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Abstract: Breast cancer is the most frequently detected tumor that eventually
could result in a significant increase in female mortality globally. According
to clinical statistics, one woman out of eight is under the threat of breast
cancer. Lifestyle and inheritance patterns may be a reason behind its spread
amongwomen. However, some preventivemeasures, such as tests and periodic
clinical checks can mitigate its risk thereby, improving its survival chances
substantially. Early diagnosis and initial stage treatment can help increase
the survival rate. For that purpose, pathologists can gather support from
nondestructive and efficient computer-aided diagnosis (CAD) systems. This
study explores the breast cancer CADmethod relying on multimodal medical
imaging and decision-based fusion. In multimodal medical imaging fusion, a
deep learning approach is applied, obtaining 97.5% accuracy with a 2.5%miss
rate for breast cancer prediction. A deep extreme learning machine technique
applied on feature-based data provided a 97.41% accuracy. Finally, decision-
based fusion applied to both breast cancer prediction models to diagnose
its stages, resulted in an overall accuracy of 97.97%. The proposed system
model provides more accurate results compared with other state-of-the-art
approaches, rapidly diagnosing breast cancer to decrease its mortality rate.
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1 Introduction

Breast cancer is a great health threat and a significant factor in female mortality. The
occurrence of breast cancer is increasing every day. It has become the second-leading disease
due to its rapid spread among women worldwide [1]. The early diagnosis of breast cancer can
effectively mitigate its risk of mortality. It increases the ratio of life survival through proper
treatment because it is one of the most curable malignancies if detected earlier [2]. The detection
procedure for breast cancer is expensive and time-consuming. The diagnosing process depends on
the consistency and knowledge of medical examiners [3]. The two primary types of tumors are
benign (noncancerous) and malignant (cancerous). These two types are further divided into sub-
divisions and properties. Malignant is considered life-threatening, whereas benign is not typically
harmful [4]. Humans are often prone to making omissions so misdiagnosis can take the patient to
a noncurable stage. Hence, a fast and efficient computer-aided diagnosing technique can become
an assistive tool for the early and accurate detection of breast cancer. The mammogram screening
method assists the early detection of breast cancer and enables physicians to make accurate
decisions regarding breast cancer treatment [5].

In the process of breast cancer detection, computer-aided diagnosis (CAD) is an assistive
tool for early detection. The CAD techniques are effectively used in mammograms to decrease
the burden on medical experts and reduce the misdiagnosis of breast cancer [6]. Recently, arti-
ficial intelligence technology has been applied to various machine learning and computer vision
problems. The deep learning (DL) approach has been used in many scientific and engineering
applications, which have increased their performance using DL technology [7,8]. Recently a variety
of DL technologies have been successfully adopted in the medical domain in the prediction of
heart disease, infant brain [9], lung detection [10], and breast cancer classification [11].

Moreover, DL has been used for many types of cancer and has scored significant success
in breast cancer screening [12]. With the emergence of DL, various research has been conducted
by considering deep architectures, but a significant type of DL technique is the convolutional
neural network (CNN) [13]. Araujo applied a CNN to categorize breast biopsy images to diagnose
breast cancer. The accuracy of the proposed model was 83.3% for cancerous and noncancerous
detection, whereas the accuracy was 77.8% for invasiveness, carcinoma in situ, benign, and normal
tissues [14].

In another study, Yao et al. [15] presented a novel DL model to classify histological images
into four classes. This model extracted images featured by an apparent combination of a CNN
and a recurrent neural network (RNN). Afterward, the extracted features were used as input in
the RNN. The fusion method was applied to three datasets of histological images in the proposed
model. Similarly, Wang et al. opted for a CNN and hybrid CNN with a support vector machine
(SVM) model for the classification of the breast cancer histological image dataset. Considering
the above, the proposed study applied a multi-model approach and achieved 92.5% accuracy [16].

