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Abstract: Multi-source information can be obtained through the fusion of infrared
images and visible light images, which have the characteristics of complementary
information. However, the existing acquisition methods of fusion images have
disadvantages such as blurred edges, low contrast, and loss of details. Based on
convolution sparse representation and improved pulse-coupled neural network
this paper proposes an image fusion algorithm that decompose the source images
into high-frequency and low-frequency subbands by non-subsampled Shearlet
Transform (NSST). Furthermore, the low-frequency subbands were fused by con-
volutional sparse representation (CSR), and the high-frequency subbands were
fused by an improved pulse coupled neural network (IPCNN) algorithm, which
can effectively solve the problem of difficulty in setting parameters of the tradi-
tional PCNN algorithm, improving the performance of sparse representation with
details injection. The result reveals that the proposed method in this paper has
more advantages than the existing mainstream fusion algorithms in terms of visual
effects and objective indicators.

Keywords: Image fusion; infrared image; visible light image; non-downsampling
shear wave transform; improved PCNN; convolutional sparse representation

1 Introduction

Infrared imaging sensors have a strong ability to identify low-illuminance or camouflage targets by
thermal radiation imaging of target scenes, while their imaging clarity is relatively low. Correspondingly,
visible light imaging sensors are imaged by reflection of the target scenes, with higher spatial resolution
and clarity, but their imaging quality is easily affected by factors such as harsh environment [1]. It is
believed that the fusion of infrared images and visible light images can make full use of their advantages,
which can contribute to applications in many fields such as military operations, resource detection, and
security monitoring [2].

Since the beginning of the 21st century, image fusion algorithms have rapidly developed in various fields
to achieve better results. However, most existing image fusion methods are introduced under the framework
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of multi-scale transform (MST). Furthermore, methods of image conversion [3] and fusion techniques of
separated sub-bands are two significant research topics in the field of MST-based fusion methods. A large
number of literatures have shown that the performance of MST-based fusion methods can be significantly
improved by selecting appropriate conversion methods and designing effective fusion technique.
Specifically, the NSST algorithm proposed by Xia et al. [4] is remarked as great local time domain
feature, multi-directionality and translation invariance, which can effectively save and extract details from
source images. A study conducted by Ding et al. [5] fuses high-frequency subbands by PCNN,
successfully combining important details from different source images. In addition, Singh et al. [6]
suggested to add PCNN in the NSST framework to draw the key details of source images, ignoring the
complexity of setting a large number of parameters in PCNN. Yang et al. [7] proposed an image fusion
method based on sparse representation (SR), which improves the productivity of image fusion, but it only
performs sparse representation on the low-frequency coefficients in four directions and does not fully
represent characteristics and details of source images.

Furthermore, another SR-based denoising method, which was proposed by Liu et al. [8], improves the
performance of the traditional MST-based method. However, this method still has two shortcomings, namely
the limited ability to save details and high sensitivity to registration errors. Subsequently, a CSR algorithm
was developed by Liu et al. [9], which can solve the two problems of sparse representation and achieve image
fusion by implementing sparse representation of the entire image. In the research of Chen et al. [10], an image
segmentation method based on simplified pulse coupled neural network model (SPCNN) was proposed,
which can automatically set its free parameters for better segmentation results. Based on the optimization
of the SPCNN model, Ma obtained an IPCNN for image fusion [11].

Based on the analysis of existing image fusion algorithms, especially IPCNN and CSR, this study
proposes a new image fusion algorithm, namely NSST-IPCNN-CSR, which can retain the global features
of source images and characteristics of each pixel point, and highlight the edges of the images to achieve
a better visual perception of fusion results.

2 Theoretical Basis Work

2.1 Non-subsampled Shearlet Transform (NSST)

Easley et al. [12] suggested NSST based on Shearlet transform which has no translation invariance.
NSST achieves the multi-scale decomposition of an image through the non-subsampling pyramid set
(NSP) and then obtains the coefficients of the images in various scales using the shear filter bank (SF) for
directional decomposition, thereby obtaining the coefficients of the images in different scales and
directions [13]. The NSP generates k + 1 sub images made of a low-frequency sub image and k high-
frequency sub images with the same size as the source images, where k represents the decomposition
order. In image decomposition and reconstruction, no up and down sampling is performed on the image,
and NSST not only has good frequency doIn general, non-standard acronyms/abbreviations must be
defined at their first mention in the Abstract and in the main text and used consistently thereafter. For
non-standard acronyms/abbreviations mentioned once, only the full form must be used.

