optimal if CPU is the only
resource considered. By taking into account the other resources, i.e., RAM,
disk space, request time, and distance in the utility function, we demonstrate
improvement in the resource allocation algorithms in terms of service rate, uti-
lity, and MES energy consumption.
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1 Introduction

With the exponential growth of the Internet of Things (IoT) and 5G technologies, highly advanced
mobile applications, such as online games, face and speech recognition etc., are rapidly emerging [1].
Because of the computationally and communicationally expensive applications, the computation
capability and battery life of a user equipment (UE) are normally insufficient [2]. Cloud computing can,
to a certain extent, enhance the computing capacity of UEs, however, long distances between cloud and
UEs lead to high latency and energy consumption [3,4]. Moreover, the demand for high definition and
low latency mobile applications is increasing day by day. This tendency poses significant challenges to
the existing mobile networks especially during the high traffic hours [5]. To address these problems, a
new computing paradigm has emerged, known as mobile edge computing (MEC) [1,2]. MEC enables the
cloud computing capabilities and storage services at the edge of a network, which enables UEs to execute
their tasks more efficiently [3].

In MEC, two problems are of great importance, namely, task offloading and resource allocation [6]. This
paper concerns the latter, which refers to the ability of a central control unit to assign UEs to mobile edge
servers (MESs) and to allocate specific amount of resources to UE requests. Thus, the UEs execute their
applications remotely in a more efficient way by using powerful MESs. The MESs, in return for allowing
their resources to be used, obtain a reward in terms of a unit-less quantity, named as utility [7].

1.1 Related Work

According to Wu et al. [7], different individuals have different utility functions due to distinct needs
towards a specific service. However, there are some general requirements in resource allocation problems
in MEC, which must be considered in utility functions. Central processing unit (CPU), random access
memory (RAM), hard disk, and the time for which these resources will be used are important parameters
to be considered in a utility function. The authors in Fernandes et al. [8] consider CPU, RAM, and other
hardware components to design a virtual machine (VM) scheduler, which schedules VMs in such a way
to minimize the energy consumption of data centers. However, this approach is not a utility based
approach and can be used only for cloud computing. The authors in [9,10] investigate the resource
allocation problem and propose a deep learning approach to minimize the service time and efficiently
allocate resources to UEs. However, the energy consumption and the utility function for MESs are not
considered. The authors in Dlamini et al. [11] propose a computing-plus-communication energy model
for resource allocation in MEC, where they use a hybrid-powered MES and switching techniques of
transmission drivers to minimize MESs’ energy consumption.

The authors in Li et al. [12] present a stochastic approach, using Lyapunov optimization technique, for
wireless-powered MEC to minimize the energy consumption by optimizing the transmission power of MESs.
The authors in Liu et al. [13] use the effect of dynamic energy variation to propose a dynamic game-based
approach for resource allocation in wireless powered MEC. In their approach, the resources are optimally
allocated by computing optimal transmission power and optimal task offloading. The authors in Kan et al.
[14] consider the task offloading and resource allocation problems in MEC. The resource allocation
problem is solved as a cost minimization problem. However, the work mainly focuses on task offloading,
and for resource allocation the utility for MESs is ignored. Futhermore, the authors in [15,16] propose a
VM placement algorithm for cloud computing. The main objective of their work is to minimize the
energy consumption by minimizing the number of active servers. However, in a utility function realistic
needs of UEs can be introduced to generalize the technique for MEC.

Most of the literature on resource allocation [17–20] in MEC and cloud computing considers only the
CPU as resource requested by the UEs. However, hard disk space, RAM, and the time that an MES allocates
to UEs for using resources are also important parameters but are ignored in dealing with UE requests.
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Moreover, most of the related work considers the utility function as a uniform random variable [7] or only
considers the requested CPU in utility function [21,22]. However, the utility function for MES must be
proportional to the amount of all resources used by UEs.