2 Literature Review

The focus of research efforts related to the prevalence of breast cancer is primarily on the
diagnosis and detection of tumors. This section of the research briefly summarizes the existing
research on breast cancer. During the last decade, research related to this topic has increased, and
various computer-based systems have been developed to overcome this challenge.

Wang et al. [17] suggested the mammogram as an essential element in CAD for early breast
cancer diagnosis and treatment. Wang et al. designed a model based on feature fusion with CNN



CMC, 2021, vol.67, no.1 1035

deep features for the detection of breast cancer. The model consists of three phases. The first
phase is the unsupervised extreme learning machine (ELM) and CNN deep features used for
mass detection. In the second phase, deep, density, texture, and morphological features are used
to create a feature set. Third, ELM classifiers are used to classify malignant and benign breast
masses using a fused feature set. The experimental results have shown that an ELM classifier has
a good capability to identify, classify, and handle multidimensional feature classification.

Chiang et al. [18] suggested a computer-aided detection system to detect tumors using a breast
ultrasound. The proposed system is based on a 3D CNN and prioritized candidate aggregation.
First, the volumes of interest are extracted using a sliding window method. Then, a 3D CNN was
used to estimate the tumor probability for each volume of interest. Those with a high estimated
probability were marked as tumor candidates, and the situation of each candidate may overlap.
For the cumulative overlap of candidates, an innovative system was designed. In the aggregation
process, tumor probability was used to form the candidate prioritization. The experimental results
for 171 tumors using the proposed model obtained sensitivities of 95% with an execution time of
less than 22 s, which demonstrates that the proposed method is faster than the existing approaches.

Agnes et al. [19] proposed a model called multiscale all CNN (MA-CNN) for the detection
of breast cancer. The CNN approach was used in the MA-CNN model to classify mammogram
images. The CNN classifier improves the performance for multiple scale features obtained from
mammogram images. The proposed MA-CNN model identifies mammographic images into benign
and malignant classes, and the experimental results proved that the proposed model is a powerful
tool for the detection of breast cancer using mammogram images.

Shen et al. [20] developed a model based on a DL algorithm for the detection of breast
cancer. The proposed model uses end-to-end training techniques to screen mammograms. Using
this approach, the system requires annotations in the initial training stage and rest stages to
require image-level labels only. The CNN was used to classify mammogram screens, and in the
breast, the dataset was used to train and evaluate the proposed model. The results reveal that
the proposed model achieved high accuracy compared with other existing work on heterogeneous
mammography. Zhou et al. [21] presented a CNN-based radionics approach to detect breast
cancer. The proposed model applies shear-wave elastography data to obtain important morphology
information and feature extraction procedures through a CNN. In the training phase, 540 images
in which 318 images were malignant and 222 were benign were used to train this model. The
experimental results indicated 95.8% accuracy, 95.7% specificity, and 96.2% sensitivity, respectively.

Qiyuan et al. [22] stated that multiparametric magnetic resonance imaging increased the
performance of radiologists in analyzing breast cancer. The proposed study used 927 images, and
a pretrained CNN model was applied for feature extraction. The SVM classifier was trained to
obtain benign and malignant images from CNN extracted features. The sequence of various levels
of feature fusion, image fusion, and classifier fusion was examined, achieving an accuracy of 95%.

Chaves et al. [23] stated that the early diagnosis of breast cancer can increase the chance of
treatment and cure patients. According to the researchers, infrared thermography is an essential
and promising technique to detect breast cancer. It was found to be low cost and less harmful
than radiation when it was applied in women of a young age. The authors applied pretrained
transfer learning CNNs to detect breast cancer on infrared images, and the dataset consisted
of 440 infrared images that were further divided into two classes, normal and pathology. The
experimental results reveal that CNN with infrared images can play a pivotal role in the early
detection of breast cancer. George et al. [24] proposed a model for the detection of breast cancer
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based on nucleus feature extraction by the CNN. The CNN approach was used to extract features
from images, and SVMs with the feature fusion technique were applied to extracted CNN features
to categorize breast cancer images. With the help of the feature fusion method, the local nucleus
features were transformed into compact image features that improve performance. The proposed
model achieved promising results with 96.66% accuracy compared with other existing approaches.

