
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014699

Article

Optimal Reordering Trace Files for Improving Software
Testing Suitcase

Yingfu Cai1, Sultan Noman Qasem2,3, Harish Garg4, Hamïd Parvïn5,6,7,*,
Kim-Hung Pho8 and Zulkefli Mansor9

1School of Measurement and Communication, Harbin University of Science & Technology, Harbin, China
2Computer Science Department, College of Computer and Information Sciences, Al ImamMohammad Ibn Saud Islamic

University (IMSIU), Riyadh, Saudi Arabia
3Department of Computer Science, Faculty of Applied Science, Taiz University, Taiz, Yemen

4School of Mathematics, Thapar Institute of Engineering and Technology, Deemed University, Patiala, 147004, India
5Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam

6Faculty of Information Technology, Duy Tan University, Da Nang, 550000, Vietnam
7Department of Computer Science, Nourabad Mamasani Branch, Islamic Azad University, Mamasani, Iran

8Fractional Calculus, Optimization and Algebra Research Group, Faculty of Mathematics and Statistics,
Ton Duc Thang University, Ho Chi Minh City, Vietnam

9Fakulti Teknologi dan Sains Maklumat, Universiti Kebangsan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
*Corresponding Author: Hamid Parvin. Email: parvin@iust.ac.ir

Received: 10 October 2020; Accepted: 16 November 2020

Abstract: An invariant can be described as an essential relationship between
program variables. The invariants are very useful in software checking and
verification. The tools that are used to detect invariants are invariant detectors.
There are two types of invariant detectors: dynamic invariant detectors and
static invariant detectors. Daikon software is an available computer program
that implements a special case of a dynamic invariant detection algorithm.
Daikon proposes a dynamic invariant detection algorithm based on several
runs of the tested program; then, it gathers the values of its variables, and
finally, it detects relationships between the variables based on a simple statis-
tical analysis. This method has some drawbacks. One of its biggest drawbacks
is its overwhelming time order. It is observed that the runtime for the Daikon
invariant detection tool is dependent on the ordering of traces in the trace
file. A mechanism is proposed in order to reduce differences in adjacent trace
files. It is done by applying some special techniques of mutation/crossover
in genetic algorithm (GA). An experiment is run to assess the benefits of
this approach. Experimental findings reveal that the runtime of the proposed
dynamic invariant detection algorithm is superior to the main approach with
respect to these improvements.

Keywords: Dynamic invariant detection; software testing; genetic algorithm

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014699

1226 CMC, 2021, vol.67, no.1

1 Introduction

Program invariants are rules or equations among program variables staying constant and
unaffected for the successive program runs with various input parameters. Invariants could have
been used to develop real and reliable programs. For example, in a search program to find an
element in an array of integer values, the array elements must be unchanged, and counter of
the array that is to move through array elements must be at most equal to the length of the
array after the function returns. Invariants have a significant impact on software engineering,
especially automatic software engineering [1]. They help programmers to develop better programs,
to document the program operations, to generate the test-cases automatically, to validate their
programs, and etc. They are also effective in software testing which allows a programmer to assess
if their program behavior is valid or not [2–4]. For example, if a programmer knows that the
variable values are not always constant with regards to invariants, he/she can infer that his/her
code could have some bugs.

Invariants are often useful relative to two different programs (even with different algorithms)
and can even allow programmers to test and verify their programs. For example, when an indi-
vidual writes a program to organize a set of data, he/she will decide whether his/her program is
accurate or it has bugs by comparison of his/her program invariants with those of an actual and
consistent form of the program; for example, consider a merge ordering code. The assumption,
here, is that “the invariants of the evaluated program will be exactly the same with those of the
absolute reliable sort program (e.g., merge sort program).” In addition, the mentioned invariants
are particularly effective in documenting and introducing a program attribute when a program
does not contain documentation and explanation. In this context, if a new code-writer needs to
understand the attributes of the program for modification or extension, the invariants may be
very effective in achieving this objective, especially when the program is large and has big and
unstructured codes.

Ruthruff et al. [5] offer expressive and practical descriptions for the experimental program
analysis with an explanation of the use of invariants. This further discusses how experimental
program analysis contributes to three problems in software engineering: the transformation of
programs, their testing, and their programs.

As invariants can be used to help programmers improve maintainability, readability, ver-
ification, documentation, and many other aspects of their programs, therefore, the software
engineering researchers recently have interested in this field. Also, programmers are encouraged to
extract programs’ invariants and then test their programs regarding the detected invariants.

There are two general methods to detect invariants: (1) Static invariant detection approach
and (2) Dynamic invariant detection approach. Each approach has its weaknesses and strengths.
The output of dynamic methods often is not reliable; therefore, we say that methods of dynamic
invariant detection approach are unreliable. Static methods are also too difficult to be developed.
Both of them are also considered to be time-consuming approaches.

