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Abstract: This paper first proposes a new self-learning data-driven methodology
that can develop the failure criteria of unknown anisotropic ductile materials from
the minimal number of experimental tests. Establishing failure criteria of anisotro-
pic ductile materials requires time-consuming tests and manual data evaluation.
The proposed method can overcome such practical challenges. The methodology
is formalized by combining four ideas: 1) The deep learning neural network
(DLNN)-based material constitutive model, 2) Self-learning inverse finite element
(SELIFE) simulation, 3) Algorithmic identification of failure points from the self-
learned stress-strain curves and 4) Derivation of the failure criteria through sym-
bolic regression of the genetic programming. Stress update and the algorithmic
tangent operator were formulated in terms of DLNN parameters for nonlinear
finite element analysis. Then, the SELIFE simulation algorithm gradually makes
the DLNN model learn highly complex multi-axial stress and strain relationships,
being guided by the experimental boundary measurements. Following the failure
point identification, a self-learning data-driven failure criteria are eventually
developed with the help of a reliable symbolic regression algorithm. The metho-
dology and the self-learning data-driven failure criteria were verified by compar-
ing with a reference failure criteria and simulating with different materials
orientations, respectively.

Keywords: Data-driven modeling; deep learning neural networks; genetic
programming; anisotropic failure criterion

1 Introduction

Data-driven computational mechanics is one of the branches where the underlying laws such as
boundary constraints, material constitutive law, or energy conservation law are replaced or collaborated
with the experimental data in non-conventional schemes. Among them, the material constitutive law that
has long been based on the traditional empiricism is relatively more influenced by experimental noises/
errors or uncertainties than other physics-based law associated with boundary value problems. Owing to
advances in measurement science and technologies at multiple scales, traditional empiricism in the
material constitutive modeling has started transferring to a data-driven paradigm. Not only does the
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inundation of data truly make it possible to advance computational mechanics but also the discovery of new
physics-based material laws is enabled by emerging applications of data science, material informatics, and
artificial intelligence (AI). The true data-driven (i.e., knowledge-based approach) approach was originally
proposed by Ghaboussi and his co-workers [1]. They replaced the material constitutive model in the finite
element model with an artificial neural network (ANN) form. The resurrection of artificial intelligence
through recent deep learning advances has exploded in numerous applications to computational
mechanics and material constitutive modeling [2–5]. In particular, Oishi et al. [3] proposed a new method
of numerical quadrature enhanced by deep learning for the FEM stiffness matrices. Many researchers
have applied ANN to various research fields such as cyclic plasticity [6,7], fiber-reinforced polymeric
composites [8–10], rubber materials [11,12], rate-dependent materials [13,14], other composite materials
[15,16], finite deformation with hyperelastic material [17] and traction-separation laws by reinforcement
learning technique [18]. Recently, Liu et al. [19] also studied a sophisticated 3D network architecture of
the deep material network for data-driven multiscale mechanics. Computational discretization by
numerical methods such as the finite element method is required to apply ANNs in their problems [4,5].

Beyond the material constitutive modeling, more intrusive approaches of applying deep neural networks
in diverse computational physics problems have also been researched recently [20–25]. Based on the idea of
solving partial differential equations by ANN [26], Raisssi et al. [20] proposed physics-informed deep
learning which models physics laws at random collocation points on the boundary and the domain. This
method was improved by an adaptive collocation method for second-order boundary value problems
(BVP) [24]. However, the current constraint in AI-based data-driven computational mechanics lies in a
scarcity of data. Therefore, there is a pressing need for data-efficient training and modeling approach for
solving such mathematically formulated physical problems with the help of deep learning neural networks.

The data-driven approach also encompasses the recent stress-strain data-driven computational
mechanics approach originally proposed by Kirchodoerfer et al. [27]. This approach is also a model-free
numerical method in the regime of computational mechanics. Their novelty lies in the fact that this
approach does not require an explicit form of constitutive equations in their formulation. This approach
has been further extended to diverse problems [27–31]. Eggersmann et al. [29] extended Kirchdoerfer and
Oritz’s data-driven method to inelasticity. Data from experiment tests have been mainly used for
parameter identification [32] or model updating within the empiricism regime rather than replacing those
laws or constraints in the boundary value problems. Leygue et al. [33] proposed a methodology called
data-driven identification (DDI) that can build materials response data from full-field digital image
correlation (DIC) data. They utilized a framework of data-driven computational mechanics (DDCM) by
Kirchdoerfer et al. [27]. Stainier et al. [31] combined DDI with DDCM for bypassing the empiricism of
material modeling. Further active studies on data-driven mechanics are undergoing by numerous
researchers [34–37].

In this paper, we focus more on the aforementioned AI-based data-driven approach where the ANN
model entirely replaced material constitutive law in the computational mechanics form [38,39]. ANN
material models can predict the nonlinear multi-axial stress-strain relationships both under monotonic and
cyclic loading [39]. Intrusive implementation technique of the ANN material constitutive model within
finite element analysis codes is available [40,41]. However, one of the challenges with the ANN material
constitutive model is the availability of comprehensive stress-strain training data from experiments, which
is formidable in usual material tests. For tackling such challenges of ANN models, Ghaboussi et al. [1]
proposed an online training methodology called an auto-progressive training whereby ANN material
constitutive models are automatically trained in the course of nonlinear finite element analyses subjected
to experimental boundary reaction forces and displacements. This powerful method has the advantage of
generating sufficient stress-strain training data from global experimental measurements. Symbolic
regression technique such as genetic programming is useful for generating mathematical equations from
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material response extracted by the auto-progressive training algorithm. The online auto-progressive training
of ANN models is distinct from straightforward training of ANN models with stress-strain data. On the other
hand, the deep learning neural network (DLNN) has a deeper hidden network of the perceptron. The
backpropagation training algorithm and conventional activation functions such as hyperbolic tangent or
sigmoid functions are not suitable for training the DLNN. Although the DLNN is advantageous in
learning massive data, few research on its application to the material constitutive model, nonlinear finite
element analysis, and the data-driven modeling have been researched to the best knowledge of authors.

In this paper, we propose a new self-learning data-driven modeling methodology that can discover the
failure criteria of uncharacterized materials. Its novelty lies in the first DLNN-based material constitutive
model formulated for nonlinear finite element analysis, on-line hybrid numerical/experimental training,
data processing, subsequent symbolic regression, and their novel integration. The proposed method is
verified through developing a new anisotropic initial failure criterion with a known reference failure
criteria and synthetic simulated test data. Significance of the proposed self-learning data-driven modeling
idea lies in its new unified and efficient ability to develop failure criteria of new materials such as
process-dependent 3D printed materials from minimum experimental test data. This paper is organized as
follows. Section 2 explains data-driven finite element analysis with DLNN material constitutive model.
Section 3 describes the on-line hybrid numerical/experimental training called the self-learning inverse
finite element simulation (SELIFE). It is followed by data processing ideas for identifying failure points
and subsequent symbolic regression in Section 4. Section 5 presents a demonstration of the proposed
methodology and verification of results with simulated tests. Finally, the conclusions are made in Section 6.

2 Data-Driven Finite Element Analysis with DLNN Material Constitutive Model

The data-driven FE simulation means the nonlinear FE simulations with the DLNN-based material
constitutive model, which can be self-organized by experimental measurements. The DLNN version
material constitutive model was first attempted in this paper with the derivation of the algorithmic tangent
operator to be explained in the following.