Kadam et al. [25] proposed feature ensemble learning consisting of softmax regression and
sparse autoencoders to detect breast cancer. Softmax regression and sparse autoencoders classify
tumors into benign and malignant classes. The Wisconsin breast cancer dataset in this study
and the prediction results outperform with 98.60% accuracy. Additionally, the findings were also
compared with the previous work. The statistical analysis is a useful and beneficial model for
breast tumor classification. Singh et al. [26] used an SVM classifier technique for detecting breast
cancer. The proposed method was tested on the database and achieved 92.3% accuracy with a
cubic SVM classifier.

Motivated by the previous research, the researchers focused on cloud and decision-based
fusion for an intelligent breast cancer prediction system using a hierarchical DL approach. Fur-
thermore, DL approaches have been implemented to train and evaluate the proposed model.
Moreover, this research is significant because of its approach to fusing different datasets and
concludes the results based on a fused dataset. The proposed research is also generalizable to
other datasets and will be beneficial to future researchers in the medical field, especially for the
early prediction of breast cancer.

3 Proposed CF-BCP System Model

The cloud and decision-based fusion model for an intelligent breast cancer prediction system
using hierarchical DL (CF-BCP) is proposed to provide diagnoses. The proposed CF-BCP training
model comprised two types of datasets such as image and feature based. The multimodal medical
image fusion technique was applied to the image dataset, and the preprocessing technique was
used to remove noise from the image data acquisition layer. The moving average technique was
used for handling missing values in the electronic medical record (EMR) dataset.

In the application layer, the CNN is applied for breast cancer prediction in the image dataset.
In the evaluation layer, the accuracy and miss rate of the proposed CF-BCP model was investi-
gated. For the EMR data, deep ELM (DELM) was applied for breast cancer prediction. If the
learning criteria are not met in both conditions, then the system must retrain, whereas if the
learning criteria are met, then the data are stored on the cloud, and the next step is the decision-
based fusion empowered with fuzzy logic activation. Decision-based fusion empowered with fuzzy
logic determines whether the fused images are benign or malignant. In the second training layer,
the fused malignant data are used to detect breast cancer types, such as ductal, lobular, mucinous,
and papillary carcinoma, and are also stored on the cloud, which is illustrated in Fig. 1.

After the preprocessing step, the proposed CF-BCP model imports fused data from the cloud
to predict breast cancer. If breast cancer is not detected, then the model discards the prior part. If
breast cancer is detected, then a fused database for intelligent breast cancer prediction (activation
layer) is created, and a breast cancer stage prediction model is imported from the cloud. After
the detection of breast cancer stages, the patient is referred to the hospital for further treatment,
which is presented in Fig. 2.
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Figure 1: Proposed CF-BCP training model

3.1 Convolutional Neural Network
Deep learning (DL) is a widespread technique applied in various fields ranging from lifespan

to forecasting transport, diseases, agriculture, stock markets, and so on. Moreover, DL is very
helpful in different areas due to its fast learning procedure.

The CNN involves two segments: Convolutional and pooling layers. The proposed CF-BCP
uses two CNN layers. The leading layer is used for diagnosing breast cancer, and the other layer
is used for predicting breast cancer types. Moreover, the CNN comprises three layers: The input,
hidden, and output layers. The size of the input images is transformed into 700× 460× 3, where
700×460 represents the width and height of the fused input images, and 3 represents the number
of channels. The convolutional layer can resolve more computational tasks. The purpose of this
layer is to recover features by applying filters, preserving the spatial relationships among pixels.
The pooling layer reduces the dimensions of the fused images and uses less computational time.
Two pooling layers are often used: max pooling and average pooling.