Artificial intelligence is important and useful in many applications [6–15]. It can be applied in
many actual issues [16–25]. While some of its applications are theoretic [26–35], but in many of its
applications, the traditional artificial intelligence techniques can be used. The optimization tech-
niques as a sub-field in artificial intelligence have many applications in real world problems [36,37].
The paper tackles the problem of invariant generation from traces using artificial intelligence. The
contribution aims at improving the runtime of Daikon, a well-known method/tool to generate the
program invariants. The key insight in this paper is to reorder the trace files so that the amount

CMC, 2021, vol.67, no.1 1227

of computation required to check whether candidate invariants are satisfied is reduced. This is
done by considering a form of lazy computation based on the fact that if none of the variables
in a constraint changed its value compared to the preceding row, there is no need to re-compute
the constraint. Machine learning techniques are used for reordering.

The present article first discusses related work in Section 2. Then, the problem and its
motivation are briefly defined. We then describe the dynamic invariant detection approach in
Section 3. Later on Section 3, we also address the drawbacks of dynamic approaches. Section 4
will elaborate on two ideas on optimizing Daikon runtime and improving its speed. Section 5
provides a comparison between the results of the latest innovations with the previous version
of Daikon, according to a couple of C language programs. Section 6 experimentally shows that
the proposed ideas are useful in real code, and the proposed ideas can decrease the runtime of
the dynamic invariant detection approach. Ultimately, the conclusion and future work will be
discussed in Section 7.

2 Related Works

It seems to be two general methods for detecting invariants, as mentioned: static and dynamic.
In the static methods, the analysis of program source codes through the use of compiler tech-
niques is taken into account (e.g., extraction of data flow graphs in the program source code).
In contrast, dynamic methods gather information from program implementation; profiling and
testing are instances. This implies that dynamic methods utilize real values determined during the
implementation of programs and define statistical relationships between variables dependent on
their values [38]. In Section 3, dynamic approaches are described in depth.

Several methods, including ESC and Key for java and LClint for C, are available to extract
invariant in a static way [38,39]. The greatest obstacle in static invariant detection is challenges a
programmer can encounter. Codes monitoring and rules detection between variables according to
values may be a difficult task, particularly in the case that the programmer needs to include some
complicated cases such as pointers, polymorphisms, etc.

Some of the greatest disadvantages in dynamic methods are as follows: (1) They are unreliable
and (2) They are costly, and above all, (3) They do not provide extremely accurate responses.
Daikon which implements an algorithm considered to be one of the dynamic invariant detection
approaches is the most suitable software until now [40] comparing to other dynamic invariant
detection tools like [41–44].

As another advantage of Daikon, we can mention that it is open-source software, and
everybody can modify and improve it. Nevertheless, this tool has several disadvantages. Several
investigations to improve Daikon efficiency have been performed. Many modifications of Daikon
have been presented up until now. The newest Daikon version, for example, contained a number
of different approaches for equivalent variables, constant dynamic variables, elimination of weaker
invariants, and variable hierarchy [40,45].

In order to create an approximate temporal model of actions, Silvaa et al. [46] discuss
the issue of combining several traces of a similar program. In addition, Java proof-of-concept
implementations of the trace merging algorithms are given through the NuSMV Tool.

Mili et al. [47] apply a relational refinement calculus to reach this complicated issue system-
atically. It provides a means, under some circumstances, to automatically extract the function of
loops or their approximation. Similar to Daikon, they achieve acceptable outcomes.

1228 CMC, 2021, vol.67, no.1

Costa et al. [48] propose a runtime verification approach on the basis of design-by-contract
to enhance Java Card applications’ safety. For this purpose, they suggested JCML, a specification
extracted from Java modeling language.

In this paper, the author proposes two techniques to improve the runtime efficiency of
the extraction of program invariants (preconditions, postconditions, and loop invariants) dur-
ing dynamic invariant detection (i.e., recording values of variables during program executions
at the selected observation points and the discovery of statistical relations between the variables).
The first technique is the reduction of the quantity of program variables that should be evaluated.
The second technique is the sorting of the recorded data traces based on the number of variables
in which values in the various runs have not been modified.

2.1 Brief Problem Definition and Motivations
Program invariants are equations or rules between program variables that stay unchanged and

constant with regard to successive program runs with various input parameters. Invariants could
be applied to create real and accurate programs. Invariants are detected in two general ways:
static and dynamic. The main challenge in static detection is the challenges a programmer will
encounter. Dynamic approaches, on the other hand, obtain information from program executions.
In dynamic approaches, two of its biggest drawbacks are that they are unreliable and time-
consuming. Daikon, which implements a dynamic invariant detection algorithm, is the most
suitable software until now.