2.1 DLNN Material Constitutive Model

Data features for input & output layers and DLNN material constitutive model in the data-driven
nonlinear finite element model are shown in Fig. 1. Data features for the input and output layers are
defined in terms of stresses and strains. Input features include stress-strain pairs and history-dependent
internal variables. The internal variable means the sum of the total energy density at previous increment
and incremental strain energy as

Figure 1: A flow of the data-driven FEA with DLNN material constitutive model
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n�1&i ¼ n�1ri
n�1ei þ n�1riD

nei (1)

where, n�1ri and
n�1ei are the stress and strain vector at (n − 1)-th increment, respectively; Dnei is the

incremental strain, and n�1&i is the internal variable. Especially, these variables transform one-to-many
strain-to-stress mapping to one-to-one mapping between strain and stress values, resulting in a robust
learning capability of hysteretic behavior of materials [39]. The sizes of the input and output features
depend on the dimensionality of the finite elements. For example, in the case of the plane stress
condition, twelve input nodes (i.e., ne11;

ne22;
ne12;

n�1e11;
n�1e22;

n�1e12;
n�1r11;

n�1r22;
n�1r12;

n�1f11;
n�1f22;

n�1f12) and three output nodes (i.e., nr11;
nr22;

nr12) are needed while twenty four input
nodes and six output nodes are required in the case of 3D brick linear elements accordingly.

The DLNN model is trained by a supervised learning scheme in the second step of Fig. 1. In particular,
stress data from the output nodes are partially fed back into the input nodes of the DLNN recursively since the
trained model is used in nonlinear FEA in that mode [39]. Before the training process, stresses and strains
should be scaled by each of scale parameters since the stress and strain have different units. Those scaled
values should be less than one for effective training.

nrDLNNi ¼
nri
Sri

; where nrDLNNi

�� �� < 1 (2)

neDLNNj ¼
nej
Sej

; where neDLNNj

��� ��� < 1 (3)

where nrDLNNi is the scaled stress value from the DLNN model; neDLNNj is the scaled strain value for the
training of the DLNN model; and Sri and Sej are the constant scale values.

Although DLNN can have a deeply hidden network maintaining sufficient learning capability, the
formulation in the following assumes two hidden layers. Even if the DLNN can use more than five
hidden layers, two hidden layers are sufficient to learn the complexity of the data in this study. Weight
factors exist between each of the layers ( wrC

ik ; wCB
kl ; and wBe&

lj ). The detailed notations of DLNN
parameters are shown in Fig. 2. The Leaky-ReLU function [42] is utilized as an activation function for
the DLNN, which is a key to learning with a deep network. Moreover, the adaptive moment estimation
(Adam) optimizer [43] was utilized that is specially designed for training DLNN by minimizing the
objective function. The objective function is expressed as

Figure 2: The architecture of DLNN material constitutive model and notations
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J Wð Þ ¼ 1

mi

Xk¼mi�j
k¼1þmi� j�1ð Þ

nrDLNNi; kð Þ � ti; kð Þ
� �2� �

(4)

where nrDLNNi; kð Þ is the predicted stress component from DLNN; ti; kð Þ is the corresponding stress component in
the training database; i is the index for stress tensor; and k is the index for data pattern. The main advantage of
the Adam method is that the step size is not affected by the gradient’s rescaling. Besides, the step size can be
updated by referring to the past gradient size. Even if the gradient increases, the step size is bound so that
stable optimization is possible no matter what objective function is used. From the gradients gt of the
objective function J Wð Þ, the Adam optimizer calculates two moment vectors; one is the average of gt
called the 1st-moment vector mt and the other is the variance of gt called the 2nd-moment vector vt. Both
moment vectors aids to easily escape out of local minima and to reliably reach a global minimum.
However, Adam optimizer is suitable to use in online-training because it requires less effort to tune
hyper-parameter (e.g., learning rate g) and save the total simulation time.

The gradient clipping method was applied to prevent the DLNN from exploding in this paper. If the
gradient becomes larger during the training, weight parameters are updated with a large gradient and the
DLNN model can diverge. It is the exploding gradient problem, which mostly happens in the recurrent
neural networks. To deal with this problem, we made the gradient clipped with a limit value c. This
method is called a gradient clipping [44].

TensorFlow [45,46] was utilized for training the DLNN material constitutive model. The DLNN-based
material constitutive model was implemented in ABAQUSUMATwhere weight factors of the trained DLNN
are accessed through file opening-reading schemes and the Leaky-ReLU activation function is implemented.
The trained DLNN will directly predict stresses at the next increment. Finally, the data-driven nonlinear FEA
is conducted with the trained DLNNmaterial constitutive model. We call the 3rd step of Fig. 1 as the forward
DLNN-based FE simulation.

2.2 Algorithmic Tangent Operator for DLNN Material Constitutive Model

The algorithmic tangent operator (i.e., Jacobian matrix) is required for predicting nonlinear material
constitutive behavior. The Jacobian matrix for the DLNN material constitutive model is derived as an
explicit function of inputs, outputs and other DLNN parameters such as weight factors ( wrC

ik ; wCB
kl ; and

wBe&
lj ), scale factors (Sri and Sej ), the derivative form of the activation function and the activation function

values from each of the hidden layers in the given DLNN ( nrDLNNi ; nCk; and nBl ). The Jacobian matrix
can be derived in terms of Leaky-ReLU activation function and other DLNN parameters as follows:

DDLNN
ij ¼ @nDri

@nDej
¼ @nDri

@nrDLNNi

@nrDLNNi

@neDLNNj

@neDLNNj

@nDej
¼ Sri

Sej

@nrDLNNi

@neDLNNj

(5)

where

@nrDLNNi

@neDLNNj

¼
XNc

k¼1
@nrDLNNi

@nCk

@nCk

@neDLNNj

 !
¼
XNc

k¼1
@nrDLNNi

@nCk

XNB

l¼1

@nCk

@nBl

@nBl

@neDLNNj

 !" #
(6)

and

@nrDLNNi

@nCk

¼ @ gnrDLNNi

@nCk

¼
@
PNC

p¼1 wrC
ip � nCp

� �
@nCk

¼ wrC
ik (7)
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@nCk

@nBl

¼
@f gnCk

� �
@nBl

¼
@f

PNB
p¼1 wCB

kp � nBp

� �� �
@nBl

¼ wCB
kl ðgnCk . 0Þ

a � wCB
kl ðgnCk , 0Þ

(
(8)

@nBl

@neDLNNj

¼
@f fnBl

� �
@neDLNNj

¼
@f

PNe
p¼1 wBe

lp � neDLNNj

� �
þPN&

q¼1 wB&
lq � n&DLNNj

� �� �
@neDLNNj

(9)

¼
wBe
kj þ wB&

lq � nrDLNNj ðfnBl . 0Þ
a � wBe

kj þ wB&
lq � nrDLNNj

� �
ðfnBl , 0Þ

8<:
The convergence of this form in the case of multi-degrees of freedom FE models was confirmed as long

as the DLNN correctly predicts stress values. The predicted stress and formulated material tangent stiffness
matrix are updated at all Gauss points. The global stiffness matrix and external force vector for nonlinear
FEA simulation can be updated from stress values and the Jacobian constitutive matrix.