The average pooling layer is used in the proposed CF-BCP model in Fig. 3. This layer is
used to preserve the specific image features captured in the CNN procedure. Additionally, all
inputs relate to the rectified linear unit activation function that represents a fully connected layer.
Extracted data from the last layer are compiled into a fully connected layer to obtain the final
output. Finally, the convolutional layer converts it into a single flattened length and becomes a
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fully connected layer. The softmax layer is applied to transform logits into probabilities. In the
last layer of the CNN model, the accuracy values are marked.
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Figure 2: Proposed CF-BCP validation model

Figure 3: Convolutional neural network model for the proposed CF-BCP system model

In the mathematical model, the target of back prorogates using the derivative of Eq. (1) with
respect to (w.r.t.) the weights ∂A

∂t and bias ∂A
∂x :

A=−
z∑

m=1

(Wm log(wm) , (1)

where m denotes the number of classes depending on applications. The softmax transformation is
shown in Eq. (2):

wm = eCm∑k
n=1 e

CU
, (2)
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where Cm denotes the logits, which are converted into probabilities using softmax Ca =∑η

n=1

(
Tna ∗Bln

)
,

where Ca is obtained using interconnected weights with Bln.

Next, we find the loss w.r.t the weights that consist of the two summations shown in Eq. (3):

∂A

∂Tl
n,a

=
η′∑
n=1

z∑
a=1

(
∂A

∂Cl
a

∂Cl
a

∂Tl
n,a

)
, (3)

where n= 1 to k, l = 1 to z, and ∂wlm
∂Cla

= softwmax derivative (Sd). In Eq. (1), loss has wm as its

parameter, which is indirectly related to Cm in terms of the following expression: wm = eCa∑z
u=1 e

cu .

In addition, Ca=
∑η

n=1

(
Tna ∗Bln

)
is given as Cm =Ca.

Condition 1: m= a

Taking the derivative of Eq. (2), by the quotient rules, results in the following:

∂wlm
∂Cl

(m=a)
= eCm

∑z
u=1 e

CU − eCmeCa∑z
u=1 e

CU ∗∑z
u=1 e

CU
. (4)

Taking the common eCa∑z
u=1 e

CU
from Eq. (4), we obtain the following:

∂wlm
∂Cl

a
= eca∑z

u=1 eCU

[∑z
u=1 e

CU − eCa∑z
u=1 eCU

]
.

By dividing, we obtain the following:

∂wlm
∂Cl

a
= eCa∑z

u=1 e
cu

[
1− eca∑z

u=1 eCU

]
{∵m= a}.

As we know, wm = eCa∑k
n=1 e

Cu
; thus, the above equation can be further written as follows:

∂wlm
∂Cl

a
=wlm

(
1−wlm

)
=wlm

(
1−wlm

)
for(m= a). (5)

Moreover, when m!= lth unit, this indicates a low probability.

Condition 2: m �= a

Taking the derivative of Eq. (3), through quotient rules w.r.t. Cl
a, we have the following:

∂wlm
∂Cl

a
=

∂

∂Cl
a
eCm ∗∑z

u=1 e
CU − eCm ∂

∂Cl
a
[
∑z

u=1 e
CU ]∑z

u=1 eCU ∗∑z
u=1 eCU

.
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This can be written as follows:

∂wlm
∂Cl

a
= 0− eCm ∗ eCa∑z

u=1 e
CU ∗∑z

u=1 e
CU

=− eCm∑Z
u=1 eCU

∗ eCa∑z
U=1 e

CU
.

As we know, wlm = eCm∑Z
U=1 e

CU
and wla = eCa∑Z

U=1 e
CU

; thus, we can derive this equation as follows:

∂wlm
∂Cl

a
=−wlmwla for (m �= a) . (6)

We can summarize Eqs. (5) and (6) as follows:

∂wlm
∂Cl

a
=
[
wlm

(
1−wlm

)
for (m= a)

−wlmwla for (m �= a)

]
. (7)

The cross-entropy loss does not have any module of Cl
a; therefore, taking the partial derivative

of Cl
a w.r.t. log (wU ) results in the following:

A=−
z∑

m=1

(Wm ∗ log(wm)).

