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Abstract: Security is one of the major challenges that devices connected to
the Internet of Things (IoT) face today. Remote attestation is used to mea-
sure these devices’ trustworthiness on the network by measuring the device
platform’s integrity. Several software-based attestation mechanisms have been
proposed, but none of them can detect runtime attacks. Although some
researchers have attempted to tackle these attacks, the proposed techniques
require additional secured hardware parts to be integrated with the attested
devices to achieve their aim. These solutions are expensive and not suitable
in many cases. This paper proposes a dual attestation process, SAPEM, with
two phases: static and dynamic. The static attestation phase examines the
program memory of the attested device. The dynamic program �ow attestation
examines the execution correctness of the application code. It can detect
code injection and runtime attacks that hijack the control-�ow, including data
attacks that affect the program control-�ow. The main aim is to minimize attes-
tation overhead while maintaining our ability to detect the speci�ed attacks.
We validated SAPEM by implementing it on Raspberry Pi using its TrustZone
extension. We attested it against the speci�ed attacks and compared its perfor-
mance with the related work in the literature. The results show that SAPEM
signi�cantly minimizes performance overhead while reliably detecting runtime
attacks at the binary level.

Keywords: IoT; remote attestation; runtime attacks; trust; TrustZone;
security

1 Introduction

DEVICES linked to the Internet of Things are used in various contexts, including the military,
healthcare, and industry. However, it is generally known that IoT devices are restricted in terms
of resources, which combined with the connected devices’ scale, leads to privacy and security
challenges [1]. As the IoT develops, more attacks surface, and the vulnerability of these devices
to attacks becomes one of the most crucial security challenges. It is, therefore, necessary to verify
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the trustworthiness of IoT devices [2]. Remote attestation is a popular technique used to examine
the devices’ internal state remotely.

RemoteAttestation: As shown in Fig. 1, the attestation process is a challenge-response protocol
between a trusted attester known as the veri�er (Vrf) and an untrusted attested device known
as the prover (Prv) [3]. The Vrf begins the attestation process by generating a challenge (e.g.,
nonce) and sends it to the Prv. The latter performs the required function and sends the result as
a response to the Vrf. Generally, there are two categories: (i) Static Attestation and (ii) Dynamic
Attestation.

Figure 1: Remote attestation

Static attestation calculates a signature of the device’s memory contents by traversing memory
locations sequentially [4] or pseudo randomly [5]. In contrast, dynamic attestation calculates a
program behavior signature to detect runtime attacks. Different parameters are used for dynamic
signature calculations, including stack registers, a Program Counter (PC), and the executed
program code parts [2].

Regardless of whether a static or a dynamic process is used, a pivotal point in attestation
is the attestation technique’s trustworthiness. To put it another way, the Vrf must be able to
guarantee that the Prv did not tamper with the attestation program to produce a fake valid
response. This concept is called evidence acquisition. There are three types of evidence acquisition:
hardware attestation, software attestation, and hybrid attestation [3]. Hardware attestation involves
particular secure hardware parts that must be integrated into the attested device. This type of
attestation is enabled by the recent hardware technology and the arrival of the Trusted Platform
Module (TPM) [6]. Although hardware attestation is exceptionally ef�cient, adding TPM to IoT
devices is not always conceivable; furthermore, it is costly compared to software attestation.

Unlike hardware attestation, when software attestation is used, the Prv device does not have
to acquire secured hardware parts. Instead, the Prv’s physical constraints, such as the expected
time for computations, are used to provide evidence acquisition [7]. As a result, the cost of using
software attestation is signi�cantly less than using hardware attestation, not to mention the fact
that it is more convenient for embedded devices. However, existing software attestation techniques
have been proven to be vulnerable to various attacks, and therefore cannot guarantee the security
of the attested devices. The third type, hybrid attestation, lies between software and hardware
attestation. It is a software attestation that utilizes the existing trust anchors in the Prv’s device.
A famous example of these trust anchors is the TrustZone provided by ARM microcontrollers.

Attacks: Researchers have proven that existing software attestation techniques are vulnerable
to various attacks [3,7–9]. For instance, an attacker may predict the challenge and use it to
compute the correct response in advance or make changes to the attestation program to fake the
response [9]. Furthermore, an attacker may keep a copy of the original memory contents (i.e.,
either the full program or parts of it) and then redirect the memory addresses generated by the
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attestation program to this copy [7]. When there is no available space for malicious code, an
attacker may compress memory contents [8] or co-operate with other hijacked devices to divide
the original memory contents among them [3].

Another category of attacks is runtime attacks. In the past, attackers used to exploit bugs
to inject and execute malicious code in the program stack [10]. With the development of Data
Execution Preventions (DEP), it became harder to execute the code injected in the data section.
This development has led to the evolution of code reuse attacks, which are currently the most
challenging since they don not modify the original code [8,11]. Dif�cult to detect with static
attestation techniques, code reuse attacks are detectable only by dynamic attestation as the latter
attests program behavior. The most common code reuse attack is Return Oriented Programming
(ROP) [8]. In an ROP attack, the attacker uses of buffer over�ow vulnerability, searching for
small gadgets in the program ending in return statement and using them to serve the attacker’s
purposes [11]. Likewise, Jump-Oriented-Programming (JOP) attacks use gadgets ending in indirect
branches [12].

Data attacks are another widely used example of runtime attacks [13,14]. Although these
attacks only corrupt the data, they are used to execute unauthorized (but valid) paths in the
program. Pure data attacks are used to corrupt data without affecting the program execution path.

Motivation and Contribution: The existing work of embedded device attestation in the literature
has addressed several challenges:

1) Focus on static attestation, which cannot detect the runtime attacks.
2) The work in literature is either attesting memory integrity or program execution but not

both, although they complement each other, especially in the case of tracking control-�ow.
As a result, the execution of injected/replaced code that does not affect the program �ow
will not be detected.

3) Dynamic approaches cannot detect the execution of unauthorized but valid path execution.
4) High overhead due to the use of complex operations.
5) Require costly secure hardware modules (TPM) for a secured attestation.