Main localisation characteristics and multi-directionality, but also translation invariance for suppressing
the pseudo-Gibbs phenomenon. Fig. 1 shows the schematic of NSST multi-scale multi-directional
decomposition.

2.2 Improved PCNN (IPCNN)

Setting the size of free parameters, such as the connection strength, is a significant problem in the
traditional PCNN model. To overcome the difficulty of setting these parameters manually, Ma [11]
recently proposed an improved PCNN model (IPCNN) and an automatic parameter setting method for
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image segmentation. We believe that it has the same effect on image fusion. Furthermore, the high-
frequency coefficients obtained by applying the IPCNN model to the fusion of multiscale transform
(MST) are reasonable.

The IPCNN model is described as follows:

UijðnÞ ¼ e�auUijðn� 1Þ þ Sijð1þ b
X
kl

WijklYklðn� 1ÞÞ (1)

EijðnÞ ¼ e�aeEijðn� 1Þ þ VEYijðn� 1Þ (2)

YijðnÞ ¼ 1; if UijðnÞ > EijðnÞ
0; otherwise

�
: (3)

The improved PCNN model uses the ignition conditions of the standard PCNN model, UijðnÞ > EijðnÞ,
and retains the feedback input and link input modes of the standard PCNN model and connection strength
coefficient b which reflects the degree of influence between the domain neurons.

The working mechanism of the IPCNN model is improved compared with that of the traditional PCNN
model. In the IPCNN model, dynamic threshold EijðnÞis affected by the combination of previous state
Eijðn� 1Þ and previous state output Yijðn� 1Þ. When the internal activity item of current state UijðnÞ is
better than that of the dynamic threshold (EijðnÞ) of the current state, ignition is performed, and the
output is Yij½n� ¼ 1. The source image is defined as S. In the IPCNN model, the decay time constant of
parameter feedback auand input af is changed to the decay time constant of the internal activity item
which can more accurately express the meaning of each item in the model and further unify the
expression of this model.

The IPCNN model has four tuneable parameters, i.e., au, ae, b and VE, and a synaptic connection matrix
(W). au and ae are the exponential decay constants for the internal activity terms and the dynamic thresholds,
respectively; b is the connection strength; and VE is the magnitude of the dynamic threshold. The choice of
these parameters greatly affects the image processing.

Figure 1: Schematic of NSST multi-scale multi-directional decomposition
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The above model is mainly used in image segmentation and is effective for image fusion. Currently, b is
usually constant in many image processing applications. However, the response to regions with significant
features should be stronger than that to regions with insignificant features, depending on human visual
characteristics. Therefore, assigning b a constant value is unreasonable. Parameter b indicates the
connection strength of the neighbouring neurons in the IPCNN model. The magnitude of b indicates the
degree of interaction between neighbouring neurons. The larger the value is, the greater the interaction
between adjacent neurons will be, making the internal activity items more volatile, and vice versa. At
present, b is normally set manually by empirical value in image processing applications. To integrate
infrared visible images better, we adjust b to construct the local-direction contrast model and then apply
the model to b as follows to determine its value:

bK;rX ði; jÞ ¼ jXK;rði; jÞj
X 0
Kði; jÞ

(4)

where X indicates the source image that must be fused,
XK;rði; jÞ
X 0
k ðx; jÞ

indicates the coefficient of the ði; jÞ position
in the r sub-band at the K NSP decomposition level, and X 0

Kði; jÞ indicates the local average of the low-
frequency coefficients of image X at the Kth decomposition level and is expressed as follows:

X 0
Kði; jÞ ¼

1

M � N

XðM�1Þ=2

r¼�ðM�1Þ=2

XðN�1Þ=2

c¼�ðN�1Þ=2
X 0
Kðiþ r; jþ cÞ (5)

where M is generally assumed to be equal to N, and M × N is the area of the neighbourhood within the
centre of ði; jÞ.

2.3 Convolutional Sparse Representation (CSR)

CSR is a convolutional form of SR [9], i.e., the convolutional sum of filter dictionary and representative
response is used instead of the product of redundant dictionary and sparse coefficient, sparsely encoding the
image in the ‘entirety’ unit. The CSR model can be expressed as

argmin
xm

1

2

X
mdm � xm � s

��� ���2
2
þ�

X
m xmk k1: (6)