Taking the derivative, the equation becomes

∂A

∂Cl
a
=−

z∑
m=1

(
WU ∗ ∂

∂Cl
a
log(wU)

)
,

∂A

∂Cl
a
=−

z∑
m=1

WU

(
∂

∂wlu
log(wU)

)
∂wlU
∂Cl

a
,

∂A

∂Cl
a
=−

z∑
m=1

WU

wlu

∂wlU
∂Cl

a
, (8)

where ∂wlu
∂Cl

a
has already been calculated as shown in Eq. (7), and Eq. (8) is divided into two parts:

∂A

∂Cl
a
=−Wl

U

wlu
∗wlu

(
1−wla

)
−

z∑
u �=l

(−Wl
u

wlu
∗wluwla),

where
∑z

u�=l(−Wl
u

wlu
∗wl

uw
l
a) for u �= a, and Wl

u

wlu
∗wl

u
(
1−wl

a
)
for u= a.

We can simplify this as follows:

∂A
∂Cl

a
=−wl

u

(
1−wl

a

)
+

Z∑
u�=l

wl
uw

l
a.
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We can further simplify this:

∂A
∂Cl

a
=−wl

u+Wl
uw

l
a+

z∑
u�=l

wl
uw

l
a,

∂A

∂Cl
a
=wla

⎛
⎝wlu+∑

u �=l

wlu

⎞
⎠−wlu,

where
(
wlu+

∑
u �=lw

l
U

)
represents 1, ∂A

∂Cl
a
= (wla−wlu

)
, and ∂A

∂Cl
a
= (wla−wlu

)
, {∵ u= a}.

Then, we enter the value of ∂A
∂Cla

into Eq. (3):

∂A

∂Tl
n,a

=
η∑

n=1

z∑
a=1

(
∂A

∂Cl
a

∂Cl
a

∂Tl
n,a

)
,

∂A

∂Tl
n,a

=
η∑

n=1

z∑
a=1

(wla−wlu)b
l
n, (9)

where ∂Cl
a

∂Tln,a
= bln as input weights. Eq. (9) presents the derivative of the loss w.r.t. the weights for

the fully connected layer.

3.2 Deep Extreme Learning Machine
The DELM is a significant method that is primarily used for prediction. Fig. 4 represents

the DELM architecture that consists of an input layer, hidden layers, and output layer. In the
input layer, the various features are used as input. Six hidden layers are used in the proposed
CF-BCP model.

For the mathematical DELM, Eq. (10) presents the input layer, and Eq. (11) represents the
output of the first layer:

αi = s1+
n∑

j=1

(
βji ∗ zj

)
(10)

γi =
1

1+ e−αi
, where i= 1, 2, 3, . . . , z. (11)

The following is the feedforward propagation for the second layer to the output layer
in Eq. (12):

αlk = sk+
m∑
i=1

(
xilk=1 ∗γk=1

i

)
(12)
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Figure 4: Deep extreme learning machine (DELM) model for the proposed CF-BCP system model

The activation feature of the output layer is indicated in Eq. (13):

γlk =
1

1+ e−αk−1
l

where l= 2, 3, . . . , z, (13)

αllk = sk+
m∑
i=1

(
xilk ∗γk

i

)
where k= 1, 2, 3, . . . , 6. (14)

The error in backpropagation is written as follows in Eq. (15):

€= 1
2

∑
l

(
Targetl− γ k=6

l

)2
, (15)

where Targetl, and γ k=6
l represent the desired and calculated outputs, respectively.