To the best of our knowledge, the literature didn’t solve all above challenges in one design.
We propose a novel approach, SAPEM, that achieves the following:

1) Dual attestation (static and dynamic): Static attestation checks memory integration and
detects code injection attacks. Dynamic attestation checks program execution at the
binary level and detects runtime attacks. The dual attestation addresses the above
challenges 1 & 2.

2) All of the authorized program paths are represented by hash values known by the veri-
�er. Therefore, SAPEM can detect even those data attacks that lead to the execution of
unauthorized paths, although they are valid.

3) Minimized the attestation overhead by introducing an optimized approach for the hash
computation of loops and conditional branch management.

4) Minimal security hardware requirement by utilizing the TrusTzone in ARM architecture to
ensure the attestation program’s secure execution.

The next section (Section 2) provides information about the problem. The threat model is
illustrated in Section 3. Section 4 explains the design of the proposed attestation technique. Details
about implementation are provided in Section 5. The following section (Section 6) discusses the
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results, and Section 7 provides a review of different remote attestation techniques existing in the
literature. Finally, a conclusion and pathways for future research work are presented in Section 8.

2 Problem Statement

We assume a setting in which there is an IoT device (Prv) that is resource-constrained. The
IoT device is exposed to public networks. It interacts directly with the world to collect data or
control physical components. These features make it attractive targets for runtime attacks [15].
Therefore, the IoT application is vulnerable to different kinds of remote software attacks. Like any
IoT application, the Prv is collecting data and reacting to it. Hence, execution time is a crucial
aspect of Prv.

On the other side, a trusted party (Vrf) aims to perform a remote check on the IoT appli-
cation’s internal state. The Vrf already knows the valid states of that IoT application. Many
static software-based attestation techniques exist, but they can only detect attacks that change
the application code on load time [3]. Recent research has attempted to detect these attacks
using techniques that depend on extending hardware architecture. Others do not require speci�c
hardware extensions, but they slow down the performance of the IoT application. Furthermore,
most of them cannot detect control-�ow hijacks caused by pure data corruption.

In this paper, we try to detect code injection attacks and runtime attacks (see Adversary below
in this section) that hijack control-�ow while minimizing the attestation overhead using software-
based attestation in conjunction with a minimal trusted anchor. The main challenge is to minimize
attestation overhead while preserving the ability to detect the speci�ed attacks.

3 Threat Model

Device Architecture and Scheme: The Prv device considered in SAPEM has limited resources
and is equipped with a trusted anchor (i.e., ARM TrustZone), considered secure. The secure world
is isolated from the rest of the system, and it measures the SS and PFS and provides secure
storage for all the critical variables needed by SAPEM. It is protected from an attacker by design.
The normal world runs different applications and can be compromised.

The Vrf device considered in SAPEM is trusted and has powerful resources (e.g., Server).

The attestation scheme considered here is a one-to-one remote attestation where there are only
one veri�er and one prover involved in the attestation process. They communicate through SSL
to allow a secure connection. The remote attestation is initialized at random periods by the Vrf,
and the Prv will be listening for any incoming requests from the Vrf.

Adversary: We assume a remote adversary who knows memory corruption vulnerabilities,
given that the IoT application is buggy but not malicious. The attacker may have identi�ed the
security �aws by analyzing the application source code or reverse-engineering the application
binary. The attacker aims to execute a piece of code, corrupt speci�c data, or tamper with critical
outputs of the IoT application. To achieve his goal, the attacker might inject malicious code
when loading the application or reuse existing code by performing Return Oriented Programming
(ROP), Jump Oriented Programming (JOP), or function reuse attacks. However, we assume that
the attacker cannot tamper with the IoT hardware or with the �rmware running on the target.
Besides, pure data attacks (i.e., does not change the program execution path) cannot be detected
using SAPEM.
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4 Design of Dual Attestation

Fig. 2 illustrates the general steps of SAPEM. It includes two main phases: static and
dynamic. The Vrf initiates both phases. The latter sends a nonce to the Prv and asks it to run
the Static Attestation Routine (SAR). In the static phase, on the Prv side, the SAR computes a
hash of the attested application’s memory contents, called a Static Signature (SS). The Prv then
sends the current SS to the Vrf, which we assume to have previous knowledge of valid SSs forms.
Execution of the next phase is based on the received SS. An invalid SS received by the Vrf
means that the IoT application has been hijacked or corrupted, and the attestation is immediately
terminated. Otherwise, the Vrf sends another nonce to the Prv and asks it to run the Program
Flow Attestation routine (PFA). The PFA routine computes a hash (PFS) of the application’s
executed path. Finally, the Prv sends the PFS to the Vrf, which compares it to the valid PFSs
stored in its database. Further details about each phase are provided in the next sections. Tab. 1
shows the notations used to describe the proposed algorithms.

Figure 2: Design of dual attestation

4.1 Static Attestation
In this stage, the SS is computed by pseudo-randomly traversing the program memory of the

IoT Application. The traversed memory addresses are generated by Phelix [16]. Phelix is a stream
cipher with a built-in MAC known for its high speed. Like any stream cipher, it can be used as
a cryptographic PRNG. Since encryption is not our aim, we discarded the ciphertext.

Assuming that application size will not exceed (232
− 1), we �x the highest signi�cant 32 bits

and randomly generate the lowest signi�cant 32-bits of the memory address. This method will
minimize overhead compared to randomly generating a 64-bit address. Phelix uses a 32-byte key,
a 16-byte nonce, and generates a 16-byte MAC tag.