In Eq. (6), dmf g represents an M-dimensional convolution dictionary, � is the symbol of convolution
operation, xmf g represents the representative response, and s represents the source image. The alternating
direction method of multipliers (ADMM) is a dual convex optimisation algorithm that can solve the
convex programming problem with a separable structure by alternately solving several sub-problems.
Considering that the ADMM algorithm can solve the basis pursuit denoising problem well, the literature
[14] proposes a Fourier domain ADMM algorithm for solving the sparse convolution model. In this
algorithm, dictionary learning is defined as the optimisation problem of Eq. (7).

arg min
fdmg;fxmg

1

2

XM
m�1

dm � xm � s

�����
�����
2

2

þ�
XM
m�1

xmk k1 s:t: dmk k2 ¼ 1 (7)

In the literature [9], CSR is applied to image fusion for the first time; CSR is considered an improved
form of SR for the sparse representation of the entire picture. The CSR algorithm addresses the weak points
of traditional sparse representations with limited detail preservation capacity and high sensitivity to
registration errors. The algorithm is also useful in low-frequency sub-bands fusion. The low-frequency
sub-bands obtained by NSST decomposition represent the general description of the picture and there is
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generous with approximate value of 0, sparsely representing the low-frequency details in the image. Thus, we
introduce the CSR model in low-frequency sub-bands fusion.

3 NSST-IPCNN-CSR Algorithm

Fig. 2 shows the specific fusion framework of this work. The framework is divided into four steps: NSST
decomposition, fusion of high-frequency sub-bands, fusion of low-frequency sub-bands and NSST
reconstruction.

Step 1 NSST Decomposition

Source images A and B are disassembled by the L-level NSST model to obtain their low-frequency
coefficients LK;A;LK;B

� �
and high-frequency coefficients Hlk

A ;H
lk
B

� �
, where K is the multiscale

decomposition level, l is the decomposition order, k is the decomposition direction, and 1 � k � K.

Step 2 Fusion of High-frequency Sub-bands

The IPCNN model is used to fuse high-frequency sub-bands [15]. The normalisation coefficients of
high-frequency coefficients Hlk

A and Hlk
B are taken as the feed input, and the value of the local direction

contrast model as the joint strength according to Eq. (4). In the entire iterative process, the total emission
time is applied to measure the activity level of the high-frequency coefficients. In line with the IPCNN
model described by Eq. (1)–Eq. (3), the trigger time accumulates by adding the following steps at the end
of each iteration:

Tij½n� ¼ Tij½n� 1� þ Yij½n� (8)

The excitation time of each neuron is Tij½N �, where N is the total number of iterations, in correspondence
to high-frequency sub-bands Alk and Blk . The IPCNN times of Alk and Blk could be respectively calculated as
Tlk
ij;A½N � and Tlk

ij;B½N �. The final fusion coefficients are obtained as follows:

Figure 2: The image fusion algorithm used in this paper
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Hlk
ij;F ¼ Hlk

ij;A if T lk
ij;A � Tlk

ij;B

Hlk
ij;B otherwise

(
(9)

whereHlk
ij;F is the fusion coefficient of the high-frequency sub-bands. If Tlk

ij;A½N � is larger than Tlk
ij;B½N �, than the

pixel at ði; jÞ in image A has more obvious characteristics than the pixel at the same position in image B;
therefore, the former is chosen as the pixel in the fused image, and vice versa.

Step 3 Fusion of Low-frequency Sub-bands

The low-frequency sub-bands fusion strategy also has a significant impact on the final fusion effect.
Literature [16] fused low-frequency sub-bands with a convolutional sparse representation. Low-frequency
sub-bands are assumed after the decomposition of k source images and set as Lk , k 2 1;…:Kf g, and a
group of dictionary filters dm, m 2 1;…:Mf g is assumed. Fig. 3 shows the low-frequency sub-bands
fusion based on CSR.

Step 4 NSST reconstruction

Finally, we perform NSST reconstruction on fusion band Hl;k
F ; LF

n o
to obtain the final results (F).

4 Experiments and Analysis

4.1 Comparison Algorithms

The NSST-IPCNN-CSR algorithm is compared with five typical methods, namely, contrast Algorithm 1:
the IPCNN [15], contrast Algorithm 2: CSR [17], contrast Algorithm 3: MST [18], contrast Algorithm 4:
adaptive weighted average [19] and contrast Algorithm 5: the sparse representation and pulse coupled
neural network (SR-NSCT-PCNN) [20].