In this paper, our contribution is to offer two ideas to improve the runtime of the extraction
of invariants based on a dynamic invariant approach. To reduce its runtime, initially, the effective
factors must be calculated on the runtime in dynamic methods. Then, it will be tried to decrease
the runtime of the algorithm based on these factors. Based on previous researches, the main factor
involved in its runtime order is the number of the variables that are in the scope of the tested
program. Therefore, one idea is to reduce the number of variables that must be checked.

3 Dynamic Invariants Detection Algorithm

As seen in Fig. 1, Daikon implements the program with multiple input parameters and derives
the values of variables at particular program points, such as procedural inputs and outputs. It
is worthy to note that these specific program points are abbreviated by program points. Then, it
saves the values of variables in a data-trace file that its extension is dtrace. Daikon has a database
of possible invariants and tests each combination of one, two, and three variables. An invariant
is reported if and only if it has a confidence value bigger than a user-defined value.

Unary invariants are invariants that are identified in a single variable. For example, X > a
provides a variable named X that is considerably higher compared to a constant value referred to
as a. For another instance, X mod b= a indicates the variable X residual divided by constant b
is a constant value referred to as a. The invariants X > Y and X = Y + c represent a couple of
binary invariant instances, and the invariant Y = aX+bZ is a ternary invariant taken into account
by Daikon that the notations a and b indicates a couple of constant values and the notations X ,
Y and Z implies three variables [49].

Daikon also extracts the latent or derived variables and treats them just like other variables.
Daikon finds three types of invariants in every program point. The program points include precon-
dition, postcondition, and loop invariants. The precondition invariants are rules between variables
before entering to program point. The postcondition invariants are rules between variables after

CMC, 2021, vol.67, no.1 1229

exiting of program point, and loop invariants refer to rules between variables through every
iteration loop in the program point.

Figure 1: Dynamic invariant detection algorithm implemented by Daikon

As previously demonstrated, Daikon implements the dynamic invariant approach. First of all,
the Daikon instruments program; it means a series of codes must be inserted into the original
code at the all of the program points to save the values of variables. Daikon has an option to
use one of two special tools to obtain this objective: Chicory or Kvasir.

They are two different sub-tools in Daikon. Both are open-source and have been developed
with Java. Kvasir could be implemented only in Linux and generates an “Enter Procedure” and
an “Exit Procedure” for every procedure in the source code. It writes the values of variables on
“Enter Procedure” when program the program control enters into the procedure (precondition). It
also writes the values of variables on “Exit Procedure” when the program control exits the proce-
dure (postcondition) according to [49]. Daikon utilizes the resultant outputs of the instrumental
tools to detect invariants by recording results in a file. Fig. 2 shows a sample source code. The
corresponding output of Kvasir to Fig. 2 was presented in Fig. 3.

As the user can see from Figs. 2 and 3, the Enter and Exit sections were specified for compute
and main functions in the source code product. As stated earlier, the values of the variables
are obtained.

#include <stdio.h>
int main() {

int year;
scanf("%d",&year);
int w;
int s;

w=year;
s=year+1;

compute(year, w, s);
}
int compute(int yr, int d1, int d2) {

if (yr % 4)
return d1 + d2;

else
return d1 + d2 + 1;

}

Figure 2: A sample source code in C language

1230 CMC, 2021, vol.67, no.1

..main ():::ENTER

..compute ():::ENTER
yr
4
1
d1
4
1
d2
5
1
..compute():::EXIT0
yr
4
1
d1
4
1
d2
5
1
return
10
1
..main():::EXIT0
return
10
1

Figure 3: Kvasir’s corresponding output to the code depicted by Fig. 1

3.1 Daikon Weakness
The algorithms that are to detect the dynamic invariants have several drawbacks. One of their

major challenges is their long run duration. Daikon runtime is on the basis of the number of
variables inside the assessed domain, the size of programs, the number of running programs, and
the number of templates for which the variables are evaluated is stated by Eq. (1). This is the
time required to demonstrate whether invariants are falsified or verified.

Time=O
((

|var|3× falsetime+ |trueinvs| × |testsuite|
)
× |program|

)
(1)

Invariants involve a maximum of three variables; thus, a cubic number of possible invariants
is available. Only the invariants including one, two and three variables were found by Daikon.
In the next section, two ideas will be proposed that, if applied, would substantially reduce the
runtime needed for dynamic invariant detection [49].

4 New Ideas for Improving Invariant Detection

As you can find out in previous sections, the runtime of the algorithm is linear in terms of the
number of the variables that are to be checked for invariant detection. The present article attempts
to offer two new ideas to reduce the runtime of the algorithm by decreasing the number of the
variables that are to be checked for invariant detection. We expect that the following improvements
to the Daikon source code would boost its performance considerably. Note that although the

CMC, 2021, vol.67, no.1 1231

Daikon source code has been changed, the output invariants were also precisely the same as they
were. Then, every idea will be evaluated to show its effect. Section 4.1 shows the properties of the
variables which do not need to be tested. In addition, the second concept follows the first. The
second idea is to sort data-trace files so that the algorithm time order could be decreased. This
is evaluated in Section 4.2.