1.2 Novelty and Contribution

In the literature, there are certain algorithms that employ the concept of utility function for resource
allocation problem in MEC and cloud computing [1,22]. In this paper, by utilizing our comprehensive
mathematical model for utility function and UE requests, we modify these algorithms and make them
more comprehensive for MEC. To make the mathematical model more realistic and comprehensive, we
consider CPU, RAM, disk space, required time, and the distance between MES and UE in the
mathematical model for UE request and utility function. To the best of our knowledge, no such
comprehensive mathematical model exists for UE request and utility function in MEC resource
allocation. The novelty and contributions of our work are summarized as follows:

� We consider CPU, RAM, hard disk, and requested time that will be used by UEs, as a UE request in
resource allocation problem in MEC. The existing schemes consider only CPU as UE request.

� A novel comprehensive utility function for MESs is developed which depends on all the above
mentioned resources. It also depends on the distance between UE and MES, which ensures the
dependency of utility on quality-of-service (QoS).

� By using our proposed mathematical model, we improve four well-known MES resource allocation
algorithms, namely, Basic Over-provisioning (BO), Greedy Max (GM), Minimum Expand
(MinExpand), and Power Minimum Expand (PowExpand).

� Our corresponding comprehensive algorithms, namely, Comprehensive Basic Overprovisioning
(CBO), Comprehensive Greedy Max (CGM), Comprehensive Minimum Expand (CMinExpand),
and Comprehensive Power Minimum Expand (CPowExpand), improve the utility for MESs and
the service rate, and minimize the energy consumption of MESs.

The rest of the paper is structured as follow. Section II describes the mathematical model for the UE
request and utility function. Section III presents the proposed comprehensive resource allocation schemes.
Section IV presents simulation results and Section V concludes the paper.

2 System Model

When a UE offloads its task for execution to the central control unit of MEC, it is important to allocate
resources of different MESs upon incoming UE’s requests. In our system model, there are multiple MESs
with different amounts of available resources, as shown in Fig. 1. It is a challenging task to select an
MES and allocate its resource to incoming UE’s requests to improve service rate, power efficiency, and
utility simultaneously. In this paper, we propose utility based comprehensive algorithms for resources
allocation. We consider the same multi-user multi-server scenario as used by Cardosa et al. [22]. The
number of incoming requests is modeled according to the Poisson distribution. It is assumed that the
system consists of a central control unit that detects the incoming UE requests, selects the optimal MES
for each request, and allocates MES resources to these requests.

2.1 The User Request

We consider n servers and m UE requests. The request matrix is modelled in two parts: (i) The requested
resources matrix Q, and (ii) The distance matrix D. The resource matrix Q is given by:
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Q ¼ cTmin; c
T
max; r

T
min; r

T
max; h

T ; tT
� �

; (1)

where cTmin and c
T
max, respectively, represent the vectors of the minimum and the maximum amount of CPU in

mUE requests. rTmin and r
T
max, respectively, represent the vectors of the minimum and the maximum amount of

RAM in UE requests. hT is the vector of the amount of disk space in UE requests, and tT is the vector of the
number of time slots specified in the UE requests for which these resources are needed. We assume that this
required time for using the resources of an MES is enough for execution of UE’s task. Alternatively, the
required time can be exceeded in the next UE request. For example, if the requested time is not enough
for the execution of the given task then UE sends another request for the remaining task. The disk space
is not modeled as a variable resource because, in most real-word scenarios, an application needs a fixed
amount of disk space for its operation. Thus, there are six important parameters that a UE sends to the
central control unit as its request. Therefore, the order of the matrix Q is m × 6, where m is the total
number of incoming UE requests. The vectors in Q can be written as:

cmin ¼ c1min ; c2min ; c3min ; . . . ; cmmin½ �; (2)

cmax ¼ c1max ; c2max ; c3max ; . . . ; cmmax½ �; (3)

rmin ¼ r1min ; r2min ; r3min ; . . . ; rmmin½ �; (4)

Figure 1: MESs with different amounts of available resources
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rmax ¼ r1max ; r2max ; r3max ; . . . ; rmmax½ �; (5)

h ¼ h1; h2; h3; . . . ; hm½ �; (6)

t ¼ t1; t2; t3; . . . ; tm½ �; (7)

where c1min , c1max , r1min , r1max , h1, and t1 represent the minimum CPU, the maximum CPU, the minimum RAM,
the maximum RAM, the disk space, and the time requested by UE 1, respectively. In general for UE j, we can
denote these requested resources as cjmin , cjmax , rjmin , rjmax , hj, and tj. The dimensions of vectors cmin, cmax, rmin,
rmax, h, and t are 1 × m.