4.2 Objective Evaluation Index

The evaluation method of image fusion quality is divided into subjective visual and objective index
evaluations. Objective index evaluation selects relevant indices to measure the effect of the human visual
system on image quality perception. To quantitatively evaluate the performance of different methods, six
accepted objective fusion evaluation indices were selected in the experiment, i.e., entropy (EN), edge
information retention (QAB=F ), mutual information (MI), average gradient (AG), space frequency (SF) and
standard deviation (SD). Entropy characterises the amount of information available in the source
and fused images; edge information retention characterises the amount of edge detail information in the
source image injected into the fused image; mutual information is used to measure the information of
the fused image containing the source image; average gradient can be used to represent the sharpness
of the image, and the larger the value is, the clearer the image will be; space frequency reflects the
overall activity of the image in the space domain, and its size is proportional to the image fusion effect;
standard deviation reflects the dispersion degree of the pixel and mean values of the image, and the
greater the deviation is, the better the quality of the image will be. In general, the larger the six objective
indices are, the higher the quality of the fused image and the clearer the image will be.

Figure 3: Low-frequency coefficients fusion map
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4.3 Experimental Settings

To verify the effectiveness of the proposed method, three pairs of multi-focus images were used in our
experiments. These source images were collected from the Lytro Multi-focus Dataset and have the same
spatial resolution of 256 × 256 pixels. The source images in each pair have been accurately registered. The
experiments were conducted on a PC equipped with an Intel(R) Core(TM) i7-6700 K CPU (4.00 GHz) and
32-GB RAM. The MATLAB R2013b software was installed on a Win 7 64-bit operating system.

4.4 Image Fusion Experiment

To verify the availability of NSST-IPCNN-CSR, three sets of infrared and visible images with a pre-
registration size of 256 × 256 were selected as the experimental data. The three sets of source images
have different complexities in terms of target and scene expressions. Group 1 represents complex objects
under a single scene; Group 2 represents single object under a single scene; Group 3 represents complex
objects under a complex scene. Fig. 4 illustrates the fusion results of Group 1, and the objective
evaluation indexes are illustrated in Tab. 1.

The fusion results in Figs. 4(c)–4(h) clearly indicate that these compared methods can effectively
complete complementary information fusion from source images, but their abilities to capture feature
information vary. In Algorithm 1, the fusion results indicate that the contrast between the character and
the scene is low, the texture of the open space in the upper right image is unclear, and the details of the
visible image cannot be displayed well. In Algorithm 2, the road, the railing, the house and the tree are
enhanced in layering, but plaque shadows and unclear textures can be observed in the shrub. In
Algorithm 3, the details of the road, the railing and the house are seriously lost, resulting in the unclear

Figure 4: Group 1 image fusion results. (a) Infrared image, (b) Visible image, (c) Algorithm 1, (d)
Algorithm 2, (e) Algorithm 3, (f) Algorithm 4, (g) Algorithm 5, (h) Proposed
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road and railing edges and blurred house edges. In Algorithm 4, the bushes are not textured clearly, and the
house exhibits a clear ‘block effect’ phenomenon. The details of the house and the road in the fusion results
of Algorithm 5 are prominent, but ‘discontinuity’ can be observed in the space. In the fusion result of the
NSST-IPCNN-CSR algorithm, the grey level, the brightness and the sharpness optimally match those of
the source images, and the overall texture structure is obvious, with a desirable visual effect on human eyes.

The performance indicators in Tab. 1 clearly show that except for the MI value of Algorithm 3 that is
slightly larger than that of the proposed algorithm, the evaluation indicators of the proposed algorithm are
better than those of the contrast algorithm. Therefore, based on the subjective visual evaluation of Fig. 4,
when a single source image is targeted under a complex scene, the proposed algorithm can conserve the
serviceable parts of the source image excellently and has a good visual effect.

The fusion results of Group 2 are shown in Fig. 5, and Tab. 2 shows the objective quality
evaluation indicators.