Phelix is executed as “many simple rounds” [16]. In our situation, the number of rounds (i.e.,
generated memory addresses) is initially determined by the program code’s size in terms of its total
number of memory locations. Then it is increased until it covers all program memory locations.
As a result, the �nal number of iterations is determined by trial and error.
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Table 1: Summary of notations

Notation Description

SA Source address
TA Target address
NT Node type (i.e., start/end of path, loop entry, normal node)
I Input to the hash function which contains previous hash appended

by current source and target addresses
HM Hash value of the main path
Hprev(M) Previous hash value (cumulative hash till previous node) in the main path
LDepth Loop at speci�ed Depth (e.g., L1: First nested loop)
PmLDepth The m-path of loop at the speci�ed depth
HPmLDepth Hash value of the m-path of Loop at the speci�ed depth
Hprev(PmLDepth) Previous hash value of PmLDepth

As shown in Fig. 3, in each round of Phelix, a 32-bit Pseudo Random Number (PRN) is
generated, which can be used to represent a memory address. While the �rst generated PRN is
based on a key and a nonce received from the Vrf, the generated PRN in each of the next rounds
depends on the previously visited memory address’s contents. Algorithm 1 shows the steps for
generating the SS. Basically, each round depends on �ve state words (w0, . . . ,w4), two keywords
(X0, X1), and the memory content (MemoryContent) of the previously generated address.

Figure 3: Static attestation routine (SAR)
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Algorithm 1: Generating SS1

INPUT: Rounds, Nonce, Key
OUTPUT: SS
1: Receive Nonce and Key
2: Generate the working nonce (N) based on received Nonce
3: Generate the working key (K) based on received Key
4: Initialize the �ve state words based on N and K
5: Set MemoryContent← zero
6: For n=−8 to n<=−1) //�rst eight round
7: Compute the two key words based on N and K
8: Compute the temporary �ve state words based on the previous state words and the �rst
key word
9: Compute the �nal �ve state words based on the temporary state words, the second key
word and MemoryContent
10: End for
11: For n= 0 to n<=Rounds
12: Do steps 7&8
13: Compute PRN based on state words
14: Compute MemoryAddress←PRN mod (End_addr−Start_addr)+Start_addr
15: MemoryContent← contents (MemoryAddress)
16: Do step 9
17: End for
18: SS←NULL
19: MemoryContent← size of (program) mod 4
20: For n=Rounds+ 1 to n<=Rounds+ 11
21: Do steps 7 to 9
22: Compute PRN based on state words
23: If n>Rounds+ 7 // last four rounds
24: SS← append (PRN) to SS
25: End For

Please refer to [16] for more details about generating N, K, keywords, state words and PRN.

4.2 Dynamic Attestation
This phase aims to check whether the IoT application can be executed correctly. Our PFA

routine tracks the IoT application at runtime and generates the Program Flow Signature (PFS) of
the executed path. Since we wanted to capture the attested application’s exact executed path, we
constructed our PFA minutely, working on the application binary and not the source code. It is
not practical to record every executed instruction or even their addresses because this will result
in a very long signature and will signi�cantly slow down the attested application. Therefore, we



30 CMC, 2021, vol.67, no.1

only consider the dependent program �ow instructions, computing a cumulative hash over these
instructions. The generated PFS can be authenticated using MAC, where the secure world protects
the key, and the Vrf sends the nonce.

For each node in the execution path, the hashing function H (Hprevious, N_IDcurrent) takes two
parameters as input: the previous computed hash Hprevious and the current node ID N_IDcurrent.
Thus, it will result in a cumulative hash (i.e., PFS) where any change in the execution path will
affect the PFS’s value. For the �rst node in the execution path (N1), the previous hash Hprevious
is zero. Since there are two valid paths (see Fig. 4), the �nal PFS is either H4a or H4b.

Figure 4: Simple control-�ow graph (CFG)

Among the existing cryptographic hashing functions, we chose BLAKE2b for our hashing
computation since it is speedy and has no known security issues [17].

4.2.1 Loop Management
Loops in the attested application code are another challenge because different iterations of

loops may have different execution paths. Combining these paths with the main program path
leads to a massive number of valid PFSs. Nested loops make the situation even worse. Like C-
FLAT, we used to handle this problem is by considering each loop as a new execution path instead
of combining it with the main path. In Fig. 5, when entering a loop, the main path hash is saved,
and a new path computation starts. The hash of N3 (i.e., loop entry/exit) is measured as H3b (0,
N3), and the next nodes in the loop are measured cumulatively to H3b. Besides, at the loop exit,
the hash of the loop entry/exit node N3 is cumulatively measured with the hash of the main path
H3a (H2, N3).

Unlike C-FLAT, SAPEM does not only record the total iteration count but also determines
the speci�c iteration ids for each path. Depending on the number of iterations per loop in the
attested application, we can choose whether to report the iteration ids (H, <a, b, c>), where a,
b, c represents the iteration number, or simply use the total iteration count for each path (H,
#n), where #n represents the total count of iterations for the speci�c loop path. At the loop exit,
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there will be a different number of paths. All of them, along with the main path hash, represents
the PFS.

Figure 5: Loops management

The other problem introduced by loops is the iterations. A loop might be iterated hundreds
of times. Computing the hash for each iteration, as was done in C-FLAT, degrades the attested
application’s performance signi�cantly. Even if the number of iterations is small, it still adds
unreasonable overhead. The other problem introduced by loops is the iterations. A loop might
be iterated hundreds of times. Computing the hash for each iteration, as was done in C-FLAT,
degrades the attested application’s performance signi�cantly. Even if the number of iterations is
small, it still adds unreasonable overhead. Our approach tackles this problem by measuring the
cumulative hash only the �rst time a loop path is executed. All node ids included in the path
are also stored. Thus, whenever a path is repeated (e.g., in the next iterations), the process would
simply compare the node ids instead of computing the cumulative hash for each node in the path.
In other words, a loop with two different executed paths, each of which is repeated ten times,
requires a computing hash of only two paths instead of 20 paths.
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Algorithm 2 shows the steps for generating the PFS.