4.1 First Idea
In this section, it is tried to introduce a property that if a variable has it, it does not need to

be checked. While runtime will effectively be reduced by eliminating these variables, these variables
have not any effect on final invariants. Consider that the Daikon algorithm runs multiple input-
parameter programs and then derives and tracks the variable values. There are many extracted
variables and function parameters and other variables that, in subsequent runs, do not alter values,
but Daikon tests them in subsequent runs. Furthermore, it is not crucial to measure unmodified
variables values during subsequent runs.

For example, assume that there are three variables called X , Y and Z with respectively 3, 4
and 5 values. Also, presume that several of the invariants that are actually to be tested are X <Y ,
Y < Z, X = 3, Y = 4, etc. Assume that the values of such variables alter into respectively 3, 4
and 2 in the following program run. It should be noted that no invariants identified in variables
X and Y have to be checked since the values for these variables have not changed from the
latest run. This implies that the reliabilities of the invariants already described by these unaffected
variables remain unchanged. Invariants such as Y = 4, X <Y and X = 3 are remained true (as the
previous run), but invariants including the variable Z have to be re-checked, as their values might
be changed. The invariant Y < Z is not accurate in this instance; therefore, this vector needs to
be filtered.

Section 5 will discuss the results of this idea. Findings demonstrate that these modifications
significantly reduced the runtime. With regards to findings, as predicted, the runtime is in the best
possible state in the case that there are a few number of variations in the values of variables
in sequential runs; and in the worst case where there is no similarity in the values of variables
in consequential program runs. This is why data-trace files have to be classified first of all
depending on minor variations in the values of variables, in the second idea addressed in depth
in Section 4.2.

4.2 Second Idea
Within this subsection, a method of sorting data-trace files is attempted to be found according

to minimal variations in the quantity of the variables, the values of which are altered consec-
utively. (a) It is costly and very time-consuming to sort data-trace files using the deterministic
techniques because of factorial order. (b) Finding the best ordering of the data-trace files to
minimize modifications in values of variables of consecutive runs is an NP problem. (c) On the
other hand, it is not necessary to achieve the best combination of data-trace files; it means a
combination that is close enough to the best is admissible. Therefore, it is concluded from (a), (b)
and (c) that the use of a non-deterministic heuristic approach, such as a genetic algorithm, is an
excellent choice [50]. Details of the used genetic algorithm are offered in the next section.

4.2.1 Chromosome Representation
The chromosome representation model is the first section to be discussed in designing a

genetic algorithm. Chromosomes are employed in this problem, and their length is equal to the

1232 CMC, 2021, vol.67, no.1

quantity of data-trace files and their gens occupied by a unique integer number from one and
the quantity of data-trace files; therefore, the value of each gen differs from others implying that
each chromosome is a permutation from one to the quantity of data-trace files. As an example,
in six test cases in Tab. 1, check the variables’ values extracted through Kvasir during the first
program. If we want Daikon to take into consideration these data-trace files in order [1 2 3 4
5 6], the corresponding chromosome is presented by Fig. 4a as it is in Tab. 1, whereas if we want
Daikon to take into consideration these data-trace files in order [5 6 1 2 3 4], the corresponding
chromosome is presented by Fig. 4b as it is in Tab. 2.

Table 1: The variables’ values resulted from Kvasir over the initial program

Data-trace file Yr d1 d2 Return

1.dtrace 4 4 5 10
2.dtarce 4 4 5 10
3.dtrace 2 2 3 5
4.dtrace 5 5 6 11
5.dtrace 5 5 6 11
6.dtrace 5 5 6 11

1 2 3 4 5 6

(a)

5 6 1 2 4 3

(b)

Figure 4: (a) Chromosome corresponding with Tab. 1 data-trace file; (b) Chromosome correspond-
ing with Tab. 2 data-trace file

Table 2: The variables’ values in Tab. 1 in a non-effective reordering

Data-trace file Yr d1 d2 Return

5.dtrace 5 5 6 11
6.dtrace 5 5 6 11
1.dtrace 4 4 5 10
2.dtarce 4 4 5 10
4.dtrace 5 5 6 11
3.dtrace 2 2 3 5

4.2.2 Crossover Operator
Cross over operator is the next part that will be debated in designing a genetic algorithm.

The cycle cross over approach is selected in this paper. Cycle crossover creates a child in which
each gene has a correspondent from one parent cycle. See Fig. 5, for instance, that depicts two
parents and the resulting children following the cyclic crossover [51].

CMC, 2021, vol.67, no.1 1233

Figure 5: Cyclic crossover of two parents and their children

4.2.3 Mutation Operator
The possibility of mutation is adjusted to be an actual positive value of approximately 0;

0.001 is chosen here. It is also used for every chromosome. This operator exchanges the values of
two random gens.