2.3 Comparisons of ANN and DLNN Material Constitutive Models

To compare performances of the ANN and DLNN material constitutive models, a reference 2D plane
stress FE model subjected to a tensile displacement loading was developed. The plasticity model with
linear isotropic hardening was assumed for the reference model. The mesh and boundary conditions are
depicted in Fig. 3 and material properties are summarized in Tab. 1.

From the reference simulation, stress and strain data were extracted from the whole gauss points within
the FE model except for the right and left edges. The total number of training data was 15,040. Neural
network structures were set to [12-20-20-3] for both ANN and DLNN models and they were trained until
50,000 epochs. The noticeable differences between ANN and DLNN models are summarized in Tab. 2.

Figure 3: Tensile simulation model

Table 1: Material properties for the reference FE model

Properties Values

Young’s modulus, E [MPa] 210,000

Poisson’s ratio, m 0.3

Initial yield stress, ry0 [MPa] 182

Plastic modulus, K [MPa] 5500
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The convergence of the cost function was compared for the ANN and DLNN models as shown in
Fig. 4. The convergence of ANN was faster than DLNN until 10,000 epochs. However, the cost value
convergence rate of DLNN outperformed ANN after 10,000 epoch, resulting in a much smaller cost
value for DLNN than ANN.

Trained weight factors from the ANN and DLNN model at 50,000 epoch were used in the data-driven
FEA. The global force-displacement responses were compared in Fig. 5 and the local responses were
compared by enumerating von Mises stress contours as shown in Fig. 6. As expected, the DLNN-based
FEA results were closer to the reference FEA results than ANN-based FEA.

For quantitative comparisons, the coefficient of determination (R2) and root mean square (RMS) values were
calculated by using the predicted stresses and strains from all FE integration points. They are defined as

R2 ¼ 1�
Pi¼n

i¼1 ti � yið Þ2Pi¼n
i¼1 ti ��tð Þ2 and RMS ¼ 1

n

Xn

i¼1 ti � yið Þ2 (10)

where n is the total number of data; ti is the true value in the training database;�t is the mean of ti, and yi is the
predicted value from DLNN. The averaged R2 and averaged RMS values for each stress and strain
component were calculated and summarized in Tabs. 3 and 4, respectively. Overall DLNN performance
was better than ANN’s. The mean R2 values for DLNN are closed to one and much higher than the ones
for ANN. Moreover, the mean RMS values of DLNN are relatively lower than the ones of ANN.
According to the comparative analysis results, we conclude that DLNN is more suitable for material
constitutive models than ANN in terms of training speed and accuracy of predictions.

Table 2: Different features between ANN and DLNN

ANN DLNN

Implemented language Fortran TensorFlow

Optimizer Resilient backpropagation Adam

Activation function Hyperbolic tangent Leaky-ReLU

The computational time for training 59 min and 47 s 6 min

Figure 4: Comparison of variations of cost functions for ANN and DLNN during training
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3 Self-Learning Inverse Finite Element (SELIFE) Analysis

The SELIFE can obtain complex 3D internal stress-strain states from a set of limited global reaction
forces and displacements measured from material and structural tests. Applying inner surface deformation
fields from the digital image correlation (DIC) sensor could be advantageous in identifying the 3D
complex nonlinear stress-strain paths. Details of the methodology are described in the following.

The SELIFE simulation algorithm consists of repeatedly executing the forward DLNN-based FE simulations
within an additional auto-adaptive training algorithm at each load (or time) increment. The SELIFE requires two
additional iteration loops, which are DLNN pass, and DLNN auto-adaptive training cycle. Sweeping all load (or
time) increments is called one DLNN Pass. Multiple DLNN passes may be necessary since the DLNN-based
material model may not be trained with only one DLNN pass. In each of the load incremental steps, the
SELIFE runs two independent forward DLNN-based FEA, which are the force-controlled analysis (FEM-A)
and displacement-controlled analysis (FEM-B) performed within the auto-adaptive training cycles. The
stresses and strains at the specified Gauss points from FEM-A and FEM-B, respectively, are appended to the
training database. Stresses from FEM-A and strains from FEM-B are better for training the DLNN material
constitutive model. Multiple auto-adaptive training cycles are performed until the predetermined number is
reached or a convergence criterion in Eq. (11) is satisfied. The criterion is given as:

edisp ¼ k U
FEM�A � UFEM�B k2
k UFEM�B k2

,Toldisp; (11)

where UFEM�A is the boundary displacement computed from FEM-A; UFEM�B is the boundary displacement
imposed to FEM-B; and Toldisp is the user-defined tolerance for auto-adaptive cycles. Thus, the criterion is
checked as the criteria in each of the auto-adaptive training cycles. The DLNN model is gradually self-
organized by the updated training dataset. Computational pseudo-codes, which include the two additional
unique iteration loops for the SELIFE, are summarized in Tab. 7.

In Fig. 7, the iter1 and iter2 indicate gradual training of the DLNN model toward true stress-strain
response through the auto-adaptive training cycles. After the SELIFE simulation, the DLNN model can
be used in the forward DLNN-based nonlinear FE analysis. The SELIFE simulation is used to generate
material “Big Data” in terms of stress-strain history data, which are subsequently used for establishing the
failure criteria of new materials. All notations are summarized in Tab. 5. The pseudo-codes of the online-
training in the SELIFE simulation are illustrated in Tab. 6.

Figure 5: Comparison of global responses (force-displacement) at the right edge
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Figure 6: Comparison of von Mises stress contours. (a) Reference FE model with material properties of
Tab. 1. (b) ANN-based FEA results and (c) DLNN-based FEA results

Table 3: Comparison of mean R2 values for each component

Mean R2 11 component 22 component 12 component

rANNij 0.92756 0.79557 0.87239

rDLNNij 0.99857 0.99744 0.99971

EANNij 0.80812 −0.32978 0.67306

EDLNNij 0.99932 0.98612 0.99963
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Table 4: Comparison of mean RMS values for each component

Mean RMS 11 component 22 component 12 component

rANNij 7.8012 4.0625 6.0421

rDLNNij 0.31521 0.35144 0.21614

EANNij 1.0965e-04 1.7392e-05 1.8988e-04

EDLNNij 4.4765e-06 2.0808e-06 8.5343e-06

Figure 7: Auto-adaptive learning of true material response

Table 5: Notations and definitions

Notations Descriptions

si 2 sInitial; s2; . . . ; sFinalf g Current increment in SELIFE simulation

NE& ;NB;NC;Nr Number of nodes in each layer

Epre Pre-training Epoch

EAuto Auto-adaptive training Epoch

a The negative slope for Leaky-ReLU

g Learning rate

c Gradient clipping value

lpre Mini-batch size for pre-training

l0 Initial mini-batch size

linc Increment of mini-batch size

mi Current mini-batch size depending on ji

b1 and b2 Exponential decays for the moments

e Small constant value for preventing from dividing zero
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Table 6: Pseudo-codes for DLNN in the SELIFE simulation

Online-training algorithm

Require: si;NE& ;NB;NC;Nr;Epre;EAuto;a; g; c; lpre;l0; and linc
Output: W ¼ wrC

ik ; wCB
kl ; w

BE&
lj

n o
trained weight

1. Set hyper-parameters: a; g; c; lpre; l0;linc;Epre, and EAuto

2. Establish DLNN structure based on NE& ;NB;NC; and Nr

3. Setting type of training database, weights, mini-batch size, and Epoch

if ji == 0 : // Pre-training mode

Training data: Calling pre-training data

Weight initialization: “He” weight initialization [47]