The distance matrix D, containing the distances of m users from n MESs, is given by:

D ¼
d11 d12 � � � d1n
d21 d22 � � � d2n
..
. ..

. . .
. ..

.

dm1 dm2 � � � dmn

2
664

3
775; (8)

where d11 is the distance between UE 1 and MES 1. Similarly, dmn is the distance between UE m and MES n.
In general, djk represents the distance of UE j from MES k.

2.2 The Proposed Comprehensive Utility Function

Utility is the reward that an MES receives for allowing its resources to be used by UEs. Since MESs
provide their CPU, RAM, and hard disk for a specific period of time to UEs, the utility in this paper
depends on the amount of CPU, RAM, and disk space requested by the UE, the time for which a UE has
requested these resources, and the distance between the UE and the MES. Therefore, the utility function
is directly proportional to the requested resources and time. The QoS that the UE receives is inversely
proportional to the distance between the UE and the MES because of the network conditions, the
transmission range of the UE and the MES, the frequent disconnections, and the latency in
communication. The utility is, therefore, given as:

ujk ¼
c1cj þ c2rj þ c3hj
� �

c4tj
djk

: (9)

Here, ujk is the utility for MES k for serving UE j. cj, rj, and hj, respectively, denote the amount of CPU,
RAM and hard disk space allocated to UE j by MES k, tj is the time for which these resources are allocated,
and djk is the distance between UE j and MES k. The requested resources are weighted and normalized by the
unit balancing and weighting coefficients (c1; c2; and c4; respectively) as:

c1 ¼
w1

ctotal
; (10)

c2 ¼
w2

rtotal
; (11)

c3 ¼
w3

htotal
; (12)

where ctotal; rtotal; and htotal are the combined total CPU, RAM, and hard disk space of all the servers,
respectively, and w1; w2; and w3 are the weighting coefficients. For example, the value of w1 shows the
relative contribution of CPU to the utility function. These coefficients can be adjusted to represent the
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expensiveness of different resources. Similarly, to keep the utility function unitless, tj and djk are normalized
with respect to the unit balancing and weighting coefficient c4; i.e.,

c4 ¼
dmax
tmax

; (13)

where dmax is the maximum distance within which all MESs and UEs can operate, and tmax is the maximum
time that a UE is allowed to request. The upper threshold on time is configured such that a UE cannot occupy
all the resources and prevent other UEs from obtaining the service.

The utility for each MES is different from other MESs for serving the UE requests because of the UE’s
location. An MES receives higher utility by serving the nearby UE than by serving a far UE because a user
closer to the MES has better QoS and pays a higher premium for it. The utility of nMESs for entertaining the
same UE j can, thus, be represented by a vector u as:

u ¼ uj1; uj2; uj3; . . . ; ujn
� �

: (14)

Similarly, the utility matrix U for m UEs and n MESs can be written as:

U ¼
u11 u12 � � � u1n
u21 u22 � � � u2n
..
. ..

. . .
. ..

.

um1 um2 � � � umn

2
664

3
775; (15)

where u11 is the utility of UE 1 at MES 1, umn is the utility of UE m at MES n.

According to a UE request, the minimum and the maximum utilities that an MES can achieve by serving
the request are represented as:

ujkmin ¼
c1cjmin þ c2rjmin þ c3hj
� �

c4tj
djk

; (16)

and

ujkmax ¼
c1cjmax þ c2rjmax þ c3hj
� �

c4tj
djk

; (17)

where ujkmin and ujkmax , respectively, represent the minimum and maximum utilities for MES k from UE j. cjmin

and cjmax , respectively, represent the minimum and maximum of the CPU resources requested by UE j.
Moreover, rjmin and rjmax , respectively, represent the minimum and maximum amounts of RAM requested
by UE j.