4.2.4 Selection Operator
Truncation selection is considered to be our genetic algorithm selection operator. Chromo-

somes such as children and their parents are, first of all, classified based on their fitness function
values in this selection. Then, the greatest of all are chosen as a new genetic algorithm population.

4.2.5 Fitness Function
The data track files are sorted on the basis of lowest discrepancies in the quantity of variables,

the values of which change in successive runs. The fitness function is described as discrepancies in
the quantity of variables, the values of which are altered. As it can be seen in Tab. 1, the variables
are altered only at eight points. There are four differences in 3.dtrace and four variations on the
running of 4.dtrace; however, Tab. 2 indicates a total of twelve discrepancies in 1.dtrace, 3.dtrace,
and 4.dtrace runs. Therefore, the initial combination of trace data files is stronger compared to
the next combination. Tabs. 1 and 2 have fitness values of eight and twelve, respectively.

5 Comparison of Results

Two C-language programs are applied to conduct the experimentations. In the first program,
Kvasir is run, the source of which is shown for six times in Fig. 2, and the values of variables
are indicated in Tab. 1.

The Daikon’s source code is then changed to avoid checking unmodified variables in the
resulting data-trace files. The term “Trace” is often changed such that the data is written, while
each variable is tested. On the basis of evidence, the term “Trace” appears sixteen times in the case
that the unrevised version of Daikon is implemented on the data in Tab. 1. Each occurrence of
“Trace” on the output indicates that Daikon has tested all templates for invariants. Nevertheless,
when the revised Daikon variant is implemented with the above-noted improvement (to prevent
checking unmodified variables), the term “Trace” only appears eight times. It means that the
occurrences of the word “Trace” is reduced to half; thus, it demonstrates that runtime decreases
appropriately. Even so, the term “Trace” appears 12 times while the program is running in the

1234 CMC, 2021, vol.67, no.1

following setup. The explanation is that this arrangement possesses more differences in the values
of variables.

As shown in Tab. 1, the variables are changed only at eight points. In Tab. 2, the variables
are changed at twelve points. As reported earlier, when the greatest or the almost superior
combination of data-trace files is chosen according to the minimal differences in the values of
variables, the performance will be improved significantly as long as the first change over Daikon
is regarded.

For a further illustration, the source code seen in Fig. 6 is checked and is identical to the
source code in Fig. 2; however, it employed pointers.

The subsequent calculations are based on six Kvasir runs for variables in Tab. 3.

#include <stdio.h>
int main() {

int year;
scanf("%d",&year);
int w=year,s=year+1;
compute(year, &w, &s);}

int compute(int yr, int* d1, int* d2) { *d1=*d2;
if (yr % 4){

return *d1 + *d2;}
else{

return *d1 + *d2 + 1;}}

Figure 6: The sample source code of Fig. 2 using the pointers

Table 3: The variables’ values resulted from Kvasir over the second program

Data-trace File Yr d1 d2 Return

1.dtrace 1 1 2 4
2.dtarce 3 3 4 8
3.dtrace 4 4 5 11
4.dtrace 2 2 3 6
5.dtrace 4 4 5 11
6.dtrace 2 2 3 6

After the original Daikon has been implemented for the variables’ values addressed in Tab. 3,
the term “Trace” has been written 35 times, and when the revised version of the Daikon (pre-
vented to check unmodified variables) is run over them, it is appeared 35 times, because in the
previous run all the variables are given different values than the corresponding ones. If the revised
Daikon is implemented on the corresponding combination of data-trace files resulted from genetic
algorithms, for example, Tab. 4, after which the term “Trace” occurs 23 times, although, in the
main Daikon, the term “Trace” occurs 35 times as in previous case.

CMC, 2021, vol.67, no.1 1235

Table 4: The variables’ values in Tab. 3 reordered by GA in an effective manner

Data-trace file Yr d1 d2 Return

1.dtrace 1 1 2 4
2.dtarce 3 3 4 8
6.dtrace 2 2 3 6
4.dtrace 2 2 3 6
3.dtrace 4 4 5 11
5.dtrace 4 4 5 11

6 Discussion and Verification

For experimental justification, the algorithm is run on three versions of a function with 5,
10, and 20 variables. The used function for experimentations is merge sort.

Run-time of original Daikon in terms of millisecond is depicted in Fig. 7. The results are
averaged over 30 distinct runnings of the algorithms. The horizontal axis shows the length of
the test suit or data-trace files. Run-time of the proposed algorithm (including GA+Daikon) is
depicted in Fig. 8.

Figure 7: Run-time of original Daikon in terms of millisecond

Runtime improvements of the proposed algorithm (including GA +Daikon) in comparison
with the simple Daikon is shown in Fig. 9. The improvements are averaged over 30 distinct
runnings of the algorithms. As you can infer from Fig. 8, you can conclude that “the bigger
data-trace files or the number of input variables, the more reason to use the proposed algorithm.”

