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Abstract: In order to improve performance and robustness of clustering, it
is proposed to generate and aggregate a number of primary clusters via
clustering ensemble technique. Fuzzy clustering ensemble approaches attempt
to improve the performance of fuzzy clustering tasks. However, in these
approaches, cluster (or clustering) reliability has not paid much attention
to. Ignoring cluster (or clustering) reliability makes these approaches weak
in dealing with low-quality base clustering methods. In this paper, we have
utilized cluster unreliability estimation and local weighting strategy to propose
a new fuzzy clustering ensemble method which has introduced Reliability
Based weighted co-association matrix Fuzzy C-Means (RBFCM), Reliability
Based Graph Partitioning (RBGP) and Reliability Based Hyper Clustering
(RBHC) as three new fuzzy clustering consensus functions. Our fuzzy cluster-
ing ensemble approach works based on fuzzy cluster unreliability estimation.
Cluster unreliability is estimated according to an entropic criterion using the
cluster labels in the entire ensemble. To do so, the new metric is de�ned
to estimate the fuzzy cluster unreliability; then, the reliability value of any
cluster is determined using a Reliability Driven Cluster Indicator (RDCI). The
time complexities of RBHC and RBGP are linearly proportional with the
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number of data objects. Performance and robustness of the proposed method
are experimentally evaluated for some benchmark datasets. The experimental
results demonstrate ef�ciency and suitability of the proposed method.

Keywords: Fuzzy clustering ensemble; cluster unreliability;
consensus function

1 Introduction

Data mining [1–24] involves many tasks. One of the most important tasks in data mining
is clustering [25–29]. According to different similarity criteria implemented by various clustering
algorithms in the context of unsupervised learning, different objective functions are targeted [30].
According to “no free lunch” theory, there is no dominant clustering method [22,23]. There-
fore, the idea of combining clustering, which is also called cluster (or clustering) ensemble,
emerged. In a clustering ensemble, some of the basic partitions are combined to acquire a better
solution capable of managing all objectives of different partitions which sometimes are contra-
dictory [28–30]. Cluster ensemble offers many advantages, among which the following can be
mentioned: robustness to noise [29], capability of producing novel results [31–33], quality enhance-
ment [29], knowledge reusability [30], multi-view clustering [33], stability, parallel/distributed data
processing [30], �nding number of real clusters, adaptability and heterogeneous data clustering.

The process of clustering ensemble consists of two related phases as shown in Fig. 1a.
The �rst phase includes production of the diverse base clusterings through the basic clustering
algorithm (s), and the second phase involves extracting the �nal clustering from the primary basic
partitions using a consensus function. To improve the performance of the clustering ensemble in
the �rst phase, a special attention should be paid to the ensemble diversity which determines the
quality of the combination. If the quality of each voter is greater than a random voter, the quality
of the combination is improved by increasing the ensemble diversity, where the combination can
be any community like the ensemble clustering [33]. There are many approaches, which are used in
production of primary basic partitions in order to acquire the desired diversity, such as: Different
initializations of parameters [30], heterogeneous ensemble clustering methods [28], different subsets
of the features [30], different subsets of objects [28], projection of the object subsets [28] and
hybrid methods. In our proposed method, a basic clustering algorithm is implemented with
different parameters to achieve the desired diversity. In the second phase, a consensus function
is utilized to achieve the �nal clustering. Selection of the clusters with high quality is an NP
hard problem because clustering is an unsupervised problem [33]. Several consensus functions are
proposed to face this issue, each of which uses a speci�c approach and different information
from the primary basic partitions achieved from phase one, and sometimes considers the initial
characteristics of the data. Consensus ensemble methods are divided into the following classes:
1. intermediate space clustering ensemble methods [28], 2. methods based on the co-association
matrix [33], 3. hyper-graph based methods [30], 4. expectation maximization clustering ensemble
methods [32], 5. mathematical modeling (median partition) approaches [34], and 6. voting-based
methods [35].