From a set of n available MESs, we find an MES k, such that k 2 1; 2; 3; . . . ; nf g, for which the utility
of a UE j is maximum. This MES k is called the optimal MES, s�j , for UE j, and is represented as:

s�j ¼ max
k 2 1;2; ...;nf g

ujk ; j ¼ 1; 2; . . . ; m: (18)

2.3 Feasibility of Servers

An MES k is feasible for UE j if the currently available resources of MES k exceed the resources
requested by UE j. A feasibility vector f j for UE j is given by:

1466 CMC, 2021, vol.66, no.2



f j ¼ fj1; fj2; fj3; . . . ; fjn
� �

; (19)

where fj1 is the feasibility status of MES 1 for UE j, and so on. Formally, fj1 ¼ 1 means that MES 1 is feasible
for UE j and fj1 ¼ 0 means that MES 1 is not feasible for UE j. The dimension of the feasibility vector f j is
1 × n. The feasibility fjk is calculated as:

fjk ¼ 1
0

cjmin � ckav and rjmin � rkav and hj � hkav
otherwise

�
; (20)

where cjmin , rjmin , and hj are the minimum resources requested by UE j. ckav , rkav , and hkav are the resources
currently available at MES k. This feasibility vector represents the feasibility of servers for each UE. For
example, f j ¼ 1; 1; 0; 0; 0; 1; 1; 1; 0; 0½ � means that MES 1, 2, 6, 7, and 8 are feasible for UE j. We
can only serve UE j at one of the feasible servers.

2.4 Energy Aware MES Priority

The energy consumed by each MES for keeping itself ON (active) is different from other MESs because
of its capacity and type of hardware used. The energy consumed per unit time in keeping the MES k ON is
represented by Ek. The total resources of MES k define its capacity C Pk as:

C Pk ¼ c1cktotal þ c2rktotal þ c3hktotal ; (21)

where cktotal , rktotal , and hktotal represent the total CPU resources, RAM, and hard disk space of MES k,
respectively. The energy consumption per unit capacity, pk , of MES k can be written as:

pk ¼ Ek

C Pk
: (22)

The MESs are sorted in increasing order of pk . An MES with lower value of pk shows that it has a higher
capacity for serving larger UE requests while its energy consumption for keeping it ON is low. Hence, it
should be employed more often than other MESs with higher value of pk .

An MES that is already in the ON state should be prioritized for entertaining new UE requests, whereas
the MESs that are in the idle state should be avoided to activate as long as possible to conserve energy. Our
proposed algorithms use the more profitable and already active servers first, and only activate the less
profitable servers if the currently active servers are not enough to handle the incoming traffic. Therefore,
we introduce the penalty in the utility function as:

u
0
jk ¼

ujk
ujk � c5pk

sk ¼ 1
sk ¼ 0

�
; (23)

where sk ¼ 1 indicates that MES k is ON, and sk ¼ 0 implies that MES k is idle. The unit balancing
coefficient c5 is given as:

c5 ¼
w5

emax
; (24)

where w5 is the weighting coefficient and its value can be adjusted to make the threshold for activating an idle
server higher or lower, and emax is the sum of the Ek for all servers.

The energy consumption due to the usage of CPU, RAM, and disk space depends on the instruction type
and architecture of the system used in an MES. We assume linear relation between the energy consumption
and usage of CPU, RAM, and disk space [23]. The energy consumption due to CPU usage, RAM usage, and
disk space usage of MES k, i.e., Eck , Erk , and Ehk , respectively, can be given as:
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Eck ¼ Eckmin þ Eckmax � Eckminð ÞGc; (25)

Erk ¼ Erkmin þ Erkmax � Erkminð ÞGr; (26)

Ehk ¼ Ehkmin þ Ehkmax � Ehkminð ÞGh; (27)

where Eckmin, Erkmin, and Ehkmin, respectively, represent the energy consumption when the CPU, RAM, and disk
space are not in use. Similarly, Eckmax, Erkmax, and Erkmax represent the energy consumption when the CPU,
RAM, and disk space, respectively, are fully utilized. Gc, Gr, and Gh are the utilization of CPU, RAM, and
disk space, respectively. The total energy consumption of MES k, Ektotal , is therefore calculated as:

Ektotal ¼ Ek : tkactive þ Eck þ Erk þ Ehk; (28)

where tkactive is the total time for which the MES k was active. The total energy consumption of all the MESs,
Etotal, can be written as:

Etotal ¼
Xn

k¼1
Ektotal : (29)

3 Resource Allocation Schemes

In MEC, the central control unit assigns MESs and the resources of MESs to different UE’s requests. To
select the best MES for a specific UE and to allocate the resources according to the request of UE are
challenging. In the literature, there are certain general algorithms used for resource allocation in cloud
computing and MEC which only consider the CPU as UE requests or a random utility function
independent of UE requests. We improve the well-known MES resource allocation algorithms [22] by
considering our comprehensive mathematical formulation for UE request and utility function of MES. In
this section, we explain our proposed comprehensive algorithms.

3.1 Comprehensive Basic Over-Provisioning

The idea behind basic over-provisioning scheme (BO) used in Cardosa et al. [22] is about serving the
UEs on a first-come first-served basis by allocating the maximum requested CPU to them. The BO scheme
keeps fitting VMs into the first available MES until the server is left with 10% of its maximum CPU.
Following the same approach, our proposed comprehensive BO (CBO) scheme determines the available
capacity at the servers one by one in the decreasing order of their profitability and creates the VM of the
incoming UE requests at the first available MES.

Algorithm 1 explains CBO, which is different from BO in the sense that it also considers RAM and disk
space instead of considering CPU only. In addition, it also considers the time for which a UE has requested
these resources and creates the VM for that particular time. When the time that the UE requested has elapsed,
the VM is deleted automatically and the resource usage of the MES is adjusted accordingly. CBO is similar to
BO in the sense that it does not differentiate between UE requests in terms of their utilities.

Algorithm 1: Comprehensive Basic Over-provisioning

1: Sort all MESs into increasing order of pk

2: for time i ¼ 1; 2; . . . ; t do

3: for UE j ¼ 1; 2; . . . ;m do

4: for MES k ¼ 1; 2; . . . ; n do
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3.2 Comprehensive Greedy Max

Serving the UE requests regardless of the utility that they offer is disadvantageous for MESs. The
Greedy Max (GM) algorithm [22] tackles this problem. However, GM considers only CPU as UE request
and, therefore, the utility function only depends on the requested CPU. We propose a Comprehensive
Greedy Max (CGM) algorithm in which we consider CPU, RAM, hard disk, required time, and distance
as UE request. Therefore, we model our comprehensive utility function depending on these realistic
values in a UE request. Contrary to CBO, CGM first sorts the incoming UE requests in the decreasing
order of their utility. For instance, if there are three UE requests in the first time slot, CBO scheme
allocates the maximum requested resources to each of them regardless of any priority, whereas CGM
sorts them into the decreasing order of their maximum requested resources (maximum utility), and then
allocates the maximum requested resources to them. CGM is presented in Algorithm 2.

Algorithm 1 (continued).

5: if cjmax < 0:9ckav And rjmax < 0:9rkav And hj < 0:9hkav then

6: Activate MES k if it is idle

7: Create VM for UE j at MES k for time tj

8: Allocate maximum requested resources

9: Update resource usage and overall utility using Eq. (1) and Eq. (15)

10: break;

11: end if

12: end for

13: end for

14: Check distance of all existing UEs from their respective MESs

15: Disconnect UEs that go out of the range of MES

16: Update resource usage and overall utility

17: Bring the MESs with zero usage to power save mode

18: end for

Algorithm 2: Comprehensive Greedy Max

1: Sort all MESs into increasing order of pk

2: for time i ¼ 1; 2; . . . ; t do

3: Sort all incoming UEs into decreasing order of requested resources

4: for UE j ¼ 1; 2; . . . ;m do

5: for MES k ¼ 1; 2; . . . ; n do

6: if cjmax < 0:9ckav And rjmax < 0:9rkav And hj < 0:9hkav then

7: Activate MES k if it is idle

(Continued)
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In the case of high traffic, the difference between the performance of CBO and CGM is clear when the
MESs start filling up and some of the UEs are denied services. The UEs that are denied services, in case of
CGM scheme, will always be the ones that offered the lowest utility.