It is also worthy of mentioning that Fig. 8 depicts the runtime improvements of the modified
Daikon over the original Daikon: It means the runtime of the original Daikon has subtracted the
runtime of the modified Daikon in each case. It is also worthy of mentioning that the runtime
improvements of the modified Daikon over the original Daikon are not regular. This can be due
to system scheduling.

1236 CMC, 2021, vol.67, no.1

Figure 8: Run-time of proposed algorithm (including GA+Daikon) in terms of millisecond

Figure 9: Improvement of the proposed algorithm in terms of running time

7 Conclusion and Further Works

The greatest challenge in detection of a program invariants is the huge cost needed to prepare
a detector software. Therefore, dynamic invariant detection methods have emerged instead of
dynamic invariant detection ones. But, the runtime of dynamic invariant detection methods is
also the most important and considerable issue. Since invariants play a significant role in software
testing, the reduction of its runtime would certainly contribute to the field of software engineering.
An open-source computer software, i.e., Daikon, is used as our dynamic invariant detection
algorithm. Daikon proposes a dynamic invariant detection algorithm based on several runs of
the tested program; then, it gathers the values of its variables, and finally, it detects relationships
between the variables based on a simple statistical analysis. It is observed that the runtime for the
Daikon invariant detection tool is dependent on the ordering of traces in the trace file. A genetic
algorithm is proposed to reorder traces in the trace file in order to reduce differences in adjacent
trace files. It is concluded when the data-trace files or the number of input variables are bigger,
it is more efficient to use the proposed algorithm. As in real-world software codes, the variables
may be potentially very frequent, the improvement achieved by this paper will be more important.

CMC, 2021, vol.67, no.1 1237

Acknowledgement: This paper has been initially submitted on “August 5” by Hamid Parvin.
As the paper has new author in revision, the EiC proposed authors to decline the paper at
“October 6” and resubmit it. On “October 10,” they resubmitted it and it was finally accepted at
“16 November.”

Funding Statement: The author(s) received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] A. M. Kalpana, K. Tamizarasu and A. E. Jeyakumar, “A fuzzy logic based framework for assessing the

maturity level of Indian small scale software organizations,” Computer Systems Science & Engineering,
vol. 29, no. 2, pp. 153–167, 2014.

[2] I. Beschastnikh, Y. Brun, M. D. Ernst, A. Krishnamurthy and T. E. Anderson, “Mining temporal
invariants from partially ordered logs,” Operating Systems Review, vol. 45, no. 3, pp. 39–46, 2012.

[3] J. W. Nimmer and M. D. Ernst, “Automatic generation of program specifications,” in Proc. of Int. Sym.
on Software Testing and Analysis, Rome, Italy, pp. 232–242, 2002.

[4] Y. Kataoka, M. D. Ernst, W. G. Griswold and D. Notkin, “Automated support for program refactoring
using invariants,” in Proc. of Int. Conf. on Software Maintenance, pp. 736–743, 2001.

[5] J. R. Ruthruff, S. Elbaum and G. Rothermel, “Experimental program analysis,” Information and
Software Technology, vol. 52, no. 4, pp. 359–379, 2010.

[6] H. Niu, N. Khozouie, H. Parvin, H. Alinejad-Rokny, A. Beheshti et al., “An ensemble of locally reliable
cluster solutions,” Applied Sciences, vol. 10, no. 5, pp. 1891, 2020.

[7] M. R. Mahmoudi, M. Mahmoudi and A. Pak, “On comparing, classifying and clustering several
dependent regression models,” Journal of Statistical Computation and Simulation, vol. 89, no. 12,
pp. 2280–2292, 2019.

[8] A. R. Abbasi, M. R. Mahmoudi and Z. Avazzadeh, “Diagnosis and clustering of power transformer
winding fault types by cross-correlation and clustering analysis of FRA results,” IET Generation,
Transmission & Distribution, vol. 12, no. 19, pp. 4301–4309, 2018.

[9] S. B. Rodzman, S. Hasbullah, N. K. Ismail, N. A. Rahman, Z. M. Nor et al., “Fabricated and Shia
Malay translated hadith as negative fuzzy logic ranking indicator on Malay information retrieval,”
ASM Science Journal, vol. 13, no. 3, pp. 100–108, 2020.

[10] M. M. Abdulnabi, R. Hassan, R. Hassan, N. E. Othman and A. Yaacob, “A fuzzy-based buffer split
algorithm for buffer attack detection in internet of things,” Journal of Theoretical andApplied Information
Technology, vol. 96, no. 17, pp. 5625–5634, 2018.

[11] M. A. A. M. Zainuri, E. A. Azari, A. A. Ibrahim, A. Ayob, Y. Yusof et al., “Analysis of adaptive
perturb and observe-fuzzy logic control maximum power point tracking for photovoltaic boost DC–DC
converter,” International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 1.6,
pp. 201–210, 2019.