Algorithm 2: Generation of the PFS
INPUT: SA, TA, NT
OUTPUT: PFS
1: Initialize blake2 input I← SA+TA
2: If NT= 1
3: Append Hprev(M) to I
4: Initialize and update HM
5: Else if NT= 2
6: Append Hprev(M) to I , Update and Finalize HM
7: Else if NT= 3
8: If Depth= 0
9: If TA 6= SA+ 4 //enter loop
10: Initialize LDepth and PmLDepth
11: Store (SA1 ,TA1) in Pm LDepth
12: Initialize and Update HPm LDepth
13: Else Append Hprev(M) to I and Update HM
14: Else if SA = SA (LDepth)
15: UpdateLoopSig ()
16: If TA 6= SA+ 4
17: InitializeIteration
18: Else FinalizeLoopSig()
19: If (Depth← Depth – 1) = 0
20: Append Hprev(M) to I and Update HM
21: Else if InSimilarPath ()
22: If CheckNode (SA, TA) 6= True
23: m=m+ 1
24: Initialize PmLDepth and Initialize HPm LDepth
25: Pm LDepth (SA1, TA1) = Psimilar LDepth (SA1, TA1)
26: Initialize and Update HPmLDepth
27: K = 2
28: Repeat till Psimilar LDepth (SAcurrent−1, TAcurrent−1)
29: PmLDepth (SAk,TAk)=PsimilarLDepth (SAk, TAk)
30: Append Hprev(PmLDepth) to I and Update HPmLDepth
31: Store (SA1 ,TA1) in Pm LDepth, Append Hprev(PmLDepth) to I

and Update HPmLDepth
32: Do Step 31
33: Else Do Step 31
34: Else if NT= 4
35: If Depth> 0
36: If InSimilarPath()
37: Do Steps 21 to 31
38: Else Do Step 31
39: Else Append Hprev(M) to I and Update HM
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4.2.2 Conditional Branch Management
We introduce a new approach for handling the interception of conditional branches. Our

approach can intercept all conditional branches rather than inferring untaken ones. Typically,
the conditional branches are preceded or combined with some comparison. Depending on the
comparison results, the process determines whether to branch to target or continue executing the
subsequent instruction. For the sake of intercepting the instruction, all branching instructions
are rewritten with link instructions, with the target address set to another address (i.e., the hook
address) in order to transfer the control to the Hook, as shown in Fig. 6. The source and the
original target addresses are stored in read-only memory.

Figure 6: Control transition

This method also allows the attestation process to intercept the conditional branch, whether
or not the original branch target will be taken.

The next step is to extract the correct target (either the target in the original branch instruc-
tion or the next instruction). Additional information is added to the branch table: mask and
masked �ags. Tab. 2 shows the mask and masked �ags for common conditional branches in
ARMv8 processors. For each different type of conditional branching, a different mask represents
the register �ags to be set by the comparison. During execution, the register �ags are ANDed with
the mask; then the result is compared with the masked �ag. In the case of a match, the process
will branch to the target address stored in the branching; otherwise, execution will continue.

5 Implementation

We implemented SAPEM on Raspberry Pi as a proof of concept. As discussed in Section
III, the measurements (i.e., hash) of the Prv’s execution path should be done in an isolated secure
environment. Prv We used Rpi3, which has ARMv8-A architecture [18] that features TrustZone-A
embedded security technology. On the other side, the Vrf is represented by a computer with a
processor speed of 2.7 GHz, 16 GB RAM, a 64-bit Intel Core i7 CPU, and Ubuntu-16.0 OS on
top of it.

We used C language to implement the SAR and the PFA. Other implementation details are
discussed in the following sub-sections.
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Table 2: Conditional branch management

Condition Affected register �ags Mask Masked �ags
N Z C V

EQ × 1 × × 0× 4 0× 4
NE × 0 × × 0× 0 0× 4
CS × × 1 × 0× 2 0× 2
HS × × 1 × 0× 2 0× 2
CC × × 0 × 0× 0 0× 2
LO × × 0 × 0× 0 0× 2
MI 1 × × × 0× 8 0× 8
PL 0 × × × 0× 0 0× 8
VS × × × 1 0× 1 0× 1
VC × × × 0 0× 0 0× 1
HI × 0 1 × 0× 2 0× 6
LS × 1 0 × 0× 4 0× 6

× 0 0 × 0× 0
× 1 1 × 0× 6

GE 1 × × 1 0× 9 0× 9
0 × × 0 0× 0

LT 1 × × 0 0× 8 0× 9
0 × × 1 0× 1

GT 1 0 × 1 0× 9 0× d
0 0 × 0 0× 0

LE 1 1 × 1 0× d 0× d
1 1 × 0 0× c
0 1 × 1 0× 5
1 0 × 0 0× 8
0 0 × 1 0× 1

5.1 The Challenge of Developing in a Trusted Execution Environment
We used OP-TEE for developing in the TrustZone. OP-TEE is an open-source platform for

the Trusted Execution Environment (TEE) provided by Open-TEE in 2014 [19]. It is built on top
of ARM Cortex-A cores as a companion to the normal world (i.e., Linux kernel) using TrustZone
technology. It implements two APIs-TEE Internal Core API and TEE Client API that complies
with the Global Platform API quali�cations. While the �rst is exposed to Trusted Applications,
the second is used to facilitate communications with a TEE.

5.1.1 OP-TEE Setup on Rpi3
Although Raspbian is the default OS for Rpi, it is not supported by OP-TEE. Instead,

OPTEE uses a Buildroot environment to build a customizable distribution of the embedded
Linux system. Setting up the environment was not a straightforward process, as we needed to
con�gure the �les to our requirements and then use Buildroot to build the kernel and the root
�le system image. Since Buildroot can build a limited Linux distribution, the resulting Linux
image did not support commands like “Sudo apt-get install.” These limitations burdened the
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development process in the OP-TEE platform. Whenever we needed to install software, we edited
the con�guration �le using “/../optee/build/common.mk” to add the software package name.

We needed to edit additional con�guration �les and �nally rebuild the system. As a result,
the software was installed and added to the image produced by Buildroot.

