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Abstract: Many approaches have been tried for the classi�cation of arrhyth-
mia. Due to the dynamic nature of electrocardiogram (ECG) signals, it is chal-
lenging to use traditional handcrafted techniques, making a machine learning
(ML) implementation attractive. Competent monitoring of cardiac arrhyth-
mia patients can save lives. Cardiac arrhythmia prediction and classi�cation
has improved signi�cantly during the last few years. Arrhythmias are a group
of conditions in which the electrical activity of the heart is abnormal, either
faster or slower than normal. It is the most frequent cause of death for both
men and women every year in the world. This paper presents a deep learning
(DL) technique for the classi�cation of arrhythmias. The proposed technique
makes use of the University of California, Irvine (UCI) repository, which con-
sists of a high-dimensional cardiac arrhythmia dataset of 279 attributes. In this
research, our goal was to classify cardiac arrhythmia patients into 16 classes
depending on the characteristics of the electrocardiography dataset. The DL
approach in the form of long short-term memory (LSTM) is an ef�cient tech-
nique to deal with reduced accuracy due to vanishing and exploding gradients
in traditional DL frameworks for big data analysis. The goal of this research
was to categorize cardiac arrhythmia patients by developing an ef�cient intel-
ligent system using the LSTM DL algorithm. This approach to arrhythmia
classi�cation includes classi�cation algorithms along with noise removal tech-
niques. Therefore, we utilized principal components analysis (PCA) for noise
removal, and LSTM for classi�cation. This hybrid comprehensive arrhythmia
classi�cation approach performs better than previous approaches to arrhyth-
mia classi�cation. We attained a highest classi�cation accuracy of 93.5%
with the DL based disease classi�cation system, and outperformed the earlier
approaches used for cardiac arrhythmia classi�cation.
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1 Introduction

Heart disease is one of the most prevalent diseases worldwide, causing signi�cant morbidity
and mortality. Heart problems have been one of the main causes of death in the last twelve
months, with more than 385,000 people dying every year due to heart disease. In the United States
alone, a heart attack occurs every 34 s [1,2]. The most prominent symptom of heart disease is
an irregular heartbeat, a condition known as cardiac arrythmia. The most commonly used tool
for analyzing the activity of the heart is the electrocardiogram (ECG), in which electrical signals
produced by the heart are recorded from electrodes placed on the body, to graphically visualize
the patterns of activity [3]. The main variables generated by ECG signals are P, Q, and QRS
complex waves. There are various fundamental parameters essential for the study of the interval,
shape, and relationships of P, Q, and QRS complex wave variables in heart disease patients. Any
sudden variation in these constraints indicates a disease of the heart which causes the heartbeat
to be inconsistent, either faster or slower than normal. Arrythmia may have any of an extensive
range of causes [4]. Arrythmia should therefore be recognized and treated as soon as possible.
Usually, arrhythmia presents with the sudden onset of a cardiac problem such as inadequate blood
�ow from the heart, insuf�ciency of breath, chest pain, exhaustion, or unconsciousness. ECG
reveals abnormal signals [5,6]. Arrhythmias fall into two broad groups, known as bradycardia and
tachycardia. The type of arrhythmia in which the heartbeat is lower than 60 beats per minute
(bpm) is known as bradycardia, while the type of arrhythmia in which the heartbeat can reach up
to 100 bpm is known as tachycardia [7]. With the development of remotely controlled healthcare
systems for cardiac disease patients, the importance of ef�cient and accurate arrhythmia classi-
�cation and detection is becoming evident. Diagnostic systems using different machine learning
(ML) methods have been developed in the past few years, to improve the accuracy of arrhythmia
classi�cation from ECG recorded signals, a non-trivial task [8]. The choice of suitable techniques
for heart disease detection and classi�cation is not easy. It involves the consideration of context,
analysis of data, and the needs of speci�c patients [9]. ML approaches use algorithms that permit
the computer to learn from experience, without explicit programming. The aim is to produce an
algorithm that can take a set of patterns and automatically generalize from early information
with or without human involvement. Unsupervised ML algorithms include cluster analysis, or
clustering. Clustering is a method for assigning observations to various groups, based on the
similarity of items in each group. Clustering algorithms have been used in several intelligent
disease diagnosis systems [10–15].