3.3 Comprehensive Minimum Expand

The problem with CBO and CGM schemes is that in peak hours, they keep allocating the maximum
requested resources to certain UEs and keep denying service to all others. Comprehensive Minimum
Expand (CMinExpand) solves this problem by allocating the minimum requested CPU, RAM, and hard
disk space to UEs for the complete time that they requested the resources for. Later, the scheme allocates
them more resources only if there is still room available at the MES after giving the minimum resources
to all incoming UE requests. Thus, the scheme allocates minimum resources to all the UEs and then
expands to maximum requested resources. Therefore, this scheme is called CMinExpand. In this way,
CMinExpand gives service to a lot more UEs in peak hours than CBO and CGM. CMinExpand is the
extended version of MinExpand algorithm [22], which considers only CPU as UE request.

CMinExpand is also greedy in nature because it follows the same principal as the CGM scheme for
sorting when it is expanding the existing VMs. It allocates the minimum resources to all UEs, but then
expands them due to their decreasing utility. In this manner, the more profitable VMs get expanded first.
The expansion takes place until there is room on the MES. Thus, if some of the VMs do not get
expanded because of the server running out of resources to allocate, they will always be the least
profitable VMs. The expansion takes place until the UEs’ requested maximum resources have reached or
the server runs out of resources, whichever happens first. CMinExpand is presented in Algorithm 3.

Algorithm 2 (continued).

8: Create VM for UE j at MES k for time tj

9: Allocate maximum requested resources

10: Update resource usage and overall utility using Eq. (1) and Eq. (15)

11: break;

12: end if

13: end for

14: end for

15: Check distance of all existing UEs from their respective MESs

16: Disconnect UEs that go out of the range of MES

17: Update resource usage and overall utility

18: Bring the MESs with zero usage to power save mode

19: end for
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3.4 Comprehensive Power Minimum Expand

The disadvantage of all the above described allocation schemes is that they prioritize service
provisioning to UEs regardless of any energy consumption constraints on the MES side. If the most
profitable server becomes full, they turn the next server ON without setting any utility threshold for it.
Comprehensive Power Minimum Expand (CPowExpand) attempts to find a balance between providing

Algorithm 3: Comprehensive Minimum Expand

1: Sort all MESs into increasing order of pk

2: for time i ¼ 1; 2; . . . ; t do

3: for UE j ¼ 1; 2; . . . ;m do

4: for MES k ¼ 1; 2; . . . ; n do

5: if cjmax < 0:9ckav And rjmax < 0:9rkav And hj < 0:9hkav then

6: Activate MES k if it is idle

7: Create VM for UE j at MES k for time tj

8: Allocate maximum requested resources

9: Update resource usage and overall utility using Eq. (1) and Eq. (15)

10: break;

11: end if

12: end for

13: end for

14: for MES k ¼ 1; 2; . . . ; n do

15: Sort all VMs at MES k into decreasing order of their ujmax

16: while ckav > 0:1ck do

17: for sorted VMs j ¼ 1; 2; . . . at MES k do

18: Expand VM j to its maximum

19: Update overall utility and resource usage

20: end for

21: end while

22: end for

23: Check distance of all existing UEs from their respective MESs

24: Disconnect UEs that go out of the range of MES

25: Update resource usage and overall utility

26: Bring the MESs with zero usage to power save mode

27: end for
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service to UEs and the energy consumption of the MES. CPowExpand is the improved version of
PowExpand algorithm [22].

CPowExpand sets a certain threshold for bringing a server to ON state from idle state and employs the
penalized utility function given by Eq. (23). If a server is already in the ON state, the utility is the same as
before. However, if a server is in the idle state for energy saving, it subtracts a penalty term from the utility
function so that the servers that are already in the ON state are prioritized over the idle server as long as there
is resource available on them. As before, the difference between the PowExpand and our proposed
CPowExpand is that the latter considers RAM, disk space, time, distance from the MES as part of the UE
request, and the utility function for MES. CPowExpand is presented in Algorithm 4.