After con�guring the �les and building the image, we �ashed the image onto the SD card. We
used a USB-UART cable for serial communication between the PC and the Rpi to access the Rpi
system. It is important to note that the HDMI connection was not provided by OP-TEE, even
though Rpi supports it. We used a Picocom software program to open the serial port as follows:

Picocom—b 115200/dev/ttyUSB0

5.1.2 Compilation Scenarios
Due to the limitations of the Linux distribution provided by OP-TEE, compiling programs

directly on this platform is not possible. After exhaustive research, we selected two compilation
scenarios as follows:

First Scenario: Place the program source �les in the examples folder (/../optee/optee_examples)
provided by OP-TEE. It is set up to be compiled as the OP-TEE root �le system is built.
Therefore, all source �les copied to this folder (e.g., optee_examples) are automatically compiled
and placed in the right locations in the resulting root �le system image.

Second Scenario: Compile the PC programs using cross toolchains, then place the resulting
binaries in the folders (/../devel/optee/out-br) and use them with Buildroot to produce the root �le
system image. Speci�cally, the binary �le (for the normal world) is copied to (/../devel/optee/out-
br/target/usr/bin) and the other �le (for the secure world), which has a .ta extension, is copied to
(/../devel/optee/out-br/target/lib/optee_armtz). Then we built the root �le system using Buildroot.
Before building the image, previous images must be deleted from (/../devel/optee/out-br/images);
otherwise the copied �les would not be included in the next built image.

For programs that run only in the normal world, Qemu, which is a system emulator, is used
to test programs on the PC before rebuilding the OP-TEE platform to include these programs.
However, it is more complicated for programs that work in the secure world, as Qemu does not
emulate the secure world. Therefore, we had to conduct the above compilation scenarios repeatedly
when we were developing the attestation programs.

5.1.3 Running Secure World Programs
OP-TEE de�nes functions to initialize/�nalize a session, open/close a session, and run a

speci�c function in the secure world. The structure of the secure and normal world programs
should include these functions to communicate with each other. Besides, each secure world binary
has a Unique User IDenti�cation (UUID), which is used for communicating with the normal
world binary. Many online websites that can be used to generate the UUID. Consequently, the
corresponding �les that de�ne the UUID should be modi�ed to the new UUID. However, details
about exchanging the parameters or setting the UUID were not provided by OP-TEE; we had to
search for this information in the source code and header �les used to compile these programs.

5.2 Extracting and Rewriting the Branch Instructions
As we explained, tracing the execution path requires intercepting each of the control-�ow

instructions in the binary. Calling subroutines in programs that comply with ARM Architecture
Procedure Call Standard (AAPCS) are obtained through a branching with link instruction (bl)
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and a dedicated return instruction (ret). When bl is executed, the return address is saved in the
processor register (lr). When returning, ret instruction branches to the address in the lr register.
While direct branching is obtained through b, conditional branching is provided by b.cond.

We used Radare2 for extracting the information (i.e., the source address, the target address,
and the node type) of every control-�ow instruction in the binary except ret, as ret can have
a different target every time. Radare2 is an open-source reverse engineering framework used to
analyze, assemble, and disassemble binaries of many different architectures. Despite the usability
of Radare2 from the command line, it lacks some of the ARM assembly opcodes. We had to
edit the source code of Radare2 to add these opcodes. The extracted information by Radare2 was
then stored in the branching table with the mask and the masked �ags in case of conditional
branches, as shown in Tab. 2.

Besides, we used Radare2 to replace the branching instructions by <bl #hooking_address>,
where the #hook_address is different for each branching type. We replaced instructions with bl as
it allowed us to retrieve the instruction’s source address because bl instructions store the return
address, which is the current address plus 4, in the lr register. Consequently, we could extract the
lr value and subtract 4 to get the source address.

We created an automated tool for both of the above processes (e.g., extraction and replace-
ment) using Python programming language.

6 Results

In the �rst subsection, we simulate the attacks mentioned in section II and check the resulting
signatures. In the second subsection, we compare the performance of PFA with that of C-FLAT.

6.1 Attack Detection
Below, we demonstrate the effect of code injection, ROP, and data attacks on SS and PFS.

While Tab. 3 shows examples of the valid signatures collected of�ine, Tab. 4 summarizes the
received signatures of the attestation process (online).

Code Injection: we used Radare2 to inject malicious code into the binary. We changed only
one assembly instruction (less than 4 bytes) to detect the static attestation phase capability. The
change in the binary was detected by the static attestation, making the resulting SS different.

ROP: ROP attacks use the return instructions of the system’s connected gadgets. It over�ows
the stack to rewrite the target of the return instruction. Here, we simulated the effect of the
ROP to change the target address of the return instruction. The attested code contains one loop
and any functions called before entering the loop. The signature received after the ROP attack
was different from the valid one. However, only the main path signature was affected; the loop
signature was identical to the valid one. Although the simulated ROP attack redirected the return
instruction to another location (execute another instruction), it was still executed before the loop.

Data Attack on Control Flow: As we explained earlier, our goal is to detect data attacks
that hijack the control-�ow. Attacks that corrupt data without affecting the control-�ow are out
of our scope. Here, we simulated the effect of corrupting a variable relied upon by the loop
execution path. The PFA detected the deviation of the control-�ow caused by this attack. PFA
This deviation was reported in the received PFS, where only the loop path signature was different
from the original. Speci�cally, iteration three was reported in the second loop path instead of the
�rst path.
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Table 3: Valid signatures

Valid static
signature

9cc142a28bd003d9481e7a41187f5678

Valid Program
Flow
Signature

Main path:
B16937263b7a41a218cfaeecb4772f83f20
ca8d0d65616b38d0d25cc362e2a3dbaa764da938
59167c0009ca403cc2c04007a366dcc709da9eb6
0fe0761b153c Loop0:
Previous Signature:
543234756ff8eb4ee02955323f150d9d305dc4a
683a68329f552b23a9fd875e047e56553200
6fde7d81c7f94f82ad4ff600760ddc907a16055
0c6ea827245cd0
Loop Signatures:
Total Paths= 2
Path#1:
Iterations 0 1 2 3
8b79932bca2a5884add12554cb3ffc165064b
5b557ac6bedfb3773558d4fcd1f07be7f9a8417
b090259abc85ca372cc298205cde3c98a04587f0a4
7b8f7fd2bc
Path#2: Iteration 5
De5074b0c3b81f0d66b3b1ee0d08d41f3c8884
afa223845c2a703a28b85ff87f65c0157883e
3ef 661fc95fb1b5ee8bde48fefb3b34fb858ef91c33
3a539c