Mini-batch size: mi ¼ lpre
Epoch: Epoch ¼ Epre

else if ji > 0 : // Auto-adaptive training mode

Training data: Calling appended train data

Weight initialization: Calling trained weight

Mini-batch size: mi ¼ l0 þ si � linc
Epoch: Epoch ¼ EAuto

end

4. Scan train dataset X kð Þ;T kð Þ
n ok¼NDB

k¼1
to get the size of train dataset NDB

5. Obtain scaled train dataset x kð Þ; t kð Þ
n ok¼NDB

k¼1
using Eqs. (2) and (3)

6. Calculate the mini-batch learning iteration size : NMB ¼ floor
NDB

mi

� �
7. Data training

for i epoch ¼ 1 : Epoch

Data-preprocessing: Randomly shuffle and arrange scaled train dataset

for j ¼ 1 : NMB

Sample scaled training data : x kð Þ; t kð Þ
n ok¼mi�j

k¼1þmi� j�1ð Þ

Obtain cost function (MSE) : J Wð Þ ¼ 1

mi

Xk¼mi�j

k¼1þmi� j�1ð Þ

nrDLNNi; kð Þ � ti; kð Þ
� �224 35

Calculate gradient: gW  rW J Wð Þ
Gradient clipping [44]: gclipW  clip gW ; �c; c½ �	 

Optimization [43]: W  W þ g � Adam gclipw ; b1;b2; e

	 

with default values

end

end

8. Save trained weight, W ¼ wrC
ik ; wCB

kl ; w
BE&
lj

n o
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4 Development of Failure Criteria from Self-Learning Data for Unknown Ductile Anisotropic
Materials

4.1 Identification Algorithm of Failure Initiation

To develop failure criteria, the initial yield or failure stress data need to be identified based on the
obtained multiaxial stress-strain paths from SELIFE analyses. We devised an identification algorithm that
accurately pinpoint the failure initiation distinguishing different failure modes. The identification
algorithm monitors the tangent stiffness along stress-strain curves. The algorithm for identifying failure
initiation consists of two steps. The first step divides the whole multiaxial material response from the

Table 7: Pseudo codes for SELIFE simulation

SELIFE algorithm

Require: ABAQUS FE input file with material information and boundary condition

Require: ABAQUS UMAT which implements DLNN feedforwarding and Jacobian matrix

Require: Text files which contain force and displacement boundary data

Require: Text file which controls SELIFE simulation (e.g. Epre;EAuto;a; g; c; lpre; l0; the number of
passes NDLNN

pass , the number of cycles NDLNN
cycle , and the size of DLNN)

Output: Stress-strain data and weight parameters at every point of time increment si
1. Obtain the whole control variables of the SELIFE

2. Scan and save the ABAQUS FE input file and ABAQUS UMAT in string data type

3. Scan and save the force and displacement boundary data

4. Determine the simulation increment si 2 sInitial; s2; . . . ; sFinalf g
5. Define the number of gauss points, tensor, and degree of freedom which correspond to the ABAQUS
FE model

6. Pre-training

7. SELIFE simulation start

for ipass ¼ 1 : NDLNN
pass // Loop for DLNN pass

for si ¼ sInitial : sFinal // Loop for incremental FE simulation

for icycle ¼ 1 : NDLNN
cycle // Cycle for auto-adaptive training

Rewrite ABAQUS UMAT with trained weight parameters

FEM-A: DLNN-based FEA with force boundary data at si
FEM-B: DLNN-based FEA with displacement boundary data at si
Data extraction: stress data from FEM-A and strain data from FEM-B

Append the extracted stress-strain data to the training database

Auto-adaptive training (Step 6. Pre-training and Fig. 7)

If Check convergence criterion Eq. (11)

Break // Escape out of auto-adaptive training cycle

end

end

end
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SELIFE into nonlinear and linear response paths. The second step of the algorithm determines the stress
response point corresponding to the initiation of failure within the whole range of the stress history.

The computational procedures of the first step are shown in Fig. 8a. At the beginning of the first step,
stress and strain data are interpolated with a specific number of data points to reduce the effect of noise and
error caused by trained DLNN on the calculation of tangent stiffness. It is named as the interpolated tangent
stiffness expressed in Eq. (12).

Di ¼ siþ1 � si

eiþ1 � ei
i 2 1; 2; . . . ; N� 1ð Þ (12)

where N indicates the number of interpolations. 50,000 data points were used to interpolate the stress-strain
response in this paper. Then, the initial tangent stiffness was evaluated by using the interpolated tangent
stiffness within the first two percent of the whole interpolation intervals as follows.

D ¼
Pn

j¼1 D
j

n0:02
(13)

where n0:02 describes the number of the first two percent interpolation interval.

di ¼ Di

D
i 2 1; 2 . . . ;N� 1ð Þ (14)

dh i ¼
PN�1

i¼1 di

N � 1
(15)

Then the ratio of the interpolated tangent stiffness to the initial tangent stiffness (D) is evaluated in Eq.
(14). It is followed by computation of the averaged ratio as in Eq. (15). The averaged ratio of the tangent

Figure 8: (a) Flowchart for the first step for stress history classification. (b) Flowchart for the second step of
the identification algorithm
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stiffness d can classify the stress-strain path into nonlinear and linear regions. According to our experience,
the averaged ratio of the tangent stiffness is close to one in the linear elastic range because the tangent
stiffness in Eqs. (12) and (13). becomes close to each other within the linear elastic region. However, the
averaged ratio of the tangent stiffness deviates from one with the nonlinear stress response regions
because the interpolated tangent stiffness values in Eq. (12) become different from the initial tangent
stiffness value in Eq. (13). Following this process, we still need an additional step to identify the
initial failure point.

In the second step, initial failure points are identified from the nonlinear stress path. In the case of
multiaxial stress state, the initial failure point corresponds to the point where the dominant stress
component reaches the point earlier than other components Unlike the first step, di�1�� �� was used to
capture the first deviating point from the initial tangent stiffness. According to our tests, the tolerance
value in the range of 0.7~0.9 to be compared with di�1�� �� was appropriate to find the initial failure
stresses. More detailed procedures for the second step of the proposed algorithm is depicted in Fig. 8b.
Once the failure point is determined that corresponds to a specific stress component, then other stress
components corresponding to the point are saved for subsequent development of failure criteria.

4.2 Symbolic Regression by Genetic Programming

Genetic programming (GP) is one of the machine learning variants, which is based on a bio-inspired
technique. It can derive symbolic equations relating input data with output data out of a training database.
It randomly produces tree architectures (e.g., a population consisting of individuals) and operates genetic
mutation and cross-over process over the population. Throughout generations, the population converges
to the best individual that gives the best performance. Then, the GP can provide a nonlinear equation by
assembling weighted linear combinations from the final GP tree structure. An example of the GP tree
model is shown in Fig. 9.

We utilized one of the genetic programming, called GPTIPS [48], implemented in MATLAB
language, and generated an anisotropic yield surface out of the identified dataset. For the effective
training of the GP, the data should be prepared. A more detailed process is described in the next section
with an example simulation.

Figure 9: An example of the symbolic regression model by multigene
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5 Verification of the SELIFE and Self-Learning Data-Driven Failure Criterion

For the demonstration of the proposed methodology, we developed a reference biaxial FE model with
Hill’s 48 anisotropic failure criterion, which is a reference solution but unknown in actual application to new
materials. Therefore, Hill’s 48 anisotropic failure criterion will be compared to the data-driven anisotropic
failure criterion. Boundary force-displacement data from the reference simulated tests are deemed to be
measurements from experimental tests. A large volume of multiaxial stress-strain data was self-learned
and the identification algorithm was applied to discover initial yield stress points. Then, data-driven
failure criteria were established by the GP. Finally, the data-driven failure criteria were verified by
conducting simulations with different material orientations.