Algorithm 4: Comprehensive Power Minimum Expand

1: Sort all MESs into increasing order of pk

2: for time i ¼ 1; 2; . . . ; t do

3: for UE j ¼ 1; 2; . . . ;m do

4: for MES k ¼ 1; 2; . . . ; n do

5: if cjmax < 0:9ckav And rjmax < 0:9rkav And hj < 0:9hkav then

6: if MES k is idle then

7: Compute u
0
jmin

using Eq. (23)

8: if u
0
jmin

> 0 then

9: Activate MES k

10: else

11: break;

12: end if

13: end if

14: Create VM for UE j at MES k for time tj

15: Allocate maximum requested resources

16: Update resource usage and overall utility using Eq. (1) and Eq. (15)

17: break;

18: end if

19: end for

20: end for

21: for MES k ¼ 1; 2; . . . ; n do

22: Sort all VMs at MES k into decreasing order of their ujmax

23: while ckav > 0:1ck do

24: for sorted VMs j ¼ 1; 2; . . . at MES k do
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The disadvantage of CPowExpand is that some UEs may be denied services if the utility they offer is too
small as compared to the threshold of activating an MES for them. The parameter c5 can be adjusted for a
stricter or lighter emphasis on threshold.

The implementation complexity of our improved schemes is the same as for their corresponding existing
schemes because every scheme has to find the best allocation option form UEs with n available MESs. There
are nm total possible options from which an allocation scheme selects the best option in terms of energy
consumption, service rate, and utility for MES. From simulation results, we can observe that our schemes
select the best allocation option by consuming low energy and getting high service rate and utility.

4 Performance Evaluation

We use MATLAB (R2019a) to evaluate the performance of the proposed comprehensive algorithms in
comparison with the benchmark algorithms [22], namely, BO, GM, MinExpand, and PowExpand. The
request arrival is modeled as a Poison process with mean 5. The results of the resource allocation
schemes are recorded for 1000 time slots. The amount of CPU, RAM, and disk space at MES are taken
as Normal distribution with mean and variance 15 and 5; 10 and 2; and 25 and 5, respectively. The
energy consumption per unit time to keep an MES ON is taken proportional to the amount of resources
of an MES. The coverage range of an MES is assumed to be up to 800 m. The distance between users
and MES is taken as a uniform random variable with d 2 1; 1000½ �. The unit balancing coefficients c1,
c2, c3, and c4 are considered as 0.4, 0.25, 0.25, and 0.1, respectively, since we assume that the
expensiveness of CPU is greater than those of RAM and disk space. We also assume that the maximum
distance between UE and MES is 1 km and the maximum time slots a UE can request is 10 units. The
utility, service rate, and energy consumption of MESs are chosen as performance metrics. The effects of
varying the UE requests, and the total number of MESs are observed.

4.1 Effect of Varying Traffic

Fig. 2a presents a comparison of the utility for all the algorithms. The solid lines show the utility of the
proposed comprehensive algorithms, whereas the dashed lines show the utility of the algorithms that only
consider CPU. It is clear that the utility of the comprehensive algorithms is always higher than the
benchmark algorithms because the benchmark algorithms allocate resources proportional to CPU only

Algorithm 4 (continued).

25: Expand VM j to its maximum

26: Update overall utility and resource usage

27: end for

28: end while

29: end for

30: Check distance of all existing UEs from their respective MESs

31: Disconnect UEs that go out of the range of MES

32: Update resource usage and overall utility

33: Bring the MESs with zero usage to power save mode

34: end for
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and face disconnections when the MES does not have enough other resources to serve the UE’s request. The
comprehensive algorithms use the utility function to evaluate incoming UE’s requests and prioritize the more
profitable ones, hence, generating a higher utility.