There are two types of clustering algorithms: (a) First, hard clustering algorithms in which
a data object either is de�nitely assigned to a cluster or is not assigned to it at all and (b)
Second, fuzzy clustering algorithms in which there are some data points that are not allocated to
a speci�c cluster but they are allocated to all clusters with different membership degrees (for a
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data point, the summation of all membership degrees to all clusters should be one). The basis of
fuzzy clustering algorithms is the basic fuzzy c-means (FCM) clustering algorithm [36].

(a) (b)

Figure 1: (a) The general procedure of a clustering ensemble method, and (b) The proposed
approach steps

Although soft (or fuzzy) clustering has more generality than crisp clustering, researches in
soft clustering are in early stages and fuzzy clustering ensemble approaches have not been widely
developed. Fuzzy clustering ensembles are proposed by a few researchers, (e.g., Punera et al. [37]
have proposed soft versions of Cluster-based Similarity Partitioning Algorithm (CSPA), Meta
CLustering Algorithm (MCLA) and Hybrid Bipartite Graph Formulation (HBGF) which are
respectively named soft CSPA (sCSPA), soft MCLA (sMCLA) and soft HBGF (sHBGF)) but
crisp clustering has more maturity. Some of the existing fuzzy clustering ensemble methods convert
fuzzy clusters to hard clusters through some existing simple methods and then the hard consensus
functions are used to compute the �nal partition. This conversion causes the loss of uncertainty
information. This loss of uncertainty information causes some challenges in suggesting an ef�cient
fuzzy consensus clustering from multiple fuzzy basic partitions.

Consensus process is highly dependent on the quality of the primary partitions so that the
low-quality or even noisy primary partitions could adversely affect it. Improving performance of
the consensus functions through quality-evaluation and weighting of the primary partitions is
attended to confront with low-quality primary partitions based on the implicit assumption that all
clusters have the same reliability value in the same base clustering [38]. This is usually performed
by assigning a weight to each primary partition, which is considered to be an individual as a
whole, without caring about the quality of its clusters. We have to confront different reliability
values of clusters in the same clustering because real-world datasets are inherently complex and
noisy. In some methods, it is needed to have access to the data features such as what was proposed
by Zhong et al. [33]. Their method has investigated the reliability values of the clusters using
the Euclidean distances between objects of the clusters and its ef�ciency is highly dependent
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on the distribution of the data in the dataset. However, in a clustering ensemble in its general
formulation, we assume that we have not access to the original data features.

In this work, according to estimation of ensemble driven cluster unreliability and local weight-
ing strategy, a new approach of fuzzy clustering ensemble is proposed as shown in Fig. 1b. In
order to increase the consensus performance, a locally weighted plan is achieved by integrating
the validity and unreliability of the cluster. An entropic criterion is used to estimate unreliability
of any fuzzy cluster based on relation of the cluster acceptability to the entire ensemble. The new
metric is de�ned to estimate the fuzzy cluster unreliability and then the reliability values of the
clusters are determined using an index named RDCI. Each cluster is assessed and weighted by its
RDCI which evaluates the cluster using an effective indication provided by the crowd of diverse
clusters in the ensemble. Then, a fuzzy weighted co-association matrix with the calculated weights
based on the reliability, incorporates local acceptability into the conventional co-association (Co)
matrix and is treated as a summary for the ensemble of diverse clusters. After that, new consensus
algorithms are proposed to achieve the �nal clustering. The new consensus algorithms include:
(a) RBFCM and (b) RBGP which consider cluster reliabilities, and (c) RBHC which considers
cluster pairwise acceptability.

The main contributions of the paper are summarized as follows. (I) We estimate an unreliabil-
ity value per a fuzzy cluster in relation to other clusterings through the proposed method utilizing
an entropic criterion. The entropic criterion considers only distribution of membership degrees
of all objects to each primary fuzzy cluster while the access to the original data features is not
needed; it has also no assumptions on data distribution. (II) The primary fuzzy clusters in the
ensemble are assessed and weighted by proposing an RDCI which results in providing a reliability
indication at the cluster-level with a contribution to the local weighting plan. (III) A new approach
for fuzzy co-association matrix computation in the fuzzy cluster ensemble is proposed. (IV) New
consensus functions are proposed to construct the �nal clustering according to estimation of the
reliability–driven fuzzy cluster unreliability and local weighting strategy. (V) Finally, the derived
experimental results demonstrate the performance and robustness superiority of the proposed
fuzzy clustering ensemble approach to the state-of-the-art approaches.