Table 1: Group 1 image fusion quality evaluation

Index Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Proposed

EN 4.0517 4.0282 4.0615 3.9823 4.1041 4.0900

QAB=F 0.5143 0.5346 0.5298 0.4787 0.5254 0.5360

MI 3.0023 2.8809 2.9984 2.9706 2.9874 3.0006

SF 14.6939 15.3446 13.8058 15.4192 14.4752 15.5323

AG 3.0147 3.1067 2.8042 3.2054 3.1299 3.3500

SD 80.9883 82.1618 75.2150 80.1453 80.2514 83.66845

Figure 5: Group 2 image fusion results. (a) Infrared image, (b) Visible image, (c) Algorithm 1, (d)
Algorithm 2, (e) Algorithm 3, (f) Algorithm 4, (g) Algorithm 5, (h) Proposed
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Figs. 5(c)–5(h) clearly indicate that the above methods can effectively fuse the target and scene
information, but the visual qualities of the fusion images vary. In the fusion results of Algorithm 1, the
target vessel information is prominent, but the scene information is ambiguous. In Algorithm 2, the target
vessel information is prominent, but a serious ‘plaque effect’ phenomenon can be observed. In Algorithm
3, the target vessel contour is blurred, and a slight plaque can be observed on the fused image. In
Algorithm 4, the detailed information of the infrared light is displayed poorly, and the scene information
is too smooth. In Algorithm 5, the detailed features of the image are prominent, and a ‘discontinuity’
phenomenon can be observed in the space, with poor visual effects. In the NSST-IPCNN-CSR algorithm,
the target vessel information is prominent, and the background information structure features are obvious,
with a great visual effect.

The performance indicators in Tab. 2 indicate that the proposed algorithm is inferior to Algorithm 6 in
terms of edge information retention and better than other contrast algorithms in terms of the other five
evaluation indicators. The proposed algorithm has good visual effects and performance indicators
according to both subjective visual and objective quality evaluations. Furthermore, its fusion effect has
good recognisability.

The fusion results of Group 3 are shown in Fig. 6, and Tab. 3 shows the objective quality
evaluation indicators.

Figs. 6(c)–6(h) clearly show that these above methods can effectively complete infrared/visible images
fusion, but their detail expression capabilities vary. In the fusion results of Algorithm 1, the contrast of the
image is enhanced, although the target feature information is seriously lost, and the text information on the
billboard is nearly impossible to distinguish. In Algorithm 2, the contrast of the image is weak, and a slight
‘discontinuity’ phenomenon can be observed in the space. In Algorithm 3, the image contrast is enhanced,
but the details are displayed poorly. In Algorithm 4, the detailed information of the infrared images cannot be
displayed well, and the scene information is too smooth. In Algorithm 5, the overall image contrast is low, the
edge of the target object is blurred, and the loss of detail feature information is serious. In the fusion results of
the NSST-IPCNN-CSR algorithm, the layering of the image is enhanced, the continuity is good, the edge
contour texture is clear, and the text information on the billboard can be recognised well.

Table 2: Group 2 image fusion quality evaluation

Index Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Proposed

EN 3.9316 3.9679 3.7630 3.6839 3.4823 4.1168

QAB=F 0.4014 0.4658 0.4498 0.4259 0.5258 0.5229

MI 2.3989 2.3035 2.0672 2.1004 2.5013 2.6125

SF 14.3286 13.8573 12.5285 14.3802 14.0444 14.3964

AG 1.9178 2.1681 1.9889 2.0086 2.1984 2.2038

SD 80.8648 78.1969 69.5874 76.4313 75.1665 82.3444
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5 Conclusion

We propose the application of a new algorithm called NSST-IPCNN-CSR to medical image fusion. The
novelty of the proposed algorithm is primarily reflected in two aspects. First, IPCNN model was used for the
first time in high-frequency sub-band fusion in which all required parameters could be calculated adaptively
in line with the input high-frequency sub-bands. Moreover, local direction contrast model was used to adjust
parameter b to its optimal value, and the IPCNN model was adjusted to function better in image fusion.
Second, we fused low-frequency sub-bands by convolutional sparse representation, addressing two
matters in sparse representation, i.e., the insufficient ability to save detail texture information and the high
sensitivity to mismatch rate, and performing better in low-frequency sub-bands fusion. Three sets of
source images and five sets of comparison algorithms were used for experiments. The results demonstrate

Figure 6: Group 3 image fusion results. (a) Ir, (b) Vis, (c) Algorithm 1, (d) Algorithm 2, (e) Algorithm 3, (f)
Algorithm 4, (g) Algorithm 5, (h) Proposed

Table 3: Group 3 image fusion quality evaluation

Index Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Proposed

EN 4.0126 4.0759 3.9987 3.9877 4.0471 4.1127

QAB=F 0.3092 0.3246 0.2817 0.3069 0.3152 0.3298

MI 2.0173 2.0670 1.6193 1.9268 2.0422 1.9631

SF 17.8036 18.8823 16.1936 18.4813 17.8701 19.4959

AG 3.6322 3.6872 2.6455 3.9938 3.7297 4.0747

SD 89.0343 94.3662 88.5036 84.8876 89.3010 102.8309
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that the NSST-IPCNN-CSR algorithm can effectively express the details in the image, i.e., presenting the
required details clearly and making smooth edges; retain the useful information of the source image and
capture its geometric structure at a deeper level; and perform well in visual perception and objective
effect evaluation.
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