5.1 Simulated Reference Tests with Hill’s Anisotropic Failure Criterion

The reference simulated test model is assumed to have anisotropic material with zero degree material
orientation and subjected to four-types of displacement boundary conditions (DBC) summarized in
Tab. 8. The specimen model is divide into five specific regions as shown in Fig. 10. Displacement of
0.01 mm magnitude was applied in Region A and B while Region C and D were fixed. The DBCs are
summarized in Tab. 8. Stress-strain data were extracted from the Region E, where has 256 elements. The
2D plane stress condition was assumed and then the four-node bilinear plane stress (CPS4) element was
utilized. Material properties for the simulation are summarized in Tab. 9.

Figure 10: The biaxial specimen with boundary conditions and detail dimension in [mm] scale for the
reference simulation
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Hill’s 48 anisotropic failure criterion [50] is defined as follows:

f rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F r22 � r33ð Þ2 þ G r33 � r11ð Þ2 þ H r11 � r22ð Þ2 þ 2Lr232 þ 2Mr312 þ 2Nr122

q
(16)

where rij are the stress components and F;G;H ;L;M ; and N are constant parameters that express the
current state of anisotropic behavior. The constant parameters are defined as functions of yield stress
ratios Rij, the measured yields stress �ry0, and the material initial yield stress ry0.
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M ¼ 3

2
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1

�r213
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2R13
2
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 !
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 !
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Table 8: Four types of displacement boundary conditions

Boundary types Region A Region B

Type 1 Tension Tension

Type 2 Compression Compression

Type 3 Compression Tension

Type 4 Tension Compression

Table 9: Material properties of the anisotropic metal (DDQ mild steel [49])

Properties Values

Young’s modulus, E [GPa] 206

Poisson’s ratio, m 0.3

Initial yield stress, ry0 [MPa] 152.0

Lankford ratios : r0; r45; r90
(state of anisotropy of the material)

2.64, 1.57, 2.17
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The yield stress ratios Rij are defined as

Rij ¼ �rij
ry0
ðfor ij ¼ 11; 22; and 33Þ (18)

Rij ¼ �rij
sy0

(for ij =12, 13, and 23) where sy0 ¼ ry0ffiffiffi
3
p

For the plane stress condition, it is convenient to assume Rij as follows [51,52].

R11 ¼ R13 ¼ R23 ¼ 1 (19)

R22 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r90 r0 þ 1ð Þ
r0 r90 þ 1ð Þ

s
, R33 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r90 r0 þ 1ð Þ
r0 þ r90

r
, R12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3r90 r0 þ 1ð Þ

ð2r0 þ 1Þ r0 þ r90ð Þ

s
where r0 and r90 are the Lankford ratios. Moreover, the yield function is reduced to the plane stress condition
as follows.

f rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr222 þ Gr211 þ H r11 � r22ð Þ2 þ 2Nr212

q
(20)

When plastic deformation occurs, the yield function satisfies Eq. (21).

Fr222 þ Gr211 þ H r11 � r22ð Þ2 þ 2Nr212 ¼ r2y0 (21)

Applying Lankford values in Tab. 9, Rij in Eq. (18) are obtained. Eq. (21) provides the elliptic shape
for anisotropic yield surface in the stress space (r11; r22; and, r12Þ. The intersections between the yield surface
and each of axes define the measured yield stresses. They will be used for the verification of the new data-
driven anisotropic yield surface. Applying the uniaxial tensile condition and the pure shear stress condition to
Eq. (21), the measured yield stresses (�r11; �r22; �r12) can be obtained. Both yield stress ratios and measured
yield stresses are summarized in Tab. 10. The intersection points between the yield surface and axes were
numerically calculated that are as shown in Fig. 11. Their values were identical to the measured yield stresses.

To confirm the anisotropic yield response, the reference simulation with boundary type 1 was investigated.
The resultant force-displacement curves measured in Region A and B are different as shown in Fig. 11b.

5.2 SELIFE Simulation Results

SELIFE simulations were performed with all four boundary types separately. Fifteen nodes in each
hidden layer of the DLNN were placed. The DLNN architecture in Eq. (22) was used for all SELIFE
simulations. Online training was conducted with the same hyper-parameters for DLNN regardless of
boundary types. All values for the SELIFE simulations are summarized in Tab. 11.

rn ¼ rDLNN ½en; en�1;rn�1; &nð � : 12� 18� 18� 3½ �Þ (22)

Effective plastic strain contour under tension-tension DBC (the boundary type 1) at the last analysis step
is shown in Fig. 12. To show the local stress-strain path evolution from the SELIFE analysis, two elements
were picked: 138th and 132nd elements representing elastic and plastic behavior, respectively.

Table 10: Calculated yield stress ratios and measured yield stress

Components Yield stress ratios Measured yield stresses [MPa]

11 component R11 ¼ 1:00 �r11 ¼ �152:00
22 component R22 ¼ 0:97 �r22 ¼ �147.67
12 component R12 ¼ 1:09 �r12 ¼ �95:73
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Figure 11: (a) Hill’s 48 anisotropic yield surface with intersections and (b) force-displacement curves from
Hill’s anisotropic failure criterion

Table 11: Empirically set hyper-parameters for DLNN and parameters of the SELIFE simulation

Notations # of
NN pass

Toldisp Epre EAuto a g c lpre l0 linc

Values 10 2E-02 1000 5 0.1 5e-04 1e-04 49 200 300

Figure 12: Effective plastic strain contour from the reference simulation under tension-tension displacement
boundary condition (boundary type 1)
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Figure 13: Learning progression of global responses by SELIFE DLNN training; SELIFE simulation under
tension-tension displacement boundary condition (boundary type 1). (a) Region A: F-D (x-direction). (b)
Region B: F-time (x-direction). (c) Region A: F-time (y-direction). (d) Region B: F-D (y-direction). (e)
Region A: F-time (moment). (f) Region B: F-time (moment)
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Fig. 13 shows evidence of the gradual SELIFE learning of global responses. The global reaction force-
displacement curve in x-direction, the global reaction force history in the y-direction, and reaction moment
history from Region A are depicted in Figs. 13a, 13c, and 13e, respectively. Because of the material
anisotropy and the effects of deformation in the other direction, the reaction moment was developed. The
global reaction force history in the x-direction, the global reaction force-displacement in the y-direction, and
reaction moment history from Region B are illustrated in Figs. 13b, 13d, and 13f, respectively. As
evidenced, the global responses gradually approach their targeted curves as the SELIFE DLNN pass increases.

Figs. 14–16 compare local stresses trained by SELIFE with the results from the reference simulation.
These results indicate that SELIFE is capable of learning true (i.e., reference) stress-strain relationships.

Figure 14: Stress (S11) contour comparison. (a) Result of the reference simulation and (b) result of SELIFE
simulation at the last pass (the 10th pass)

Figure 15: Stress (S22) contour comparison. (a) Result of the reference simulation and (b) result of SELIFE
simulation at the last pass (the 10th pass)
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The SELIFE learning progression of the elastoplastic behavior at the 132nd element is illustrated in
Fig. 17. As the SELIFE DLNN pass increases, the stress-strain curves approach the reference curves.
These results show promising evidence of the SELIFE performance that can learn nonlinear constitutive
relationship from the experimentally measured global responses. These inverse learning results are
followed by the identification algorithm to pinpoint failure initiation.