The rest of the paper is organized as follows. In Section 2, the related literature is reviewed.
Section 3 provides the background knowledge about entropy and clustering ensemble. The pro-
posed approach of fuzzy clustering ensemble is described in Section 4 based on the cluster
unreliability estimation and local weighting strategy. The experimental results are provided in
Section 5, and �nally the paper is concluded in Section 6.

2 Related Work

Some of the most important ensemble clusterings include k means-based consensus cluster-
ing [28], spectral ensemble clustering [39] and in�nite ensemble clustering [40]. The following works
are also considered to be important researches in fuzzy clustering ensemble: sCSPA and sMCLA
introduced in [37] as the fuzzy extension versions of CSPA and MCLA are proposed in [30].
sHBGF is also proposed as a fuzzy version of HBGF [31].

To extract the �nal fuzzy clustering out of a fuzzy clustering ensemble, an explicit objective
function is proposed in [41] based on the new contingency matrix. In order to accurately and
ef�ciently extract the �nal clustering in this approach which is a parallelizable algorithm and
capable of being used for big data clustering, a �exible utility function is employed to change
fuzzy consensus clustering into a weighted piecewise FCM-like iterative.
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Vote-based merging algorithm (VMA) as a fuzzy clustering ensemble method which was
proposed in [42], calculated the �nal clustering based on the membership matrix averaging in each
clustering. Since all the base clusters in this method have to be relabeled, VMAs would be among
time-consuming algorithms. An information theoretic kmeans (ITK) was introduced by Dhillon
et al. [43].

In [34], the clusters labels are shown as a 0–1 bit string where the goal is to obtain the �nal
fuzzy clustering which is a membership matrix any of whose members shows the membership
degree of a data object to a cluster. Accordingly, they introduce the Fuzzy String Objective Func-
tion (FSOF) which tries to minimize the summation of distances between centers of the initial
clusters and the �nal clusters. Since the �nal clustering was fuzzy, some constraints were added
to the objective function which created a non-linear optimization NP problem. They employed a
genetic algorithm for its solution. Note that it is applicable while the base clusterings are crisp.
Two consensus functions, i.e., Fuzzy String Cluster Ensemble Optimized by Genetic Algorithm
numbers 1 and 2 (FSCEOGA1 and FSCEOGA2), were also proposed based on cross-over and
mutation operators.

In order to enhance the stability of the fuzzy cluster analysis, a heterogeneous clustering
ensemble has been proposed [44] in which basic fuzzy clustering algorithms are �rst utilized and
then, �nal clustering is obtained using a FCM algorithm so that all clusters in the co-association
matrix have equal participation weights. To achieve the consensus clustering from fuzzy clustering
ensembles, a voting mechanism is used in [35]. The work includes disambiguation and voting
procedures. Disambiguation is a phase in which Hungarian algorithm [45] with time complexity

of O
(

n3
)

(n is (average) number of clusters in each clustering) is used for re-labeling problem.

The voting phase is implemented to achieve the �nal consensus clustering. There are many voting
phases such as con�dence-based voting methods (including sum voting rule and product voting
rule) and positional-based voting methods (including Borda voting rule and Copeland voting rule).
Time complexity of these voting rules is O (nMβ) where n, M and β are (average) number of the
clusters in each clustering, number of data objects and number of base clusterings respectively.
There exist many different consensus functions depending on direct or repetitive combination of
re-labeling and voting phases.