Computer-aided diagnosis (CAD) has become a major area of research. CAD uses ML
approaches to evaluate patient data, whether images or non-image data, and assess the patient’s
condition. The output can be used to assist clinicians in their decision making and can lead
to improved diagnosis [16]. Al-Antari et al. [17] developed a DL detection and classi�cation
system based on an integrated CAD system to enhance the diagnosis of breast lesions. Initially,
the DL you only look once (YOLO) real time object detector was implemented and evaluated
for breast lesion detection from full mammograms. Then, DL classi�ers, such as convolutional
neural networks (CNN), ResNet-50, and InceptionResNet-V2, were evaluated for breast lesion
classi�cation. The DL system was evaluated using �ve-fold cross-validation on two different
databases of digital X-ray mammograms. Yassin et al. [18] produced a systematic review that
aimed to evaluate the state of the art in CAD detection systems for breast cancer. Chan et al. [19]
provided a comprehensive overview of CAD systems for classifying ECG signals. CAD systems
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have bene�ts over the manual evaluation of ECG signals. Diagnosis is fast and reliable, and the
incorporation of DL techniques into CAD systems has been shown to increase the classi�cation
performance. The diagnostic accuracy of CAD systems can be improved by the use of a large
number of ECG data sample with which to train the system. Many algorithms and techniques
have been developed for data mining, particularly those using supervised ML methods. The choice
of appropriate methods has been a focus of research among researchers developing systems for
the diagnosis and classi�cation of arrhythmias.

To enhance the prediction accuracy of arrhythmia classi�cation, we propose a novel DL
approach, used with a noise removal technique. We established a novel approach to a deep learn-
ing system for classifying a patient into one of 16 categories of arrhythmia. This DL approach
for arrhythmia classi�cation has great potential in the medical industry. The classi�cation helps
to discriminate between the presence and absence of arrhythmia. The dataset used for the simu-
lation was acquired from the UCI ML arsenal, and evaluation demonstrated an enhancement in
classi�cation accuracy. The signi�cant contributions of this research are:

(1) A PCA feature selection technique built around a long short-term memory (LSTM)
DL classi�er for choosing the most relevant features, to obtain maximum multiclass
classi�cation accuracy.

(2) Obtaining meaningful information from data features to produce maximum accuracy.
(3) Identi�cation of a class imbalance problem that often arises in high dimensional datasets.
(4) A comparison of our hybrid DL and PCA approach with state-of-the-art arrhythmia

classi�cation techniques based on conventional ML approaches. The simulation results
indicate that our hybrid DL had a better classi�cation accuracy and outperformed other
advanced ML approaches.

The rest of the paper is structured as follows. In Section 2, we discuss related work and the
background of arrhythmia classi�cation. In Section 3, the research methodology and our proposed
novel approach are described. In Section 4, we present the results of simulation of our novel DL
approach. Finally, Section 5 summarizes the research and provides possible future work, before
concluding the paper.

2 Related Work

In the last two decades, numerous techniques have been proposed for ef�cient and accurate
detection and classi�cation of cardiac arrhythmia. These approaches range from simple statistical
learning to standard machine learning, to recent deep learning techniques

Existing arrhythmia classi�cations are primarily based on supervised learning algorithms.
Samad et al. [20] used a supervised ML classi�er for arrhythmia detection in his classic paper.
Decision trees (DTs), a well-known supervised algorithm, have been used for effective arrhythmia
classi�cation. Another supervised ensemble approach, known as a random forest (RF) and created
by resampling, has been shown to enhance the detection of arrhythmia [21]. Batra et al. [22] used
various ML techniques, including neural networks (NNs), DT, random forests, and support vector
machines (SVMs) for arrhythmia detection and classi�cation, after applying attribute selection
methods to ECG data. Fazel et al. [23] implemented several ML approaches, including RF, SVM,
LR, DT, and naïve Bayes (NB) to classify arrhythmias into 16 classes. Feature, or attribute,
selection algorithms are important in �elds such as ML, data mining, and pattern recognition,
particularly when using large datasets. We developed a new feature selection technique based on
vital mutual information, which was evaluated on unsupervised information [24]. To con�rm the
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effectiveness of the technique, experiments were carried out on the UCI repository dataset, using
different representative classi�cation techniques. For the choice of appropriate attributes from the
arrhythmia dataset, the new ensemble-based model is anticipated in [25], in which a subset of the
attributes from ECG data is selected, and then classi�ers are trained on each subset.