5.3 Identification of Failure Stress

By the proposed identification algorithm in Section 4.1, initial failure points were identified. As shown
in Fig. 18, the identified failure points are indicated on the stress-strain curves with the failure points by Hill’s
anisotropic failure criterion. The initial yield points satisfying Hill’s 48 anisotropic yield surface are exactly
matching with yield points obtained by the proposed identification algorithm. The blue circle dots on each of
the stress-strain curves are the initial yield points satisfying Hill’s anisotropic failure criterion while the red
asterisk dots are obtained from the identification algorithm. Although only three points are presented, the
majority of the identified initial yield stresses were close to the initial yield stresses satisfying Hill’s
anisotropic failure criterion, according to our tests.

For example, in the case of Fig. 18a, the 11 stress component was the dominant one having maximum
value and the initial yield stress was identified only with the 11 stress path. Next, the specific point within the
path was saved and shared for the paired other stress component values (e.g., 22 and 12 components).

Following the feasibility study of the failure identification algorithm, two groups of the initial yield
stresses were identified from all reference simulations and the self-learned stress-strain curves,
respectively. Furthermore, all identified initial yield stresses, and their paired stress components were
substituted into the Hill’s anisotropic failure criterion Eq. (23).ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ry22

2 þ G ry11
2 þ H ry11 � ry22

	 
2 þ 2Nry12
2

q
� ry0 ¼ error (23)

where ryij indicates the identified initial yield stresses from the self-learned stress-strain curves.

Figure 16: Stress (S12) contour comparison. (a) Result of the reference simulation and (b) result of SELIFE
simulation at the last pass (the 10th pass)
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Multiaxial stress states corresponding to the initial failure points from the self-learned stress-strain data
are well-plotted on the anisotropic yield surface as shown in Fig. 19a. Moreover, the histogram of the
difference defined in Eq. (23) in Fig. 19b indicates that most of the initial yield stresses are reasonably
located on Hill’s anisotropic yield surface. The average percent of the error distribution is 4.0654%.
These results indicate fairly good agreement owing to the failure identification algorithm and auto-
adaptive algorithm.

5.5 Development of Data-Driven Failure Criterion by Genetic Programming

The failure dataset is prepared from all SELIFE simulations. We name the yield surface as a “self-
learning data-driven yield surface”. Furthermore, the data-driven yield surfaces are compared with Hill’s
anisotropic yield surface to verify the feasibility of the data-driven failure modeling methodology.
Anisotropic constant parameters (F;G;H ; and N ) from the Hill’s 48 anisotropic failure criterion should
be determined by multiple experimental specimen tests.

Figure 17: Stress-strain curves at the 3rd gauss point in the 132nd element by SELIFE DLNN passes
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Figure 18: Comparison of the initial yield stress positions. (a) At the 2nd gauss point in the 131st element.
(b) At the 2nd gauss point in the 184th element, and (c) at the 2nd gauss point in the 240th element
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However, the proposed self-learning data-driven methodology has a unique advantage of formulating
anisotropic failure criterion without F;G;H ; and N constants from a minimal number of experimental
tests. We explain how to prepare training data to be used in the data-driven failure criteria modeling.
Assuming a quadratic strength relationship, a general anisotropic failure criterion can be expressed as

r212 ¼ f r2yo;r
2
22;r

2
11; r11�r22ð Þ2

� �
(24)

where r2yo indicates the initial yield stress of the given material and r2ij indicates the identified initial yield
stresses. It is worth noting that F;G;H ; and N constants are not included in Eq. (24). The inputs to the
GP training are combinations of quadratic terms of the normal stresses (r11; r22), shear stress (r11 � r22)
and initial yield stress (ryo). r212 was chosen as output of the general failure criterion. The input and
output patterns for the GP training are summarized in Tab. 12.

Several parameters associated with the GP training are shown in Tab. 13 and the operational functions
are shown in Tab. 14. The initial yield stress dataset was prepared by the proposed method and trained under
the same conditions as in Tabs. 13 and 14.

Figure 19: The identified initial yield stresses from all SELIFE stress-strain data. (a) Identified initial yield
stresses on the Hill’s yield surface. (b) Distribution of errors of the identified initial yield stresses in Eq. (23)

Table 12: Input and output data pattern for the genetic program

Input data Output data

X1 ¼ r2yo X2 ¼ r222 X3 ¼ r211 X4 ¼ r11�r22ð Þ2 Y1 ¼ r212
Input data corresponding to the minimum r212 value Minimum

… ↓
( Ascending order )
↓

Input data corresponding to maximum r212 value Maximum
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Finally, the GP symbolic regression was conducted with the database from all the SELIFE simulations.
The data-driven anisotropic failure criterion is obtained as

0:2632 r222 þ 0:2065 r211 þ 0:7699 r11 � r22
	 
2 þ 3:1110 r212 ¼ r2y0 (25)

Eq. (25) can produce a reasonable elliptic shape. The self-learning data-driven anisotropic yield surface
Eq. (25) was compared with the reference Hill’s 48 yield surface in Figs. 20a and 20b.

The present results are promising and innovative in the fact that the anisotropic yield surface of unknown
material can be developed by using the minimal number of experimental tests.

Table 13: Parameters for genetic program

Parameter description Value

The number of population size 100

The number of generation 100

Maximum number of genes per individual 2

Maximum depth for gene 2

Table 14: Activated functions for the genetic programming

Activated function name Symbols

Times �
Minus �
Plus þ

Figure 20: Comparison of the self-learning data-driven anisotropic yield surfaces with Hill’s yield surface.
(a) 3D stress space. (b) 2D stress plane
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5.6 Verification of the Self-Learning Data-Driven Failure criterion

Based on the anisotropic parameters (F;G;H ; and N ) of the data-driven yield surface i.e., Eq. (25),
measured yield stresses are back-calculated. Then, yield stress ratios (R11, R22, R33 and R12) were
calculated by Eq. (18) and are listed in Tab. 15. Comparing with the reference yield stress ratios, yield
stress ratios from the self-learning data-driven yield surface seem reasonably identical.

To verify the data-driven yield equations, additional simulations were conducted with different material
orientations. In this study, we used a 22.5 degree of material orientation. The back-calculated anisotropic
yield stress ratios in Tab. 15 were used for the verification simulations. Fig. 21 shows comparisons of
global response under type 1 DBC for the two different anisotropic yield surfaces. Then, force-
displacement data were extracted from Region A and B.

Moreover, stress-strain data were obtained from the specific elements and those are shown in Fig. 22.
Comparing stress-strain curves, initial yield points from the self-learning data-driven yield surface are
very close to those from the reference anisotropic yield surface. These results indicate that the proposed
methodology can develop the data-driven failure criteria of unknown materials from experimental
measurements.