According to the particle swarm optimization (PSO) which has the capability of �nding fuzzy
and crisp clusters [46,47], a method for construction of a fuzzy clustering ensemble is proposed
in [46]. It creates initial clusters through parameter change; and then, using pruning process,
n′ clusters are chosen from the β initial clusterings so that n′ � c where c is the number of
the clusters in all of the β initial clusterings. For pruning process, one of the internal cluster
validity indices such as Ball–Hall, Caliński et al. [48], Dunn index [49], Silhouette index [50] or
Xie-Beni [51] is selected to evaluate the �tness of primary basic clusters; and then, one of the
genetic selection mechanisms such as tournament or roulette wheel is used to choose the elite
clusters. Final clustering is subsequently achieved by use of the consensus function through PSO
algorithm. Unlike other PSO-based methods in which each particle represents a clustering, each
particle represents a cluster in this method.

3 Preliminaries

Through the following de�nitions, we introduce the general formulation of data, fuzzy clus-
tering ensemble and entropy in this paper. Note that the notations implemented in this work are
presented here. An object (or data point) is a tuple denoted by xi =

(
x1

i , x2
i , . . .xN

i

)
. It is also a
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vector where xj
i represents the j-th attribute from i-th data. Also, xj

: is de�ned as j-th attribute
of dataset, N =

∣∣x :
1

∣∣ denotes size of the dataset dimensions (i.e., quantity of the attributes), and

M =
∣∣xi

:

∣∣ shows the dataset size (i.e., quantity of the data points). π (x) is a M× n matrix which

represents the fuzzy partition de�ned on dataset x, where M =
∣∣x1

:

∣∣ and n is an integer indicating
the number of clusters, and we have Eq. (1).

∀j ∈ {1, . . . , n} , i ∈ {1, . . . , M} : π (xi)
j
∈ [0, 1] (1)

∀i ∈ {1, . . . , M} :
n∑

j=1

π (xi)
j
= 1

where π (xi)
j shows a real number indicating how much i-th data object belongs to the j-th cluster

in partition π which is π = {C1, C2, . . . , Cn}. 5 denotes a clustering ensemble which includes β
primary partitions, i.e., 5=

{
π1, . . . ,πβ

}
in which πm

=
{
Cm

1 , . . . , Cm
nm

}
where, πm represents the

m-th primary partition in 5, Cm
i and nm are the i-th cluster and the number of the clusters

in πm respectively. The set of all clusters in the ensemble is denoted by C and de�ned as

C =
{

C1
1 , . . . , C1

n1 , . . . , Cβ

1 . . . , Cβ

nβ

}
where Cj

i is the i-th cluster of the partition π j. Therefore, the

number of all clusters in the base clusterings is denoted by c and is de�ned as c= n1
+ . . .+ nβ .

Let’s assume that z is a discrete random variable. The entropy is a measure of the unreliability
related to a random variable. For a discrete random variable z whose domain, i.e., the set of the
values for z, is denoted by Z, it is de�ned according to Eq. (2).

H (z)=−
∑
z′εZ

ρ
(
z= z′

)
log2 ρ

(
z= z′

)
(2)

where ρ
(
z= z′

)
is the probability mass function of z and 0 log20 is always assumed to be 0 here.

H (z, w) is the joint entropy as a measure of the unreliability associated with a set of two discrete
random variables z and w. It is de�ned according to Eq. (3).

H (z, w)=−
∑
z′∈Z

∑
w′∈W

ρ
(
z= z′, w=w′

)
log2 ρ

(
z= z′, w=w′

)
(3)

where ρ (z, w) is the joint probability of two discrete random variables z and w. When z and w
are independent random variables, the joint entropy is H (z, w)=H (z)+H (w). Thus, for q inde-
pendent random variables z1, z2, . . . , zq, the joint entropy is de�ned according to H

(
z1; . . . ; zq

)
=∑q

q′=1 H
(
zq′
)
.

4 Proposed Approach

Block diagram of the proposed method is presented in Fig. 1b in which a new approach
of fuzzy clustering ensemble is proposed based on estimation of the ensemble driven cluster
unreliability and local weighting strategy. The proposed algorithm includes the following stages.
First, we compute the acceptability of each cluster. Then, the unreliability of each cluster is
estimated and after that weight of each cluster is determined. Next, the weighted co-association
matrix is produced and �nally, the consensus clustering is achieved.
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4.1 Cluster Acceptability Computation
According to Fig. 1b and Eq. (4), the acceptability of each cluster over other clusters is

computed which is equivalent to the computation of agreement probability between two clusters
in different clusterings. Acceptability computation of cluster Cs

i (cluster Ci ∈ π
s) over the cluster

Cr
j (cluster Cj ∈ π

r), when s 6= r is performed using Eq. (4).