Conventional SVMs have their drawbacks, so a twin SVM technique was used by Khemchan-
dani et al. [26] for binary classi�cation. The multi-classi�cation problem has been solved using
modi�ed twin support vector machines (TSVMs) and applied to real-world problems. Guvenir
et al. [27] developed a novel technique, known as VF15, to classify arrhythmias. The VF15 algo-
rithm provides an easy and ef�cient way to estimate feature values and performs well compared to
a previous basic algorithm for arrhythmia classi�cation. In other classi�cation techniques, such as
NNs, a feature value must be substituted by a new value. The VF15 algorithm provides a proba-
bility distribution of class membership, instead of assigning cases to single categories. Elsayed [28]
applied vector quantization NNs to arrhythmia datasets for the detection and classi�cation of
arrhythmia patients. They also used a dimensionality reduction algorithm on six learning vector
quantization (LVQ) NNs to identify the presence or absence of arrhythmia. Jadhav et al. [29]
classi�ed arrhythmia patients using an arti�cial neural network on a typical 12-lead ECG dataset.
Missing values in the ECG data were managed by substituting feature values with the neighbor-
ing value from the same class. MLPs trained using backpropagation were implemented for the
classi�cation of arrhythmia. Similar work was carried out by Jadhav et al. [30], who classi�ed
arrhythmias using a generalized feed-forward neural network (GFNN). The GFNN was trained
using backpropagation and used to classify cases into normal and abnormal arrhythmia classes.
Kholi et al. [31,32] implemented an SVM classi�er for cardiac arrhythmia classi�cation, along with
four well-known approaches: One-against-one, fuzzy and Decision, one-against-all, and decision
directed acyclic graph (DDAG) algorithms. The one-against-all approach outperformed the other
approaches. Soman et al. [33] performed arrhythmia classi�cation using various ML approaches,
such as J48, NB, and OneR. The results of their simulation study show that J48 and NB
had better accuracy than the One R ML approach. Bortolan et al. [34] provided an extremely
interactive and easy-to-use environment for analysis of ECG datasets. They used self-organizing
maps (SOM) for the study of ECG signals. SOMs are valuable for identifying structure within
ECG patterns. Niazi et al. [35] developed an ef�cient hybrid approach to arrhythmia classi�cation
using SVMs and KNNs, and enhanced accuracy was attained by combining a sequential forward
search (SFS) algorithm for the selection of informative features with the F1-score.

The problem of class imbalance has attracted substantial attention from the research com-
munity [36,37]. The class imbalance problem is caused by inadequate data distribution, where
one class comprises the majority of samples, while others have fewer samples. The classi�cation
problem becomes more complex as the dimensionality of the data increases, owing to unbalanced
classes and unbounded data values. Kotsiantis et al. [38] used various ML methods to deal
with the class imbalance problem. Sonak et al. [39] also evaluated various approaches to class
imbalance issues. Most algorithms target the majority data samples, while ignoring the minority
data samples. Minority samples arise irregularly in the data, but they are persistent. Data pre-
processing algorithms and techniques for feature selection are the main methods for addressing
the unbalanced data problem, and every technique has some gains and some losses [40]. The
arrhythmia dataset has a high-dimensional imbalance problem involving missing feature values,
missing features of interest, or the presence of only cumulative data. The data tend to be noisy,
containing outliers and errors, and inconsistent, containing discrepancies in names or codes.
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To address the issue of imbalance, we employed over-sampling, in which we increased the
number of instances in the minority class by randomly duplicating them to produce more exam-
ples of the minority class in the sample. Although this approach has some risk of over�tting the
data, no information was lost, and this approach outperformed the under-sampling technique.