6.2 Performance
We compared the real execution time of our PFA to that of C-FLAT by using the Linux

command time. The time command records the time from the start of the attestation program till
completion. The recorded time does not include the communication time because the evaluation is
done on the Prv device. In this comparison, we focus on loops, as they are the most challenging
part of the PFA and the vital difference between SAPEM and C-FLAT. The execution time is
analyzed according to the number of loops, the number of decision nodes per loop, the number
of iterations, and the number of different executed paths per loop. In addition to execution time,
we also compare the signature size for both PFA and C-FLAT.

Since we aim is to measure the performance of SAPEM for IoT applications with different
complexities, we have created a testing code that doesn’t simulate a speci�c IoT functionality
but can be adjusted to represent programs with different numbers of decision nodes, loops, and
iterations. Building different kinds of IoT applications is not our aim, nor is it practical. However,
the testing code is run on a simulated IoT environment (i.e., RaspberryPi 3) that uses TrustZone.
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We looked at different open source IoT applications to choose the parameters’ values (#loops,
#decisions nodes, #iterations).

Table 4: Analysis of received signatures

Attack type Received signature

SS PFS

Code Injection Different from the valid SS Not executed
ROP Similar to the valid SS Similar loop paths signatures

including iterations, but
different main path signature

Data Attack Similar to the valid SS Similar main and loop paths
signatures, but different
iterations for each path

TheNumber of Loops: We �xed the number of decision nodes outside the loops to evaluate the
number of loops’ effect on execution time. Moreover, we repeated the same loops with each trial
to keep the same number of decision nodes and paths for each of the loops. The number of loops
was gradually increased from 0 to 40, each loop having ten iterations. As shown in Fig. 7, when
the number of loops is zero, PFA and C-FLAT have similar performance because the PFA mainly
aims to reduce the overhead caused by loops. As the number of loops is increased, the difference
between the two processes steadily increases. We also allowed for other signi�cant factors for each
loop to show the effect of changing the number of loops in isolation.

Figure 7: Execution time with various number of loops

The Number of Decision Nodes per Loop: We experimented and evaluated the effect of the
number of decision nodes in the loop based on execution time. In this experiment, we considered
only one loop with ten iterations, but the number of decision nodes in the loop varied from 2
to 36. As a result, we recorded a different number of paths for each run of the experiment. As
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expected, increasing the number of decision nodes increases the difference in the execution time
between PFA and C-FLAT (Fig. 8). It is interesting to note that execution time �uctuates slightly
for both PFA and C-FLAT simultaneously. This �uctuation is due to the changing number of
decision nodes executed in the attested binary. The X-axis in Fig. 8 represents the number of
decision nodes in the attested application source code.

Figure 8: Execution time with increasing numbers of decision nodes in the loop

The Number of Iterations: We evaluated the effect of the number of iterations on execution
time in both PFA and C-FLAT by �xing the number of decision nodes in the source code. The
evaluation was done on one loop by increasing the number of iterations �ve steps each time.
In Fig. 9, In Fig. 9, PFA’s effect compared to C-FLAT is increasing with the increased number
of iterations. In the beginning, the difference in execution time increases steadily. When more
iterations are added, the difference rate becomes less predictable because the number of paths
executed for each speci�c iteration is related to the iteration value. It is clear from Fig. 9 that
PFAthe same paths are executed for the �rst (0–25) iteration.

Figure 9: Difference of execution time between PFA and C-FLAT with various number of
iterations



40 CMC, 2021, vol.67, no.1

The Number of Different Paths Executed per Loop: The last factor we considered in our com-
parison of execution time between PFA and C-FLAT was the total number of different paths in
the loop. In Fig. 10, the difference in the execution time between PFA and C-FLAT falls as the
number of distinct paths executed in a loop increases. However, the difference is reduced because
there is also a hidden increase in the PFA’s difference PFA for the repeated paths.

Figure 10: Difference in execution time between PFA and C-FLAT with various number of paths
in loop

Figure 11: Comparison of signature size between PFA, detailed PFA, C-FLAT

The Signature Size: We also compared PFA and C-FLAT in terms of signature size. The size
for each algorithm depends on the number of loops. Besides, if a detailed PFA is needed, the
PFA signature depends on the number of iterations. While general PFA and C-FLAT signature



CMC, 2021, vol.67, no.1 41

size are calculated using Eq. (1), a detailed PFA is calculated using Eq. (2).

sz+L ∗ sz+ (Pl1+ · · ·+Pln) ∗ sz+ (Pl1+ · · ·+Pln) (1)

sz+L ∗ sz+ (Pl1+ · · ·+Pln) ∗ sz+ (Il1+ · · ·+ Iln) (2)

where sz is the main path signature size, L is the number of loops, Pln is the number of distinct
executed paths in loop n, and Iln is the number of iterations in loop n. Fig. 11 shows the
calculated signature size by setting L = 1 and Pl1 = 3. While C-FLAT and general PFA have
the same signature, a detailed PFA signature increases by only 2% in the case of 10 iterations.
However, the increment percentage is more signi�cant for 100 iterations (30%).

7 Discussion

In this section, we conduct a detailed discussion about the results for both of the evaluated
aspects: Attacks Detection and Performance. A summary is provided in Tab. 5.