ρ
(

Cs
i , Cr

j

)
= 1−

∑M
t=1

∣∣(π s (xt)
i
−π r (xt)

j)∣∣
M

(4)

4.2 Cluster Unreliability Estimation
As depicted in Fig. 1b, the next stage in the algorithm is unreliability estimation of the

clusters. Using the entropy concept, as a measure for discrete random variables, unreliability
is computed to be applied to the cluster labels in reliability computation of the clusters. It is
a reasonable strategy because there is not information about original data features and their
distribution. If cluster Ci does not belong to the base clustering π r

∈5 exactly, then, the clustering
π r will partition the cluster; this means that the membership degree of data objects of Ci, is
different from their membership degree in all clusters of π r and the clustering π r may not accept
the membership degree of Ci data objects. Therefore, depending on how the data objects of Ci
are clustered in π r, the unreliability (or entropy) of Ci with regards to π r is estimated by entropy
concept presented by Eq. (2). Unreliability of the cluster Cs

i (i.e., the i-th cluster in s-th clustering)
with respect to clustering π r of the ensemble 5 where s 6= r, is acquired using Eq. (5).

υ
(
Cs

i ,π r)
=

−
∑nr

j=1 ρ̇
(

Cs
i , Cr

j

)
log2 ρ̇

(
Cs

i , Cr
j

)
log2 nr (5)

where ρ̇
(

Cs
i , Cr

j

)
is the probability vector obtained according to ρ̇

(
Cs

i , Cr
j

)
=

ρ
(

Cs
i ,Cr

j

)
∑nr

t=1 ρ(C
s
i ,Cr

t )
and the

term log2 nr is added to guarantee that υ
(
Cs

i ,π r
)

is in range [0; 1], where nr is the number of the

clusters in π r, Cr
j is the j-th cluster in π r and ρ

(
Cs

i , Cr
j

)
is acquired according to Eq. (4). Since

we have assumed that the partitions of the ensemble are independent [52], we can achieve the
unreliability of a cluster Ci with respect to the β base clusterings in ensemble 5 by Eq. (6). It
means the unreliability of cluster Cs

i in ensemble clusterings 5 is computed by Eq. (6).

f
(
Cs

i ,Π
)
=

∑
j∈{1,2,...,β}−{s} υ

(
Cs

i ,π j
)

β − 1
(6)

where the term β−1 is added to make f
(
Cs

i ,Π
)

in the range [0; 1].

4.3 Cluster Reliability Computation
Weight of each cluster represents its reliability value which is computed according to the

derived unreliability or entropy of that cluster in the clustering ensemble via an RDCI. For cluster
Cs

i , RDCI as the weight of each cluster in a clustering ensemble 5 with β base clusterings is
de�ned as follows in Eq. (7).

RDCI∅
(
Cs

i
)
= exp

(
−f

(
Cs

i ,5
)

∅

)
(7)



376 CMC, 2021, vol.67, no.1

where impact of the unreliability on clustering ensemble weight is adjusted by the non-negative
parameter ∅. The best result is obtained when ∅ is 0.4. Since f

(
Cs

i ,Π
)
∈ [0, 1], RDCI∅

(
Cs

i

)
lies

in the interval
[
e
−1
∅ , 1

]
for each Cs

i ∈5. When the unreliability value of a cluster Cs
i is minimized,

i.e., when f
(
Cs

i ,Π
)

is zero, its RDCI is maximized, i.e., RDCI∅
(
Cs

i

)
is one.