Although the approaches discussed above have shown reasonable accuracy in classifying
arrhythmias, it is important to make some enhancements, such as re�ning the accuracy. Therefore,
DL techniques are increasingly being used, with ANNs becoming the focus of research into
performance enhancement when solving high-dimensional data problems. DL has been used in
a variety of computationally complex problems, such as computer vision, for detection, prepro-
cessing, classi�cation, and segmentation of images. Generally, there are two essential requirements
for successful DL-based approaches: (i) Hierarchical feature illustrations and learning ability, and
(ii) The capability to handle very high-dimensional data to extract patterns. Previous methods have
used shallow as well as DL approaches [41,42].

Table 1: Overview of the state-of-the-art approaches to arrhythmia classi�cation

Reference Approach Accuracy (%) Dataset

Mustaqeem et al. [7] SVM invariants 88.12 Arrhythmia
Samad et al. [20] KNN 66.96 Arrhythmia
Samad et al. [20] DT 59.76 Arrhythmia
Fazel et al. [23] Different ML approaches 72.7 Arrhythmia
Guvenir et al. [27] VF15 62.0 Arrhythmia
Guvenir et al. [27] Naïve Bayes 50.0 Arrhythmia
Niazi et al. [35] KNN 73.80 Arrhythmia
Niazi et al. [35] SVM 68.0 Arrhythmia
Soman et al. [33] One R 61.28 Arrhythmia
Soman et al. [33] J48 74.01 Arrhythmia
Persada et al. [43] RBF 81.0 Arrhythmia
Elsayed et al. [28] LVQ NN 79.12 Arrhythmia
Jadhav et al. [30] GFNN 82.35 Arrhythmia
Kohli et al. [31,32] SVM with OAA 78.12 Arrhythmia
Bortolan et al. [34] SOM 81.1 Arrhythmia
Embrechts et al. [44] SVM with KPLS 83.0 Arrhythmia

Existing arrhythmia classi�cation approaches are largely based on conventional ML methods,
which offer less focus on precise feature selection and classi�cation. With the rapid advancement
of methods for dealing with high dimensional data, and increases in computing power, DL
techniques have been used in numerous �elds. To address these issues, we developed a novel
hybrid DL approach involving choosing maximally distinguishing features using an enhanced
feature collection technique, which is useful for boosting the performance of classi�cation of
arrhythmia data. We applied an LSTM deep learning approach for classi�cation, together with
PCA, to determine the presence or absence of arrhythmia. In these approaches, the accuracy
of classi�cation of arrhythmia can still be enhanced, and the choice of the most informative
attributes remains challenging. The life-threatening nature of arrhythmia means that prediction
and analysis must be extremely precise to be used in the medical �eld. The proposed approach
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highlights these issues by selecting several distinctive features using an improved feature selection
mechanism, which helps to improve the classi�cation performance. In this research, we propose
an arrhythmia decision system and ef�cient models relying on this approach. An overview of the
state-of-the-art approaches is given in Tab. 1.

LSTMs are extensively used in disease classi�cation, because of their ef�cacy and strength.
LSTM is a DL classi�cation technique that has been applied in numerous research projects
addressing disease classi�cation [45,46]. PCA is a well-known dimensionality reduction method,
which can handle high dimensional data. It has been used in the development of various disease
diagnosis systems, to eliminate unnecessary information present in the initial data [47,48].

3 Proposed Approach

A �ow diagram of the proposed approach to the detection and classi�cation of arrythmias is
shown in Fig. 1.

Figure 1: Flow diagram of the proposed approach to arrhythmia disease classi�cation

3.1 Disease Classi�cation Network
The arrhythmia disease classi�cation network consists of three main steps, as shown in Fig. 2.

3.1.1 Preprocess
The features in the arrythmia dataset have large numeric values, which have considerable

in�uence on classi�cation accuracy, in contrast to those features which have small numeric values.
The dataset used in this research has an inclusive numeric variation for various attributes. To
reduce the in�uence of the response variables for these types of features, data normalization was
used. The objective of data normalization is to enhance the performance of the classi�cation
model, by restricting the in�uence of the features with higher values. For data normalization,
a scaling and centering approach which increases the numeric stability of the proposed system
was used.