Attacks: We demonstrated the effect of code injection, ROP, and data attacks that affect
control-�ow. As shown in Tab. 4, the attacks were detected and re�ected precisely in the signature
(e.g., invalid main path signature and invalid loop path count). It is important to realize that
injected malicious code that does not affect control-�ow can be detected only by static attestation.
Therefore, both attestation techniques, static and dynamic, are required to detect attacks. Other
control-�ow attacks such as JOP and Function-Reuse attacks can be detected regardless of the
method used to launch them because they all result in changing the target addresses, which affects
the control-�ow. As SAPEM intercepts each single branch instruction in the attested application,
it can detect these attacks. On the other hand, attacks that corrupt data without affecting control-
�ow can not be detected by either the static or the dynamic parts of SAPEM. Also, physical
attacks are out of our scope.

Performance: The results in Figs. 7–9 show that PFA execution time performance is strongly
linked to loops. As we increase the number of loops, iterations, or decision nodes in the loop, the
attestation overhead decreases compared with that of C-FLAT because, unlike C-FLAT, PFA does
not compute the hash for each iteration; instead, it computes the hash for the �rst appearance
of each path in the loop. When a path is repeated, the process will recognize it and compare its
current nodes to the stored nodes instead of hashing it. It is to be noted that a simple comparison
operation is less complicated than the hashing function in terms of the number of executed
instructions.

According to C-FLAT, hashing causes 80% of the incurred overhead. With this in mind, it is
plausible that as we continue to skip hashing for repeated paths, performance overhead decreases
signi�cantly compared to that of C-FLAT. However, the �rst time a distinct path appears, PFA
calculates the hash and conducts additional operations for storing nodes. This added overhead is
balanced by the reduced overhead caused by repeated paths. Consequently, with an increase in
distinct paths and a decrease in iterations or repeated executed paths, PFA’s performance degrades,
as PFA shown in Fig. 10. As a solution, we can divide the path into sub-paths categorized
according to common factors and store them separately instead of storing the whole path. As a
result, the next time a distinct path appears, the hash will not be computed for the whole path;
instead, hashing is done only for the new, different part. However, this solution does not apply to
all loop cases. For example, applying it to simple loops (i.e., loops with fewer decision nodes or
distinct paths) will negatively affect the execution time. The best case for applying this suggested
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sub-path solution is when there is a loop with many decision nodes and has a long mutual path
(i.e., a large number of sequentially executed decision nodes) between the distinct paths.

Table 5: Evaluation summary

Evaluated aspect Results

Attacks Code injection Detected by SAR.
PFA detects it only in case of diverting
control �ow.

ROP Detected by PFA.
JOP We have theoretically demonstrated

(PFA can detect it).
Function-Reuse We have theoretically demonstrated

(PFA can detect it).
Data attacks on control �ow Detected by PFA.

Performance
comparison with
C-FLAT

Number of loops PFA exceeds C-FLAT performance.
The difference in performance increases
with the increase of the number of
loops.

Number of iterations PFA exceeds C-FLAT performance.
The difference in performance increases
with the increase of the number of
iterations, but at the same time,
detailed PFS gets bigger in size.
In this case, it is suggested to use
general PFS.

Number of decision nodes in
loop

PFA exceeds C-FLAT performance.
The difference in performance increases
with the increase of the number of
decision nodes in loop.

Number of distinct paths PFA performance degrades with the
increase of the number of
distinct paths.
A suggested solution is provided.

Another point to discuss is the signature size (Fig. 11). We implemented two versions of PFA,
where the only difference was in the signature. The detailed one shows the path signatures along
with exact iteration numbers. Only in the case of a large number of iterations were signature sizes
signi�cantly increased. In these cases, we suggest using the standard PFA that shows only the total
number of iterations per path, unless details are needed.

Another notable factor is the memory used by PFA for storing the path. At �rst glance, one
might imagine that PFA uses much memory. It is not true as it stores the paths only during
loop execution, and once it exits the loop, the stored paths are discarded, meaning that the
same memory can be used for each loop. Nested loops can duplicate this effect, as the outer
loops are retained during the inner loops’ execution. However, storing a path means storing a
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group of nodes where each node is represented by 16 bytes (source and target addresses). For
example, storing 100 nodes requires only around 1.5 KB of space. As a workaround for the
IoT applications that need a large memory for storing nodes, we can store the lowest signi�cant
half of the addresses, assuming that the IoT application is not greater than (232), which is a
reasonable assumption that results in reducing the needed memory for storing nodes to half.
Memory issues can be solved by providing larger memory, but timely execution is critical for the
IoT application’s functionality.

8 Related Work

Existing remote attestation techniques can be divided mainly into two categories: Static attes-
tation and dynamic attestation. The proposed approaches in each category are further divided into
software/hybrid and hardware.

8.1 Static Attestation
Several approaches are proposed using static attestation in the literature. Seshadri et al. pro-

posed the �rst SoftWare-based ATTestation for Embedded Devices (SWATT) by pseudo-randomly
traversing memory locations [20]. Like most static attestation techniques, SWATT depends on time
constraints, making it inapplicable for multi-hop networks. Yang et al. [5] added some steps to
SWATT to make it suitable for multi-hop networks by having the relay nodes stamp the packets’
reception time before sending them to the veri�er. However, this technique is inconvenient for
hybrid networks as it assumes that all nodes have a similar time-delay. Park et al. strengthen
attestation against attacks by randomizing the hash function and using it in conjunction with
time constraints [21]. Other techniques that are time-independent rely on �lling empty memory
with noise [22,23], or using randomization, obfuscation, encryption, and self-modi�ed code [24].
While compression attacks can compromise the former technique, the latter technique is not imple-
mented. Little research focuses on detecting physical attacks either by including the checksum
of the Physical Unclonable Functions (PUFs) of the device [4] or by periodically broadcasting
a message and then examining the log of these messages [25]. Each of these has its drawback:
the �rst approach results in high false-positive rates for identifying compromised nodes, while
the second requires large storage. Another proposed attestation technique known as distributed
attestation splits the attestation process between the attested devices [26–29], where the latter
used a trusted anchor. The proposed schemes [26] have downsides, including a compromised head
cluster and large communication overhead.