4.4 Cluster-Wise Weighted Co-Association Matrix
In this stage, a fuzzy co-association matrix is derived regarding the reliability values of the

clusters in the ensemble. Methods based on the co-association matrix are of the most common
methods for combination of the base clusterings. Using the Evidence Accumulation Clustering
(EAC) method, which was proposed in [32], individual data object clusterings in a clustering
ensemble were projected into a new metric of pairwise similarity. However, this method could
not suitably achieve the co-association matrix from fuzzy clusters. Thus, Evidence Accumulation
Fuzzy Clustering (EAFC) is implemented as a new method to derive the co-association matrix.
Eq. (8) is used to derive the fuzzy co-association clustering ensemble matrix

˙FCA
5

i,j =

∑β

k=1
nk

t=1sup inf
(
πk (xi)

t ,πk
(
xj
)t)

β
(8)

where xi and xj are the data objects, inf (x, y) and sup (x, y) are considered to be xy and x+ y

respectively. To make the ˙FCA
5

i,j matrix normal, we use FCA5i,j =
˙FCA

5
i,j√

˙FCA
5
i,i×

˙FCA
5
j,j

. In Eq. (9), the

weighted fuzzy co-association matrix is obtained by using the RDCI as a weight in calculation of
the co-association matrix to consider the reliability of each cluster. Calculation of the weighted
fuzzy co-association clustering ensemble matrix (WFCA) is performed using Eq. (9).

˙WFCA
5

i,j =

∑β

k=1
nk

t=1supRDCI∅
(

Ck
t

)
× inf

(
πk (xi)

t ,πk
(
xj
)t)

β
(9)

To make the ˙WFCA
5

i,j matrix normal, we use WFCA5i,j =
˙WFCA

5
i,j√

˙WFCA
5
i,i×

˙WFCA
5
j,j

.

Toy example. Tab. 1a represents two fuzzy clusterings π1 and π2 (i.e., β = 2) on an assumptive
dataset x with 6 data objects (i.e., M = 6). Tab. 1b represents the ρ values of the fuzzy clusters
in Tab. 1a. Tab. 1c shows ρ̇ values of the fuzzy clusters in Tab. 1a and their unreliability values.
Tab. 1c also contains the corresponding RDCI values of fuzzy clusters. Using Eq. (8), the co-
association matrix FCA of π1 and π2 from Tab. 1a is derived and shown in Tab. 1d. Tab. 1e
exhibits the weighted co-association matrix of the fuzzy clustering ensemble presented in Tab. 1a
regarding the calculated RDCIs.
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Table 1: An example for the proposed method

(a)

π1 π2

C1
1 C1

2 C1
3 C2

1 C2
2 C2

3

x1 0.2 0.8 0 0.3 0.6 0.1
x2 0.1 0.1 0.8 0.2 0.1 0.7
x3 0.3 0.2 0.5 0.3 0.3 0.4
x4 0.1 0.9 0 0.2 0.7 0.1
x5 0.7 0.2 0.1 0.7 0.1 0.2
x6 1 0 0 0.9 0.1 0
(b)

π1 π2

C1
1 C1

2 C1
3 C2

1 C2
2 C2

3

C1
1 – – – 0.93 0.58 0.62

C1
2 – – – 0.53 0.88 0.62

C1
3 – – – 0.53 0.62 0.92

C2
1 0.93 0.53 0.53 – – –

C2
2 0.58 0.88 0.62 – – –

C2
3 0.62 0.62 0.92 – – –

(c)

π1 π2 f
(
Cs

i ,5
)

RDCI0.4
(
Cs

i

)
C1

1 C1
2 C1

3 C2
1 C2

2 C2
3

C1
1 – – – 0.44 0.27 0.29 0.979 0.0865

C1
2 – – – 0.26 0.43 0.31 0.979 0.0865

C1
3 – – – 0.26 0.30 0.44 0.974 0.0876

C2
1 0.47 0.27 0.27 – – – 0.965 0.0896

C2
2 0.28 0.42 0.30 – – – 0.984 0.0854

C2
3 0.29 0.29 0.43 – – – 0.983 0.0856

(d)

π1 π2

C1
1 C1

2 C1
3 C2

1 C2
2 C2

3

x1 1.00 0.25 0.59 0.99 0.53 0.37
x2 0.25 1.00 0.88 0.22 0.40 0.20
x3 0.59 0.88 1.00 0.53 0.70 0.52
x4 0.99 0.22 0.53 1.00 0.40 0.22
x5 0.53 0.40 0.70 0.40 1.00 0.96
x6 0.37 0.20 0.52 0.22 0.96 1.00