3.1.2 PCA
Feature selection is a method for choosing a subset of the features in the training set and

using these features in classi�cation. There are two main objectives of feature selection. The pri-
mary objective is to generate a training set which allows the classi�er to perform more effectively
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by reducing the size of the feature set. The secondary objective is to improves the classi�ca-
tion accuracy by removing noisy features from the dataset. A commonly used feature selection
method is principal components analysis (PCA), which we used in our proposed arrhythmia
classi�cation approach.

Figure 2: Disease classi�cation network

PCA is a statistical method applicable to multiclass datasets and is useful for dimensionality
reduction while retaining signi�cant information in the dataset [49–51]. PCA has four fundamental
aims. The �rst aim is to extract maximum meaningful information from data. The second is to
reduce the amount of data by keeping the most valuable information. The third aim of PCA is
to shorten the details of data to extract the maximum meaningful information from the data. The
third one is to compress the amount of data by keeping unique maximum valuable characterizing
information. The fourth aim of PCA is to reduce the amount of detail in the data. Feature
selection is useful for observing and evaluating the structure of the data; the fourth goal of the
PCA algorithm. The analysis of data is attained by transforming the data into the original class
of variables, known as principal components (PCs).

The PCs are uncorrelated and arranged in such a way that a few PCs capture the maximum
amount of variation in the dataset. The �rst PC represents the dimension with the largest varia-
tion, while the second component de�nes a dimension with the next highest variation. PCA was
selected for this research because it is appropriate to the analysis technique used. If the data are
linear and correlated, then PCA will achieve useful compression and retain the maximum amount
of the information present in the initial dataset.

There are 279 attributes in the arrhythmia dataset, and it was not possible to extract informa-
tion from all of the features. A large number of features provide limited information that is not
available to doctors evaluating the ECG report of arrhythmia patients. The arrhythmia dataset
was therefore reduced using PCA.
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3.1.3 LSTM Model
LSTM [52,53] is an improved version of RNN in which the current output depends on the

previous state. The algorithm overcomes the drawbacks of traditional RNN, in ways such as using
gradient descent when dealing with the problem of long-term dependencies [54]. LSTM has been
effective in applications such as handwriting recognition [55], natural language processing machine
translation [56], and speech recognition [57]. Conventional RNN calculates its ht recurrent hidden
state, and the yt output depends on the preceding hidden state ht− 1 as well as current xt input
as follows:

ht= (Wht− 1+Uxt) (1)

yt= (Vht) (2)

where W , U , V represent the weight metrics between the present hidden state ht and the preceding
hidden state ht − 1, current input, and output, respectively, while g(.) and f (.) represent the
element-wise activation function. Traditional RNNs can utilize information about the previous
situation, but the present output depends not just upon the previous information, but also on
the incoming context information. To overcome this issue, bidirectional RNNs were developed.
However, during training, bidirectional RNNs suffer from the vanishing and exploding problem
while processing the long-term dependencies. The vanishing and exploding problem means that
BRNN are not suitable for use in situations with longer dependencies. This is a key issue in
recurrent networks [58].

To overcome this problem a superior RNN structure was proposed, generally known as long
short-term memory (LSTM). LSTMs can manage the gradient explode and vanish issues in an
ef�cient way. All of the hidden layers of a conventional RNN are substituted by memory blocks,
which form a memory cell intended to store information, accompanied by three important gates
used to update the information. The three gates input, output, and forget are shown in Fig. 3.

Figure 3: An LSTM cell

Given an input sequence of data x= x1, x2, . . . , xT , the prediction period T , and the hidden
state of memory chunks are h = h1, h2, . . . , hT , and the output sequence is y = y1, y2, . . . , yT .
LSTM can be helpful for computing the improved hidden state as:

it= σ(Wixi+Uiht− 1+ViCt− 1) (3)

ft= σ(Wfxt+Ufht− 1+VfCt− 1) (4)

Ot= σ(WOxt+ Uoht− 1+ VoCt− 1) (5)

Ot= σ(WOxi+ Uoht− 1+ VoCt− 1) (6)
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ct̃= tan h(Wcxt +UCht− 1) (7)