Fig. 2b shows the comparison of the service rate for all the algorithms in low and high traffic. The solid
lines represent the service rate of the comprehensive algorithms whereas the dashed lines show the service
rate of the benchmark algorithms that only consider CPU. When very low traffic is injected, the service rates
of all algorithms range from 90% to 99% because the available resources are enough to provide services to
the incoming UEs. The service rates of all algorithms start decreasing when the traffic density starts
increasing because the available resources are insufficient. Under very high traffic conditions, the service
rate of the proposed comprehensive algorithms still remains above 90%. The benchmark algorithms face
significant degradation in service rate even under medium traffic. This shows the importance of
considering the heterogeneous nature of applications and the requested resources at deeper level.

Fig. 2c shows the energy consumption per unit utility for all the algorithms against different levels of
incoming traffic. All the algorithms perform reasonably in low traffic conditions and their energy
consumption per unit utility is quite low. However, under high traffic conditions, the algorithms that
allocate the maximum requested resources to the users have a very high energy consumption per unit
utility ratio. This represents that the energy consumption of non-comprehensive algorithms is very high
for a relatively low level of utility, which means that for the same utility, our comprehensive algorithms
will consume less energy.

4.2 Effect of Varying Total Number of Servers

In the previous subsection, we evaluated the impact of varying traffic on utility, service rate, and energy
consumption of MES. In this subsection, we discuss the impact of varying the total number of servers
available for the UE requests. Figs. 3a and 3b show the utility and service rate, respectively, of all the
algorithms under varying number of total MESs available. When the number of servers is insufficient to
serve all requests, both utility and service rate of all the algorithms is comparable. The difference in
performance becomes apparent once there are enough MESs for all UE requests. For 10 MESs, we get
high service rate with high utility under traffic with mean = 5 for all the algorithms. However, for more
than 10 MESs, the comprehensive algorithms yield 100% service rate and high utility, whereas BO, GM,
MinExpand, and PowExpand work at sub-optimal levels and achieve 60% to 90% service rate at best.

(a) (b) (c)

Figure 2: a) Utility under varying traffic scenarios, b) Service rate under varying traffic scenarios, c) Energy
consumption per unit utility under varying traffic scenarios
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Fig. 3c shows the energy consumption per unit utility as a function of the number of servers. When the
number of servers increases, the utility as well as the energy consumption of all the algorithms increases.
Energy consumption per unit utility provides a meaningful measure of performance to compare different
algorithms. It is clear that our comprehensive algorithms outperform the benchmark algorithms because
of the higher utility of comprehensive algorithms for the same amount of energy consumption.

4.3 Discussions

The simulation results show reasonable performance improvement of all the proposed comprehensive
algorithms under varying traffic scenarios and varying number of MESs. The results highlight the
importance of comprehensive utility function, especially when there are enough servers or low traffic, and
all UE requests can be serviced. The proposed comprehensive algorithms are, in general, enough to be
applied in most scenarios and the weights assigned to different resources can be adjusted according to the
utility plan and applications. The performance improvements are achieved because the requested
resources are considered at deeper level in our comprehensive approach. However, at present, we have
not considered UE mobility and handover of UE requests from one MES to another. Therefore, as a
future work, we will consider the VM migration for the mobile UEs.

5 Conclusion

For resource allocation in MEC, most literature considers CPU as the only resource that UEs can
request. However, UEs can be denied services if servers run out of RAM or disk space while still having
sufficient CPU resources to serve the UE’s requests. In this paper, we have presented a comprehensive
utility function that considers all realistic resources needed by UEs, including CPU, RAM, storage,
required time, and the distance between MES and UE. We have improved the service rate and utility of
several existing MES resource allocation schemes by incorporating our comprehensive utility function.
We have also minimized the energy consumption of MESs, proposed a UE request structure and modeled
the utility function on the information provided by UEs. The proposed utility function is used mainly for
two purposes, i.e., choosing the optimal MES, and assigning different priorities to UE requests. We
achieve significant improvement in service rate and utility while maintaining a low energy consumption
for MESs. The results suggest that considering the heterogeneous nature of applications and the resources
at deeper level can lead to high utility and service rate for resource allocation in MEC. As a future work,
we aim to consider UE mobility to further optimize resource allocation in MEC.

(a) (b) (c)

Figure 3: a) Utility under varying number of MESs, b) Service rate under varying number of MESs, c)
Energy consumption per unit utility for different number of MESs
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