(Continued)
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Table 1: (continued)

(e)

π1 π2

C1
1 C1

2 C1
3 C2

1 C2
2 C2

3

x1 1.00 0.25 0.58 0.99 0.54 0.38
x2 0.25 1.00 0.88 0.22 0.40 0.20
x3 0.58 0.88 1.00 0.52 0.70 0.53
x4 0.99 0.22 0.52 1.00 0.40 0.23
x5 0.54 0.40 0.70 0.40 1.00 0.96
x6 0.38 0.20 0.53 0.23 0.96 1.00

4.5 Consensus Functions
Final clustering computation, which is the last stage according to Fig. 1b, is performed

through three proposed consensus algorithms in this section based on the following ways:
(a) Using co-association matrix and a subsequent hierarchical clustering, (b) According to reli-
ability computation of each cluster of the ensemble and a subsequent graph clustering, and
(c) Based on the acceptability computation of each cluster over other clusters of the ensemble
and subsequently applying of a metaheuristic algorithm.

4.5.1 WFCA-Based Consensus Function
When a cluster’s unreliability is a large value with respect to the base clusterings, we under-

stand that the cluster is divided into some fragments of the data objects in the partitions of the
ensemble. Here, a conclusion is to keep the clusters with large reliability values with respect to
the clustering ensemble in the �nal ensemble of elite clusters. By considering reliability values of
clusters in co-association matrix computation, and viewing it as a new similarity matrix between
the data object pairs in the dataset, the consensus partition can be achieved by applying a simple
FCM clusterer algorithm or a hierarchical clusterer algorithm over the new similarity matrix.

We need to calculate the weight of each cluster using Eq. (7) to achieve the �nal clustering
from base clusterings 5 based on each cluster’s local reliability value in the ensemble. Therefore, to
compute the entropy of each cluster in 5, the following steps must be followed: the acceptability
of any cluster (denoted by p) in the ensemble 5 is obtained by Eq. (4) and then, it is normalized.
Then, the unreliability of each cluster is computed by Eq. (5) with respect to the clustering πm.
Subsequently, the entropy of each cluster is calculated according to Eq. (6) in the ensemble.
After computation of the RDCI, using Eq. (9), the weighted fuzzy co-association matrix of the
clustering ensemble is acquired and then, it is normalized. For consensus function, a hierarchical
clustering algorithm is implemented which is a widespread clustering technique whose typical
input is a distance matrix d achieved by d = 1−WFCA. Also, for consensus function, a simple
FCM clustering algorithm can be employed instead of the hierarchical clustering algorithm by
considering the distance matrix d as an intermediate feature space. RBFCM algorithm with two
inputs (primary clustering ensemble 5 and n∗ number of clusters in the consensus partition) is
presented in detail as follows in Algorithm 1.
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Algorithm 1:: RBFCM (Reliability Based Weighted Co-association matrix Algorithm)
Input: 5, n∗;

Output: π∗

// 5 stands for a pool of fuzzy primary partitions

// n∗ stands for number of �nal clusters

// π∗ stands for �nal clustering

1: According to Eq. (4), the cluster acceptability over other clusters is calculated in clustering
π r (π r

∈5) for each cluster.
2: According to Eq. (5), the cluster unreliability is computed with respect to the clustering
πm in the ensemble 5 for each cluster.

3: Using Eq. (6), the unreliability of the clusters in the ensemble 5 is derived.
4: Using Eq. (7), RDCI values of the clusters in ensemble are calculated.
5: According to Eq. (9), WFCA matrix is created.
6: Using d = 1−WFCA, d matrix is computed.
7: Final clustering with n∗ clusters is achieved using FCM (d, n∗) //π∗ =FCM (d, n∗)

Output: Consensus clustering π∗.