Ct= f i
t � ct−1+ it� c̃t) (8)

ht= tan h(ct) (9)

where Ct is the memory cell, the input gate is denoted by i and represents the new information
added to the memory cell, the forget gate is denoted by f and handles the clearing of cell memory,
and the output gate is represented by O, and manages the amount of exposure of memory
content. The entries of gating vectors always remain within the limits (0, 1). There is a full �ow
of information when the gate value is 1, and a complete block, with no �ow of information, when
the gate value is 0. W (i; f ; o) and U (i; f ;o) are the LSTM constraints. The sigmoid activation
function and hyperbolic tangent activation function are denoted by σ (.) and tanh(.), respectively,
and element-wise multiplication is denoted by the symbol

⊙
. In this way, LSTM addresses issues

of longer dependencies.

3.2 Classi�cation of the Cardiac Arrhythmia
We classi�ed cardiac arrhythmia using the LSTM DL approach incrementally (Fig. 2). The

training information consisted of arrhythmias belonging to p categories, so for every set xi,
we have Y (xi), a group of real arrhythmias, and G (xi), a group of estimated arrhythmia
types produced by the various classi�ers. A set of labels or classes of the arrhythmia type is
speci�ed as L = {l0, l1, . . . , lM − 1}, and the accurate output vector y has N elements such that
y0, y1, . . . , yN− 1 ∈L. The performance parameters of the confusion matrix—recall, precision, F1-
value score, and the root mean squared error were evaluated. We can quantize the elements of
the confusion matrix for our multiclass cardiac arrhythmia classi�cation problem as follows:

Cij=
N−1∑
K=0

δ̂(yk− li) · δ̂(Ŷk− lj) (10)

where the delta functions δ̂(x) can be described as follows:

δ̂(x)=

{
1 if x= 0,

0 otherwise
(11)

Cij can be applied to calculate the performance constraints, including the PPVw weighted pre-
cision, TPRw weighted recall, and F1 value, (β) of the cardiac arrhythmia multiclass classi�cation
of the predicted population labels against the true population labels using the following formulas:

PPVW =
1
N

∑
l∈L

ppv (l) ·
N−1∑
i=0

δ̂(yi− l) (12)

TPRW =
1
N

∑
l∈L

TPR (l) ·
N−1∑
i=0

δ̂(yi− l) (13)

FW(β)=
1
N

∑
l∈L

·FW(β, l) ·
N−1∑
i=0

δ̂(yi− l) (14)
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where PPV (`), TPR (`), and (β) are the precision, recall, and F1 by labels, respectively. We
computed the root means square error (RMSE) using Eq. (15).

RMSE =

√∑N−1
i=0 (yi− ŷi)2

N
(15)

After completion of training, the LSTM model was used to score the test set, to compute
the estimated population set against genetic variations, and calculate the confusion matrix param-
eters for the multiclass classi�cation setting, using Eq. (10). For prediction using an LSTM, we
randomly divided the sequence data into training, testing, and validation sets including 70%,
20%, and 10% of the data, respectively. Fig. 4 shows our LSTM DL network for categorizing
arrhythmia into 16 groups. Our LSTM DL consisted of �ve LSTM, four dense layers, and an
output layer. The input signal consisted of a sequence of electrocardiography signals. The LSTM
takes an input sequence xt, at time t and measures the value of the hidden state ht.

We then trained the LSTM, which takes one sequence at every time point and produces a
prediction vector by decreasing the value of cross-entropy of the correct predictions in contrast
with the predicted distribution ŷ of N elements such that ŷ0, ŷ1, . . . , ŷN−1 ∈L. When training the
model using the LSTM DL approach with PCA, keeping the test set distinct from the validation
set allows us to train the model and learn the hyperparameters for the trained model. We made
good use of the ADADELTA learning rate technique, which automatically links the gain of
learning rate annealing as well as the training momentum, to avoid slow convergence of the LSTM
DL model.

Figure 4: Recurrent LSTM model

The three most widely used activation functions are the sigmoid, the tanh, and the ReLU
functions [59]. The sigmoid activation function takes a real number and squashes it so that it is
always between 0 and 1, as shown in Eq. (16), which shows that for negative input the output
approaches 0, whereas it becomes 1 for large positive-valued inputs.