Eq. (16) reflects the rate of the weight shift that is written for the output layer:

Δβ ∝− ∂€
∂β

Δγ i,lk=6 =−ε
∂€

∂γ k=6
i,l

(16)

It is written by adding the chain rule, as follows in Eq. (17):

Δγ i,lk=6 =−ε
∂€

∂γ k
l
× ∂γ k

l
∂αlk

× ∂αlk

∂γ i,lk
(17)
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After implementing the chain rule (substituting Eq. (17)), it is possible to obtain the weight
value modified as shown in Eq. (18):

Δγi,lk=6 = ε
(
Targetl−γk

l

)
×γlk

(
1−γlk

)× (γk
i

)
,

Δγ k
i,lεμlkγ

k
i , (18)

where μlk =
(
Targetl−γlk

)×γlk
(
1−γlk

)
, and so on.

Δβ j,ik ∝−
[∑

l

∂€
∂γ lk

× ∂γ lk

∂αlk
× ∂αlk

∂γ ik

]
× ∂γ ik

∂αik
× ∂αik

∂β j,ik
,

Δβ j,ik =−ε

[∑
l

∂€
∂γ lk

× ∂γ lk

∂αlk
× ∂αlk

∂γ ik

]
× ∂γ ik

∂αik
× ∂αik

∂β j,ik
,

Δβj,ik = ε

[∑
l

(
Targetl−γk

l

)
×γlk

(
1−γlk

)× (γik
)]×γlk

(
1−γlk

)× ηj,

Δβj,ik = ε

[∑
l

μlk
(
xi,lk

)]×γik(1−γik)× ηj,

Δβj,ik = εμikηj,

where μik =
[∑

lμlk
(
xi,lk

)]×γik(1−γik).

The output and hidden layers in Eq. (19) in weights are the updating and biases between
them:

x+
i,lk=6 = xi,lk=6 + δek=6Δγ i,lk=6 (19)

In Eq. (20), the weight and bias changes between the input and hidden layers are represented:

β+
j,ik = β j,ik + δekΔβ j,ik (20)

where δe is the learning rate of the BCP-DELM, and the value of δe is between 0 and 1. The
convergence of BCP-DELM depends upon the careful selection of the value of δe.

3.3 Decision-Based Fusion Empowered with Fuzzy Logic
The proposed decision-based fusion model empowered with fuzzy logic is based on knowledge,

expertise, and logical reasoning ability. The fuzzy logic model has the capacity to manage the
uncertainty and imprecision of the data using a proper method. The proposed cloud and decision-
based fusion for an intelligent breast cancer prediction system using the hierarchical DL (CF-BCP)
model mathematically is written as follows:

μCNN−Layer−1∩DELM−Layer−1 (cnn,delm)=min
[
μCNN−Layer−1 (cnn) ,μDELM−Layer−1 (delm)

]
Fig. 5 represents the decision-based fusion lookup diagram for the detection of breast cancer

and its types:
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R1
dbf = If CNN layer 1 is benign and DELM layer 1 is benign, then the breast cancer

diagnosis is benign.
R2
dbf = If CNN layer 1 is benign and DELM layer 1 is malignant, then the breast cancer

diagnosis is malignant.
R3
dbf = If CNN layer 1 is malignant and DELM layer 1 is benign, then the breast cancer

diagnosis is malignant.
R4
dbf = If CNN layer 1 is malignant and DELM layer 1 is malignant, then the breast cancer

diagnosis is malignant.

Figure 5: Proposed CF-BCP lookup diagram for decision-based fusion

Figure 6: Proposed CF-BCP model rule surface for decision-based fusion

Fig. 6 displays the output of the detection for breast cancer and its types, consisting of CNN
Layer 1 and DELM Layer 1. If CNN layer 1 is 0 to 0.45 and DELM Layer 1 is 0 to 0.45, then
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there is no chance of breast cancer, which thus presents as benign. If CNN layer 1 is benign and
DELM layer 1 is malignant, then the breast cancer is diagnosed as malignant, and in all other
conditions, malignancy is detected.