[12] Z. M. Rodzi and A. G. Ahmad, “Fuzzy parameterized dual hesitant fuzzy soft sets and its application
in TOPSIS,” Mathematics and Statistics, vol. 8, no. 1, pp. 32–41, 2020.

[13] A. M. S. Bahrin and J. M. Ali, “Hybrid fuzzy-disturbance observer for estimating disturbance in
styrene polymerization process,” IOPConference SeriesMaterials Science and Engineering, vol. 778, no. 1,
pp. 12089, 2020.

[14] E. Dodangeh, B. Choubin, A. N. Eigdir, N. Nabipour, M. Panahi et al., “Integrated machine learn-
ing methods with resampling algorithms for flood susceptibility prediction,” Science of the Total
Environment, vol. 705, 135983, 2020.

1238 CMC, 2021, vol.67, no.1

[15] B. Choubin, M. Abdolshahnejad, E. Moradi, X. Querol, A. Mosavi et al., “Spatial hazard assessment
of the PM10 using machine learning models in Barcelona, Spain,” Science of the Total Environment,
vol. 701, 134474, 2020.

[16] B. Choubin, A. Mosavi, E. H. Alamdarloo, F. S. Hosseini, S. Shamshirband et al., “Earth fissure hazard
prediction using machine learning models,” Environmental Research, vol. 179, 108770, 2019.

[17] S. Qummar, F. G. Khan, S. Shah, A. Khan, S. Shamshirband et al., “A deep learning ensemble
approach for diabetic retinopathy detection,” IEEE Access, vol. 7, pp. 150530–150539, 2019.

[18] B. Choubin, M. Borji, A. Mosavi, F. Sajedi-Hosseini, V. P. Singh et al., “Snow avalanche hazard
prediction using machine learning methods,” Journal of Hydrology, vol. 577, 123929, 2019.

[19] S. Shamshirband, E. J. Nodoushan, J. E. Adolf, A. A. Manaf, A. Mosavi et al., “Ensemble models with
uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters,”
Engineering Applications of Computational Fluid Mechanics, vol. 13, no. 1, pp. 91–101, 2019.

[20] S. M. J. Jalali, S. Ahmadian, A. Khosravi, S. Mirjalili, M. R. Mahmoudi et al., “Neuroevolution-
based autonomous robot navigation: A comparative study,” Cognitive Systems Research, vol. 62,
pp. 35–43, 2020.

[21] M. Maleki, D. Wraith, M. R. Mahmoudi and J. E. Contreras-Reyes, “Asymmetric heavy-tailed vector
auto-regressive processes with application to financial data,” Journal of Statistical Computation and
Simulation, vol. 90, no. 2, pp. 324–340, 2020.

[22] A. R. Soltani, A. R. Nematollahi and M. R. Mahmoudi, “On the asymptotic distribution of the
periodograms for the discrete time harmonizable simple processes,” Statistical Inference for Stochastic
Processes, vol. 22, no. 2, pp. 307–322, 2019.

[23] M. H. Heydari, Z. Avazzadeh and M. R. Mahmoudi, “Chebyshev cardinal wavelets for nonlinear
stochastic differential equations driven with variable-order fractional Brownian motion,” Chaos Solitons
& Fractals, vol. 124, pp. 105–124, 2019.

[24] M. Maleki, J. E. Contreras-Reyes and M. R. Mahmoudi, “Robust mixture modeling based on two-
piece scale mixtures of normal family,” Axioms, vol. 8, no. 2, pp. 38, 2019.

[25] A. R. Zarei, A. Shabani and M. R. Mahmoudi, “Comparison of the climate indices based on the
relationship between yield loss of rain-fed winter wheat and changes of climate indices using GEE
model,” Science of the Total Environment, vol. 661, pp. 711–722, 2019.

[26] M. R. Mahmoudi, M. H. Heydari and Z. Avazzadeh, “On the asymptotic distribution for the
periodograms of almost periodically correlated (cyclostationary) processes,” Digital Signal Processing,
vol. 81, pp. 186–197, 2018.

[27] M. Maleki and M. R. Mahmoudi, “Two-piece location-scale distributions based on scale mixtures
of normal family,” Communications in Statistics-Theory and Methods, vol. 46, no. 24, pp. 12356–
12369, 2017.

[28] A. R. Nematollahi, A. R. Soltani and M. R. Mahmoudi, “Periodically correlated modeling by means
of the periodograms asymptotic distributions,” Statistical Papers, vol. 58, no. 4, pp. 1267–1278, 2017.

[29] M. Maleki, R. B. Arellano-Valle, D. K. Dey, M. R. Mahmoudi and S. M. J. Jalali, “A Bayesian
approach to robust skewed autoregressive processes,” Calcutta Statistical Association Bulletin, vol. 69,
no. 2, pp. 165–182, 2017.