Table 15: Comparisons of yield surface ratios for the reference yield surface and the self-learning data-driven
yield surface (R11, R22, R33, and R12)

R11 R22 R33 R12

Reference material from Tab. 9 and Eq. (21) 1.0000 0.9715 1.2815 1.0909

Self-learning data-driven yield surface Eq. (25) 1.0120 0.9838 1.4591 0.9820

Figure 21: Force-displacement comparison from (a) the Region A and (b) the Region B
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6 Conclusions

This paper presented a novel self-learning data-driven modeling methodology that can develop failure
criteria of an unknown anisotropic ductile material. The methodology consists of the DLNN-based material
constitutive model, the self-learning inverse finite element (SELIFE) simulation, failure identification
algorithm through data-processing, and derivation of failure criteria through symbolic regression genetic
programming (GP). The SEFIFE can gradually train the DLNN material constitutive model to follow true
nonlinear stress-strain relationship being guided by the experimental measurements. In particular, stress
update and the algorithmic tangent operator were derived in terms of DLNN parameters to be used in
nonlinear finite element codes.

1. The DLNN material constitutive model was superior to the artificial neural network (ANN) based
model in terms of computational efficiency and prediction accuracy. The DLNN material
constitutive model could extend learning capabilities with massively hidden networks owing to
the Leaky-ReLU activation function.

2. The SELIFE simulation renders the DLNN material constitutive model to self-learn multiaxial
nonlinear stress-strain relationship with inputs of experimentally measured boundary reaction
forces and displacements. Local stress distributions and the global responses of the self-learning
model were fairly close to those of the reference model. Computational procedures for the
SELIFE simulation were also presented in pseudocodes.

3. Identification techniques of the failure points based on tangent stiffnesses could reasonably pinpoint
the failure points.

4. Finally, the GP application technique were presented to develop anisotropic failure criteria of
unknown anisotropic ductile materials.

5. The proposed idea was verified by direct comparisons with the reference simulation results with
Hill’s 48 anisotropic failure criteria and further tests with material having different material
orientations.

The proposed methodology has significances in capabilities of developing failure criteria of
uncharacterized materials such as 3D printed materials having process-dependent properties. Beyond the

Figure 22: Comparison of stress-strain curves at the 3rd gauss point in the 186th element. (a) 11 component.
(b) 22 component
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generalization of the self-learned DLNN model, it can also construct material-related “Big Data.” The
proposed methodology can also be extended to discover damage evolution laws in the future.

Funding Statement: This work was supported by the National Research Foundation of Korea (NRF) grant
of the Korea government (MSIP) (2020R1A2B5B01001899) (Grantee: GJY, http://www.nrf.re.kr) and
Institute of Engineering Research at Seoul National University (Grantee: GJY, http://www.snu.ac.kr). The
authors are grateful for their supports.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Ghaboussi, D. A. Pecknold, M. Zhang and R. M. Haj-Ali, “Autoprogressive training of neural network

constitutive models,” International Journal for Numerical Methods in Engineering, vol. 42, no. 1, pp. 105–
126, 1998.

[2] C. Settgast, G. Hütter, M. Kuna and M. Abendroth, “A hybrid approach to simulate the homogenized irreversible
elastic-plastic deformations and damage of foams by neural networks,” International Journal of Plasticity, vol.
126, pp. 102–624, 2020.

[3] A. Oishi and G. Yagawa, “Computational mechanics enhanced by deep learning,” Computer Methods in Applied
Mechanics and Engineering, vol. 327, pp. 327–351, 2017.

[4] M. A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley et al., “A framework for data-driven analysis of materials
under uncertainty: Countering the curse of dimensionality,” Computer Methods in Applied Mechanics
Engineering, vol. 320, pp. 633–667, 2017.

[5] B. A. Le, J. Yvonnet and Q. C. He, “Computational homogenization of nonlinear elastic materials using neural
networks,” International Journal for Numerical Methods in Engineering, vol. 104, no. 12, pp. 1061–1084, 2015.

[6] G. J. Yun, J. Ghaboussi and A. S. Elnashai, “A new neural network-based model for hysteretic behavior of
materials,” International Journal for Numerical Methods in Engineering, vol. 73, no. 4, pp. 447–469, 2008.

[7] T. Furukawa and G. Yagawa, “Implicit constitutive modeling for viscoplasticity using neural networks,”
International Journal for Numerical Methods in Engineering, vol. 43, pp. 195–219, 1998.

[8] R. Haj-Ali and H. K. Kim, “Nonlinear constitutive models for FRP composites using artificial neural networks,”
Mechanics of Materials, vol. 39, no. 12, pp. 1035–1042, 2007.

[9] Z. Zhang and K. Friedrich, “Artificial neural networks applied to polymer composites: A review,” Composites
Science and Technology, vol. 63, no. 14, pp. 2029–2044, 2003.

[10] H. El Kadi, “Modeling the mechanical behavior of fiber-reinforced polymeric composite materials using artificial
neural networks—A review,” Composite Structures, vol. 73, no. 1, pp. 1–23, 2006.

[11] Y. Shen, K. Chandrashekhara, W. F. Breig and L. R. Oliver, “Neural network based constitutive model for rubber
material,” Rubber Chemistry and Technology, vol. 77, no. 2, pp. 257–277, 2004.

[12] B. Wang, J. H. Ma and Y. P. Wu, “Application of artificial neural network in prediction of abrasion of rubber
composites,” Materials & Design, vol. 49, pp. 802–807, 2013.

[13] S. Jung and J. Ghaboussi, “Characterizing rate-dependent material behaviors in self-learning simulation,”
Computer Methods in Applied Mechanics and Engineering, vol. 196, no. 1–3, pp. 608–619, 2006.

[14] T. Furukawa and G. Yagawa, “Implicit constitutive modelling for viscoplasticity using neural networks,”
International Journal for Numerical Methods in Engineering, vol. 43, no. 2, pp. 195–219, 1998.

[15] R. M. Diaconescu, M. Barbuta and M. Harja, “Prediction of properties of polymer concrete composite with tire
rubber using neural networks,”Materials Science and Engineering B-Advanced Functional Solid-State Materials,
vol. 178, no. 19, pp. 1259–1267, 2013.

[16] A. M. Hassan, A. Alrashdan, M. T. Hayajneh and A. T. Mayyas, “Prediction of density, porosity and hardness in
aluminum–copper-based composite materials using artificial neural network,” Journal of Materials Processing
Technology, vol. 209, no. 2, pp. 894–899, 2009.

1118 CMC, 2021, vol.66, no.2

http://www.nrf.re.kr
http://www.snu.ac.kr


[17] V. M. Nguyen-Thanh, X. Zhuang and T. Rabczuk, “A deep energy method for finite deformation hyperelasticity,”
European Journal of Mechanics a-Solids, vol. 80, pp. 103–874, 2020.

[18] K. Wang and W. C. Sun, “Meta-modeling game for deriving theory-consistent, microstructure-based traction-
separation laws via deep reinforcement learning,” Computer Methods in Applied Mechanics and Engineering,
vol. 346, pp. 216–241, 2019.

[19] Z. Liu and C. T. Wu, “Exploring the 3D architectures of deep material network in data-driven multiscale
mechanics,” Journal of the Mechanics and Physics of Solids, vol. 127, pp. 20–46, 2019.

[20] M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of nonlinear partial differential
equations,” Journal of Computational Physics, vol. 357, pp. 125–141, 2018.

[21] J. Sirignano and K. Spiliopoulos, “DGM: A deep learning algorithm for solving partial differential equations,”
Journal of Computational Physics, vol. 375, pp. 1339–1364, 2018.

[22] J. Berg and K. Nystrom, “A unified deep artificial neural network approach to partial differential equations in
complex geometries,” Neurocomputing, vol. 317, pp. 28–41, 2018.