4 Proposed CF-BCP Results

The proposed cloud and decision-based fusion for an intelligent breast cancer prediction
system using a hierarchal DL (CF-BCP) model was developed for the earliest prediction of breast
cancer and its severity. Using MATLAB (2019a) simulations, the results are obtained for detection.
The proposed CF-BCP model consists of two DL approaches: The CNN and DELM. In Layer
1, the DL CNN and DELM approaches were used on 7909 and 569 fused samples, respectively.
For both approaches, 80% of the fused samples were used for training purposes, and 20% were
used for validation. The accuracy and miss rates of the proposed CF-BCP model were compared
with the other existing state-of-the-art techniques:

Accuracy=
αTi
FTi

+ αTk
FTk

αTi
FTi

+
∑z

j=1(αTj,j �=i)
FTj

+ αTk
FTk

+
∑n

l=1(αTl,l �=k)
FTk

, where i/j/k/l= 1, 2, 3, . . . , z; (21)

Miss Rate=
∑z

l=1(αTl,l �=k)
FTk∑z

l=1(αTl,l �=k)
FTk

+ αTi
FTi

, where i/k/l= 1, 2, 3, . . . , z; (22)

Average Percentage= (Percentage of CNNLayer− 1)+ (Percentage of DELMLayer− 1)
(sample size 1+ sample size 2)

× 100.

(23)

The proposed CF-BCP model diagnoses breast cancer as benign or malignant, where benign
represents no breast cancer, and malignant represents breast cancer.

Tab. 1 represents the detection of the proposed CF-BCP model for training and used 80%
fused samples. In Layer 1, the DL CNN model attained 97.81% accuracy and a 2.91% miss
rate. Moreover, DELM Layer 1 obtained 98.23% accuracy and a 1.77% miss rate. The average
performance of the proposed CF-BCP Layer 1 model achieved 97.84% accuracy and a 2.16%
miss rate.

Tab. 2 represents the detection of the proposed CF-BCP model for validation and used 20%
fused samples. In Layer 1, the DL CNN model attained 97.24% accuracy and a 2.76% miss
rate. Further, DELM Layer 1 obtained 97.18% accuracy and a 2.82% miss rate. The average
performance of the proposed CF-BCP Layer 1 model achieved 97.41% accuracy and a 2.59%
miss rate.

Tab. 3 lists the proposed CF-BCP Layer 2 for predicting breast cancer types during the
training phase. In total, 4344 fused samples (80%) were used during the training phase and were
further divided into 2761, 501, 634, and 448 fused samples of malignant T1, T2, T3, and T4,
respectively. In malignant T1, a total of 2761 fused samples were taken, in which 2747 samples
were predicted correctly as a malignant T1, and 14 fused samples were predicted incorrectly. In
malignant T2, 501 fused samples were taken, in which 485 samples were predicted correctly as a
malignant T2, and 16 fused samples were wrongly predicted. For malignant T3, 634 fused samples
were taken, in which 609 fused samples were validly predicted as a malignant T3, and 25 samples
were invalidly predicted. For malignant T4, 448 fused samples were taken, in which 432 samples
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were validly predicted as malignant T4, and 16 samples were wrongly predicted by the proposed
CF-BCP model.

Table 1: Layer 1 performance for the proposed CF-BCP (training)

(80% fused samples for training)

Approaches Accuracy (%) Miss rate (%)

CNN Layer 1 97.81 2.19
DELM Layer 1 98.23 1.77
Average
performance
proposed
CF-BCP Layer 1

97.84 2.16

Table 2: Layer 1 performance for proposed CF-BCP (validation)

(80% of fused samples for validation)

Approaches Accuracy (%) Miss rate (%)

CNN Layer 1 97.24 2.76
DELM Layer 1 97.18 2.82
Average
performance
proposed
CF-BCP Layer 1

97.41 2.59

Table 3: Layer 2 Decision matrix for the proposed CF-BCP (training)

(80% fused samples for training)

Fmalignant= 4344 αmalignant,T1 αmalignant,T2 αmalignant,T3 αmalignant,T4

Fmalignant,T1 = 2761 2747 14 0 0
Fmalignant,T2 = 501 12 485 4 0
Fmalignant,T3 = 634 0 13 609 12
Fmalignant,T4 = 448 0 0 16 432