[30] M. R. Mahmoudi, M. Mahmoudi and E. Nahavandi, “Testing the difference between two independent
regression models,” Communications in Statistics-Theory and Methods, vol. 45, no. 21, pp. 6284–
6289, 2016.

[31] J. J. Pan, M. R. Mahmoudi, D. Baleanu and M. Maleki, “On comparing and classifying several
independent linear and non-linear regression models with symmetric errors,” Symmetry, vol. 11, no. 6,
pp. 820, 2019.

[32] M. R. Mahmoudi, M. H. Heydari and R. Roohi, “A new method to compare the spectral densities of
two independent periodically correlated time series,” Mathematics and Computers in Simulation, vol. 160,
pp. 103–110, 2019.

CMC, 2021, vol.67, no.1 1239

[33] M. R. Mahmoudi, M. H. Heydari and Z. Avazzadeh, “Testing the difference between spectral densities
of two independent periodically correlated (cyclostationary) time series models,” Communications in
Statistics-Theory and Methods, vol. 48, no. 9, pp. 2320–2328, 2019.

[34] M. R. Mahmoudi, “On comparing two dependent linear and nonlinear regression models,” Journal of
Testing and Evaluation, vol. 47, no. 1, pp. 449–458, 2018.

[35] M. R. Mahmoudi, M. Maleki and A. Pak, “Testing the equality of two independent regression
models,” Communications in Statistics-Theory and Methods, vol. 47, no. 12, pp. 2919–2926, 2018.

[36] S. Golzari, M. N. Zardehsavar, A. Mousavi, M. R. Saybani, A. Khalili et al., “KGSA: A gravitational
search algorithm for multimodal optimization based on k-means niching technique and a novel elitism
strategy,” Open Mathematics, vol. 16, no. 1, pp. 1582–1606, 2019.

[37] M. H. Heydari, A. Atangana, Z. Avazzadeh and M. R. Mahmoudi, “An operational matrix method
for nonlinear variable-order time fractional reaction-diffusion equation involving Mittag-Leffler kernel,”
European Physical Journal Plus, vol. 135, no. 2, pp. 1–19, 2020.

[38] D. Evans, J. Guttag, J. Horing, Y. M. Tan and L. CLint, “A tool for using specification to check code,”
in Proc. of ACM SIGSOFT Sym., New York, NY, USA, pp. 87–96, 1994.

[39] H. Schmitt and B. Weiß, “Inferring invariants by static analysis in KeY,” University of Karlsruhe, 2007.
[40] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco et al., “The daikon system for dynamic

detection of likely invariants,” Science of Computer Programming, vol. 69, no. 1–3, pp. 35–45, 2007.
[41] M. B. Dwyer and L. A. Clarke, “Data flow analysis for verifying properties of concurrent programs,”

ACM Transactions on Software Engineering and Methodology, vol. 13, no. 4, pp. 359–430, 1994.
[42] J. E. Cook and A. L. Wolf , “Discovering models of software processes from event-based data,” ACM

Transactions on Software Engineering and Methodology, vol. 7, no. 3, pp. 215–249, 1998.
[43] J. E. Cook and A. L. Wolf , “Event-based detection of concurrency,” ACM SIGSOFT Software

Engineering Notes, vol. 23, no. 6, pp. 35–45, 1998.
[44] R. Lencevicius, U. Hoèlzle and A. K. Singh, “Query-based debugging of object-oriented programs,” in

Proc. of Object-Oriented Programming, Systems, Languages, and Applications, pp. 1–10, 1997.
[45] J. H. Perkins and M. D. Ernst, “Efficient incremental algorithms for dynamic detection of likely

invariants,” in Proc. of Int. Conf. on Adaptive and Natural Computing Algorithms, Ljubljana, Slovenia,
pp. 381–390, 2004.

[46] P. S. Silvaa and A. C. V. Meloa, “Model checking merged program traces,” Electronic Notes in
Theoretical Computer Science, vol. 240, pp. 97–112, 2009.

[47] A. Mili, R. B. Ayed, S. Aharon and C. Nadkarni, “Harnessing a refinement theory to compute loop
functions,” Electronic Notes in Theoretical Computer Science, vol. 243, pp. 139–155, 2009.

[48] U. S. Costa, A. M. Moreira and M. A. Musicante, “Specification and runtime verification of java card
programs,” Electronic Notes in Theoretical Computer Science, vol. 240, pp. 61–78, 2009.

[49] M. D. Ernst, W. G. Griswold, Y. Kataoka and D. Notkin, “Dynamically discovering program invariants
involving collections.” Technical Report UW-CSE-99-11-02, University of Washington, 2000.

[50] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge: MIT Press, 1998.
[51] A. Moraglio, Y. H. Kim, Y. Yoon, B. R. Moon and R. Poli, “Generalized cycle crossover for graph

partitioning,” Evolutionary Computation, vol. 23, no. 6, pp. 445–474, 2006.