σ (x)=
1

1+ e−x (16)
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The tanh function is slightly different from the sigmoid nonlinear activation function, as it
squashes the real input value numbers into the range between −1 and 1, as in Eq. (17).

. tanh (x)=
ex
− e−x

ex+ e−x (17)

The recti�ed linear unit (ReLU) activation function performs faster than the sigmoid and tanh
activation functions, which are nonlinear, and is valuable for eliminating the gradient problem
which occurs during training using backpropagation [60,61]. In [62] the authors showed that the
speed of training achieved by ReLU is six times that of the tanh activation function. Therefore,
we used ReLU to achieve faster training times, and to prevent the gradient effect. The ReLU was
initially employed in Boltzmann machines, and is formulated as depicted in Eq. (18).

yi =

{
xi, xi ≥ 0

0, xi < 0
(18)

ReLU was used in the DL LSTM model for improved regularization, and the drop out
possibility was �xed at a high value, 1.2 in our case, to avoid possible over�tting problems. In the
output layer, the softmax activation function was used to produce a probability distribution over
the classes.

The metrics of the confusion matrix precision, recall, F1 Score, and root mean squared error
were computed, and the LSTM DL-based approach score and accuracy were calculated.

4 Experimental Evaluation

4.1 Overview
In this section, we discuss the way in which we implemented the LSTM DL with the PCA

approach described in Section 3. First, we describe the dataset used in this study, then we demon-
strate the execution. The overall goal of the research was to achieve qualitative and quantitative
learning using an implementation of the high dimensional data analysis structure proposed in this
article. The experimental outcome based on this implementation will be described in detail in the
following section.

4.2 Description of the Dataset
The dataset used was obtained from the UCI ML Repository [27]. There are 452 instances.

Every row depicts the medical data of a different patient. The electrocardiography-associated
dataset contains 279 features, such as weight, height, and age. The main goal of our experiment
was to categorize the arrhythmia records as presence and absence in 16 distinct classes. Class 01
of arrhythmia represented the normal ECG, while classes 02 to 15 represented different abnormal
classes of arrhythmia, and class 16 represented an unlabeled category of patients. A shown in
Fig. 5 a large number of classes belong to no arrhythmia, with 245 instances belonging to class
01, and 185 instances divided among 14 various types of arrhythmia classes, with the last 22
records being uncategorized.

The major problem related to arrhythmia classi�cation was the insuf�cient amount of training
instances given the number of features. The majority of records are classi�ed as no arrhythmia,
missing feature values are around 0.33%, and feature values can be either discrete or continuous.
Overall, it is a multiclass arrhythmia classi�cation problem.
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Figure 5: Distribution of arrhythmia instances in several classes

4.3 Performance Evaluation
This section presents the experimental work on arrhythmia disease classi�cation using the

LSTM DL approach.

For comparison, experiments using other techniques published in the literature were carried
out using the same high dimensional arrhythmia dataset. The LSTM was implemented in Java
using the deep learning framework Deeplearning4j. The arrhythmia classi�cations were carried
out on a system with a 32bit core i7, 64-bit Ubuntu 12.04 OS v2.3.0, Java (JDK) 1.8, and
Deeplearning4j 1.0.1-alpha. The DL LSTM model was trained on a NVidia 1080 TitanX GPU
with CUDA and cuDNN to make the general pipeline faster. Initially, the arrhythmia dataset
contained 452 instances and 279 attributes. Due to the presence of a large proportion of missing
values (around 0.33%), as well as zero-value columns, it became essential to preprocess and rescale
the arrhythmia dataset while retaining its consistency and relevance. Consequently, those columns
and rows which contained zeros or missing values were eliminated from the initial dataset. We
also eliminated those classes which contained an irrelevant number of instances. The dataset
was reduced using PCA, to produce a dataset which contained 377 instances and 166 attributes,
separated among six classes in such a way that class 1 represented the normal ECG, classes 2
to 5 denoted various types of arrhythmia, and class 6 denoted unclassi�ed records. We used the
LSTM to classify the experimental dataset. For LSTM classi�cation, 70% of the arrhythmia data
was used for training, 20% for validation, and 10% for testing the model. To demonstrate the
classi�cation accuracy of the arrhythmia prediction, we used the confusion matrix metrics of
precision, recall, and F1 score values. These performance metrics exceeded 90% on the training
data, and about 88% accuracy on the test data. We trained the LSTM with a unique sample
every time, The LSTM therefore managed to model the long-short-term dependencies perfectly.
Based on this robustness, the LSTM outperformed the previous machine learning approaches.
Thus, using a robust LSTM network, we tried to overcome the vanishing gradients and exploding
gradients problem with truncated backpropagation through time (BPTT) during training. However,
using BPTT, it was hard to overcome the vanishing gradients and exploding gradients problem.