Tab. 4 presents the proposed CF-BCP Layer 2 for the prediction of breast cancer types during
the validation phase. In total, 1085 fused samples (20%) were used during the validation phase and
were further divided into 690, 125, 158, and 112 fused samples of malignant T1, T2, T3, and T4,
respectively. In malignant T1, 690 fused samples were taken, in which 686 samples were predicted
correctly as malignant T1, and 4 fused samples were wrongly predicted. In malignant T2, 125
fused samples were taken, in which 121 samples were predicted correctly as malignant T2, and 4
fused samples were wrongly predicted. For malignant T3, 158 fused samples were taken, in which
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149 fused samples were validly predicted as malignant T3, and 9 samples were invalidly predicted.
For malignant T4, 112 fused samples were taken, in which 107 samples were validly predicted as
malignant T4, and 5 samples were wrongly predicted by the proposed CF-BCP model.

Table 4: Layer 2 decision matrix for the proposed CF-BCP (validation)

(80% fused samples for validation)

Fmalignant= 1085 αmalignant,T1 αmalignant,T2 αmalignant,T3 αmalignant,T4

Fmalignant,T1 = 690 686 4 0 0
Fmalignant,T2 = 125 3 121 1 0
Fmalignant,T3 = 158 0 5 149 4
Fmalignant,T4 = 112 0 0 5 107

Tab. 5 lists the overall performance of the proposed CF-BCP model for the training and
validation phases. The proposed CF-BCP model achieved 98.37% overall accuracy and a 1.63%
miss rate in the training phase. For the validation phase, the proposed CF-BCP model obtained
97.97% overall accuracy and a 2.03% miss rate.

Table 5: Layer 2 overall performance for the proposed CF-BCP

Overall Performance Accuracy (%) Miss rate (%)

Proposed CF-BCP training 98.37 1.63
Proposed CF-BCP validation 97.97 2.03

96.50% 97.06% 95.80% 92.30% 97.41% 97.97%

3.50% 2.94% 4.20% 7.70% 2.59% 2.03%

TF[7] SVM[7] CNN[21] CUBIC SVM[26] PROPOSED CF-
BCP LAYER-1

PROPOSED CF-
BCP LAYER-2

CONTRAST WITH THE LITERATURE

Accuracy Miss rate

Figure 7: Accuracy chart contrasted with state-of-the-art approaches for the proposed CF-
BCP model

Fig. 7 represents a contrast between state-of-the-art methods and the proposed CF-BCP
model. The proposed CF-BCP Layer 1 model achieved 97.41% accuracy for the detection of
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breast cancer, which is better than the existing approaches. The proposed CF-BCP Layer 2 model
also detects breast cancer types, which achieves 97.97% accuracy for the validation phase.

5 Conclusion

Rapidly spreading breast cancer has widely affected women’s lives. Reliable and early detection
leads to a reduction in the breast cancer death ratio. Moreover, CAD systems are highly assistive
for medical practitioners in diagnosing breast tumors. Therefore, researchers have focused on early
detection and proper treatment to increase the chances of survival. The significant contribution
of the current study is that it presents a novel detection model consisting of cloud and decision-
based fusion for an intelligent breast cancer prediction system using a hierarchical DL approach to
diagnose breast cancer. Another important contribution of the proposed CF-BCP model is that it
has great potential to diagnose different types of breast cancer. The CF-BCP model accomplishes
an accuracy of 97.41% for multimodal medical imaging fusion in detecting breast cancer phases
and 97.97% accuracy in detecting breast cancer types after decision-based fusion empowered with
fuzzy logic. The results of the proposed CF-BCP model are compared with the state-of-the-art
approaches, which demonstrates that the proposed model could greatly increase the efficiency
and productivity of medical practitioners. The suggested model is generalizable for new datasets
because of its flexible and extendable nature.
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