While all of the above research is based on software only, others have proposed hardware-
based static attestation [30,31]. Hardware-based attestation relies on tamper-resistant hardware
such as TPM. For instance, remote attestation has been proposed for Wireless Sensor Net-
works (WSN) that requires all sensor nodes to be equipped with TPM [31]. However, TPM
and other successive techniques are more common in PCs and not suitable for IoT devices
due to their proportionately high cost [32,33]. Hybrid-based static attestation [34,35] strengthens
software-based attestation using minimal hardware trust anchors. Recent hybrid-based attesta-
tion techniques have introduced smart meters and swarm attestation (i.e., group attestation) to
tackle the scalability issue [36,37]. As an alternative to the typical two-way attestation tech-
nique (i.e., challenge-response), Song et al. [38] have introduced one-way attestation to prevent
network attacks.

Nunes et al. [39] proposed VRASED, the �rst formally veri�ed SW/HW remote attestation.
It implements a veri�ed cryptographic software and a veri�ed hardware design to assure the
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correct design and implementation of remote attestation security properties. On the contrary,
SIMPLE is a-based software-based, formally veri�ed remote attestation that uses a memory
isolation technique called Security MicroVisor (SµV) [40].

Nevertheless, given the static nature of all the above-mentioned techniques, none of them can
detect runtime attacks.

8.2 Dynamic Attestation
In contrast, dynamic attestation techniques have not been the object of many investigations.

Some authors have proposed attestation protocols [41,42] that are based on Indisputable Code
Execution (ICE) to detect compromised nodes and establish secure keys, respectively. However,
Castelluccia et al. [8] showed that adversaries could manipulate the proposed attestation’s execu-
tion in [40] without being detected. Zhang et al. [43] proposed an attestation technique that uses
data guards to surround program data and includes these data guards’ checksum in the attestation,
but it cannot detect objects’ over�ow attack blocks or array elements, nor is it effective against
string format attacks. Other schemes like property-based and semantic-based attestations were
proposed to check the program behavior [44]. While the �rst examined behavioral characteristics,
the other worked on the Java byte code level [45] to enforce local policies. While each of these
examples functions on a high level, neither could detect control-�ow attacks at the binary level.
Researchers also proposed schemes that demonstrated low-level properties of the attested applica-
tions, such as checking the integrity of functions base pointer [46] or exploring taint analysis on
return instructions provided that taint analysis causes high-performance overhead [47]. However,
these are not representative of the overall program �ow of the attested application. Furthermore,
approaches that focus only on the controller’s software integrity cannot detect attacks at the
application layer programs [48,49].

In [2], the researchers discussed the failure of existing software and hybrid attestation to detect
control-�ow attacks and suggested taking the hash of the execution path. The authors in [50]
proposed Control Flow ATtestation (C-FLAT), where the Prv response represents the executed
path at the binary level. Although C-FLAT could detect control-�ow attacks, Ahmed et al. argued
that it incurs high-performance overhead [51]. Another competing approach to C-FLAT is Do-
RA, which can detect runtime attacks based on the Data-Oriented Control Flow Graph of the
target application [52]. Unlike C-FLAT, DO-RA can detect injected malicious code that would
not change the program �ow and data-attacks that affect the actuator functionality but executing
a valid program path. However, it incurs a larger overhead than C-FLAT in terms of memory
and time. Abera et al. [53] proposed DIAT, an autonomous collaborative attestation that veri�es
data correctness using control-�ow attestation, but it only considers the modules that process these
data. On the other hand, recent hardware-based attestation techniques were proposed to undertake
signi�cant performance overhead caused by attesting and recording the control-�ow path at the
binary level [54–57]. Unfortunately, the hardware requirements required for these techniques make
them impractical solutions for IoT systems. In a similar context to dynamic remote attestation,
some enforcement techniques were proposed for preventing runtime attacks [58]. For example,
Code Pointer Integrity focuses on �nding irregular �ows in program execution, and µRAI enforces
the Return Address Integrity (RAI) property on MCUS [59,60]. Another technique called Control
Flow Integrity guarantees that the executed path is a valid one in the CFG [61,62]. However,
neither of these techniques can detect data attacks that execute unauthorized but valid CFG
paths. The proposed approach in [63] enforces the control-�ow integrity based on the application
CFG, but it only considers indirect branches. Besides, Larsen et al. proposed a technique that
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randomizes code at a low level; this makes the hijacking process more dif�cult for potential
adversaries but does not make them impossible [64].

9 Conclusion and Future Work

Many essential security threats of IoT applications can be mitigated by remote attestation.
Most of the existing remote attestation techniques are either static processes, which cannot detect
runtime attacks, or dynamic hardware-based processes, which cannot be plausibly used in the
context of IoT devices. In this research, we proposed a dual attestation where static and dynamic
attestation complements each other. Our approach, SAPEM, does not require hardware exten-
sions; instead, it utilizes trust anchors, which are increasingly used in recent microcontrollers.
While the �rst part of SAPEM (static) can detect any change in the code from its original state,
the second part (dynamic) can detect runtime attacks that hijack the control-�ow. We evaluated
SAPEM compared to C-FLAT, and our approach resulted in better coverage for attacks and
better performance at the same time.

The implementation of SAPEM was challenging due to the use of TrustZone technology.
While the platform we used (OP-TEE) provides the required environment, the development process
was complicated by insuf�cient user details and the limitations of the normal world OS supported
by OP-TEE. However, we managed these challenges through exhaustive online searches of similar
issues and digging into the source �les of the OP-TEE platform to �gure out how to perform
tasks. Our ongoing work includes the generalization of PFA’s optimization technique to functions
with similar repeated loops during program execution. PFAIn the future, we aim to use another
technique to detect pure data attacks and reduce the number of attested paths from a security
perspective. We’re planning to use binary analysis tools such as Binary Analysis Platform (BAP)
to �nd vulnerable paths and affected memory locations, signi�cantly reducing the execution time
and detecting data attacks, whether they are affecting control-�ow or not.
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