We therefore trained the LSTM using truncated propagation through time (TBPTT). We took
a full sequence and only used backpropagation gradients for some time steps from the selected
time block in a continuous way for many epochs. Using this approach, the LSTM managed
to model the non-linearity very well and handled very long sequences representing longer-term
dependencies. To further improve the performance, we experimented with gradient clipping, which
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helps to combat the vanishing gradients. We also used dropout, and l2 regularization, feature
scaling, and batch normalizations while training our LSTM, which helped us to avoid the regu-
larization issue. Tab. 2 illustrates the success of our LSTM DL based model with dimensionality
reduction using PCA.

Table 2: Performance metrics of deep learning models

DL approach Accuracy (%) Precision (%) Recall (%) F1-score (%)

LSTM 91.37 90.0 90.2 90.09
PCA+LSTM 93.5 92.8 90.7 91.73

Our approach produced better classi�cation accuracy than previous techniques. The average
training accuracy of our approach was more than 90%, better than the other techniques, and
was comparable with state-of-the-art approaches. Fazel et al. [23] applied various ML approaches
and attained a maximum accuracy of 72.7%. Guvenir et al. [27] established a new supervised
ML process known as VF15, and applied it to the cardiac arrhythmia dataset, achieving 62%
accuracy. Samad et al. [20] applied various ML classi�ers for the diagnosis of cardiac arrhythmias
and achieved a maximum accuracy of 66.9%. Kholi et al. [31,32] implemented a support vector
machine (SVM) classi�er for arrhythmia classi�cation and achieved a maximum accuracy of
73.4%, as shown in Tab. 3.

Table 3: Comparison of LSTM DL model with previous models using cardiac arrhythmia dataset

Method Accuracy (%)

VF15 based arrhythmia classi�cation approach [27] 62.0
Classi�er comparison [20] 66.9
Different ML approaches [23] 72.7
KNN [35] 88.2
SVM based approach [31,32] 73.8
ISSA algorithm [63] 84.22
AIRS with fuzzy [64] 80.77
Ensemble ML [65] 80.0
SVM and NB ML [66] 89.7
DL approach proposed approach 93.5

5 Conclusion and Future Work

In this research, we developed a new deep learning approach for the study of high dimen-
sional data. We implemented an LSTM DL approach for the classi�cation of arrhythmia. PCA
was used for dimensionality reduction. Our approach to high-dimensional data analysis using
DL performed better in terms of accuracy than previous ML and deep learning structures. The
arrhythmia dataset was taken from the UCI ML repository.

LSTM is useful for high dimensional data analysis, and can handle very large datasets in
small periods, with low computational complexity and high accuracy. However, there is still a
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need for further research into clustering, noise removal, and different classi�cation techniques
for arrhythmia.

In the future, we will apply LSTM with clustering and noise removal algorithms to different
domains. In the dataset used in this work, most of the instances belong to class 1 and the
other classes contain only two to three instances, so this kind of misclassi�cation probability is
maximized when using various algorithms. Class 1 has the greatest in�uence on the output of the
prediction model, so to improve predictions in future it is necessary to obtain as many instances
in the other classes as possible. The output of the algorithm would be more valuable if the
arrhythmia dataset features were grouped according to their physical similarity. For example, the
cases with abnormal P waves could be in one group, and all variables with abnormal Q waves in
another group. The performances of these approaches could then be compared.
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