[23] H. Guo, X. Zhuang and T. Rabczuk, “A deep collocation method for the bending analysis of kirchhoff plate,”
Computers, Materials & Continua, vol. 59, no. 2, pp. 433–456, 2019.

[24] C. Anitescu, E. Atroshchenko, N. Alajlan and T. Rabczuk, “Artificial neural network methods for the solution of
second order boundary value problems,” Computers, Materials & Continua, vol. 59, no. 1, pp. 345–359, 2019.

[25] E. Weinan and B. Yu, “The deep ritz method: A deep learning-based numerical algorithm for solving variational
problems,” Communications in Mathematics and Statistics, vol. 6, no. 1, pp. 1–12, 2018.

[26] I. E. Lagaris, A. Likas and D. I. Fotiadis, “Artificial neural networks for solving ordinary and partial differential
equations,” IEEE Transactions on Neural Networks, vol. 9, no. 5, pp. 987–1000, 1998.

[27] T. Kirchdoerfer and M. Ortiz, “Data-driven computational mechanics,” Computer Methods in Applied Mechanics
and Engineering, vol. 304, pp. 81–101, 2016.

[28] T. Kirchdoerfer and M. Ortiz, “Data-driven computing in dynamics,” International Journal for Numerical
Methods in Engineering, vol. 113, no. 11, pp. 1697–1710, 2018.

[29] R. Eggersmann, T. Kirchdoerfer, S. Reese, L. Stainier and M. Ortiz, “Model-free data-driven inelasticity,”
Computer Methods in Applied Mechanics and Engineering, vol. 350, pp. 81–99, 2019.

[30] T. Kirchdoerfer and M. Ortiz, “Data driven computing with noisy material data sets,” Computer Methods in
Applied Mechanics and Engineering, vol. 326, pp. 622–641, 2017.

[31] L. Stainier, A. Leygue and M. Ortiz, “Model-free data-driven methods in mechanics: Material data identification
and solvers,” Computational Mechanics, vol. 64, no. 2, pp. 381–393, 2019.

[32] F. Abbassi, T. Belhadj, S. Mistou and A. Zghal, “Parameter identification of a mechanical ductile damage using
artificial neural networks in sheet metal forming,” Materials & Design, vol. 45, pp. 605–615, 2013.

[33] A. Leygue, M. Coret, J. Réthoré, L. Stainier and E. Verron, “Data-based derivation of material response,”
Computer Methods in Applied Mechanics and Engineering, vol. 331, pp. 184–196, 2018.

[34] P. Ladevèze, D. Néron and P. W. Gerbaud, “Data-driven computation for history-dependent materials,” Comptes
Rendus Mecanique, vol. 347, no. 11, pp. 831–844, 2019.

[35] W. K. Liu, G. Karniadakis, S. Tang and J. Yvonnet, “A computational mechanics special issue on: Data-driven
modeling and simulation—Theory, methods, and applications,” Computational Mechanics, vol. 64, no. 2, pp.
275–277, 2019.

[36] M. Dalemat, M. Coret, A. Leygue and E. Verron, “Measuring stress field without constitutive equation,”
Mechanics of Materials, vol. 136, pp. 103087, 2019.

[37] L. T. K. Nguyen and M. A. Keip, “A data-driven approach to nonlinear elasticity,” Computers and Structures, vol.
194, pp. 97–115, 2018.

[38] J. Ghaboussi, J. H. Garrett and X. Wu, “Knowledge-based modeling of material behavior with neural networks,”
Journal of Engineering Mechanics, ASCE, vol. 117, no. 1, pp. –132~153, 1991.

[39] G. J. Yun, J. Ghaboussi and A. S. Elnashai, “A new neural network-based model for hysteretic behavior of
materials,” International Journal for Numerical Methods in Engineering, vol. 73, no. 4, pp. 447–469, 2008.

CMC, 2021, vol.66, no.2 1119



[40] Y. M. A. Hashash, S. Jung and J. Ghaboussi, “Numerical implementation of a neural network based material
model in finite element analysis,” International Journal for Numerical Methods in Engineering, vol. 59, no. 7,
pp. 989–1005, 2004.

[41] G. J. Yun, A. Saleeb, S. Shang, W. Binienda and C. Menzemer, “Improved selfsim for inverse extraction of non-
uniform, nonlinear and inelastic constitutive behavior under cyclic loadings,” Journal of Aerospace Engineering,
vol. 25, no. 2, pp. 256–272, 2012.

[42] A. L. Maas, A. Y. Hannun and A. Y. Ng, “Rectifier nonlinearities improve neural network acoustic models,” in
Proc. of the 30th Int. Conf. on Machine Learning, Atlanta, Georgia, USA, pp. 3, 2013.

[43] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimization,” 2014. [Online]. Available: https://arxiv.
org/abs/1412.6980.

[44] R. Pascanu, T. Mikolov and Y. Bengio, “On the difficulty of training recurrent neural networks,” in Proc. of the
30th Int. Conf. on Machine Learning, Atlanta, Georgia, USA, PMLR, vol. 28, no. 3, pp. 1310–1318, 2013.

[45] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” 2016. [Online]. Available: https://arxiv.org/abs/1603.04467.

[46] A. Géron, Book Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems, Sebastopol, CA. 1st ed., O'Reilly Media, 2017.

[47] K. He, X. Zhang, S. Ren and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on
lmageNet classification,” in 2015 IEEE Int. Conf. on Computer Vision, Santiago, pp. 1026–1034, 2015.

[48] D. P. Searson, D. E. Leahy and M. J. Willis, “GPTIPS: An open source genetic programming toolbox for
multigene symbolic regression,” in Proc. of the Int. Multi Conf. of Engineers and Computer Scientists, 2010
Vol I, IMECS 2010, March 17–19, 2010, Hong Kong, pp. 77–80, 2010.

[49] Y. Choi, C. S. Han, J. K. Lee and R. H. Wagoner, “Modeling multi-axial deformation of planar anisotropic elasto-
plastic materials, part I: Theory,” International Journal of Plasticity, vol. 22, no. 9, pp. 1745–1764, 2006.

[50] R. Hill, “A theory of the yielding and plastic flow of anisotropic metals,” Proceedings of the Royal Society of
London Series a-Mathematical and Physical Sciences, vol. 193, no. 1033, pp. 281–297, 1948.

[51] S. Bagherzadeh, M. J. Mirnia and B. M. Dariani, “Numerical and experimental investigations of hydro-
mechanical deep drawing process of laminated aluminum/steel sheets,” Journal of Manufacturing Processes,
vol. 18, pp. 131–140, 2015.

[52] D. V. Hai, S. Itoh, T. Sakai, S. Kamado and Y. Kojima, “Experimentally and numerical study on deep drawing
process for magnesium alloy sheet at elevated temperatures,” Materials Transactions, vol. 49, no. 5, pp. 1101–
1106, 2008.

1120 CMC, 2021, vol.66, no.2

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1603.04467

	A Self-Learning Data-Driven Development of Failure Criteria of Unknown Anisotropic Ductile Materials with Deep Learning Neural Network ...
	Introduction
	Data-Driven Finite Element Analysis with DLNN Material Constitutive Model
	Self-Learning Inverse Finite Element (SELIFE) Analysis
	Development of Failure Criteria from Self-Learning Data for Unknown Ductile Anisotropic Materials
	Verification of the SELIFE and Self-Learning Data-Driven Failure Criterion
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