4.5.2 Reliability Based Graph Clustering Algorithm
According to the de�nition of the bipartite graph and its clustering in which all of clusters

and data points are considered to be its nodes, RBGC consensus function is proposed. In order
to have an edge between two vertices, they have to be different. Thus, if one node is a data object
and the other is a cluster, an edge could be developed. Weight of an edge located between a data
object xi ∈X and a cluster vj ∈C is given by Eq. (10).

E (i, j)=


RDCI∅

(
vj
)
× vj (xi) xi ∈X , vj ∈C

E (j, i) xj ∈X , vi ∈C

0 otherwise

(10)

where RDCI∅
(
vj
)

is given by Eq. (7) and vj (xi) is a real number in [0; 1] which indicates
how much data object xi belongs to in cluster vj. The result of application of RDCIs is, in
addition of considering the belong-to relationship between objects and clusters by bipartite graph,
the reliability values of clusters are re�ected. In order to obtain the consensus clustering, after
the weighted bipartite graph was constructed, some basic graph partitioning algorithms such as
METIS [53] are utilized to divide the mentioned weighted bipartite graph into n∗ clusters, where n∗

is the quantity of the desired clusters in the consensus partition and the consensus graph partition
is considered to be consensus partition. Algorithm 2 shows RBGP algorithm in detail.

Algorithm 2:: RBGP (Reliability Based Graph Partitioning Algorithm)
Input: 5, n∗;
Output: π∗

// 5 stands for a pool of fuzzy primary partitions
// n∗ stands for number of �nal clusters
// π∗ stands for �nal clustering

(Continued)
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Algorithm 2:: (Continued)
1: Using Eq. (4), the acceptability of each cluster is calculated over other clusters in the

clustering πm of the ensemble 5.
2: Eq. (5) is implemented to compute the unreliability of each cluster with respect to the

partition πm in the ensemble 5.
3: The unreliability values of clusters in 5 is derived by Eq. (6).
4: RDCI values of the clusters in the ensemble are achieved according to Eq. (7).
5: The weighted bipartite graph is constructed using Eq. (10).
6: METIS algorithm is applied to the weighted bipartite graph to obtain n∗ clusters as

consensus partition

Output: Consensus partition is considered to be consensus clustering π∗.

4.5.3 Reliability Based Hyper Clustering Algorithm
In RBHC algorithm (presented in Algorithm 3) with the idea of merging similar clusters in an

approach which is faster than other two methods (it can be experimentally proved later in Section
5.4), the cluster acceptability over other clusters is considered to be pairwise cluster similarity
for each cluster. Pairwise similarity of the clusters is the acceptability of a fuzzy cluster over
other clusters.

Algorithm 3:: RBHC (Reliability Based Hyper Clustering Algorithm)
Input: 5, n∗, SType;
Output: π∗

// 5 stands for a pool of fuzzy primary partitions
// n∗ stands for number of �nal clusters
// π∗ stands for �nal clustering
// SType determines the membership scheme and could be max, min or sum
1: Eq. (6) is used to achieve the acceptability of each cluster in 5 over the clusters.
2: k means clusterer algorithm is implemented to extract a partition of the n∗ hyper-clusters on

the primary clusters
3: The amount that any data point xl belongs to each hyper-cluster hci is calculated as:

S
(
µhci (xl)

)
=Member ship Value (xl, hci, SType,C), where |hci| is the number of basic clusters

in hyper-cluster hci.
4: The achieved membership degree of each xl to hyper-cluster hci is normalized using Eq. (11),

i.e., µhci (xl)=
S
(
µhci (xl)

)
∑n∗

j=1 S
(
µhcj (xl)

)
5: Output: Consensus clustering π∗

////////////////////
MembershipValue (x, hc, SType,C)
1: switch(SType)
2: case ‘max’: return Max

t∈hc
Ct (x)

3: case ‘min’: return Min
t∈hc

Ct (x))

4: case ‘sum’: return

∑
t∈hc Ct (x)
|hc|
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Using Eq. (4), acceptability (p) of each cluster is derived over other clusters in the ensemble 5
and the pairwise cluster acceptability matrix is obtained which could be clustered into a number
of hyper-clusters by the basic clustering algorithms such as k means. After that, depending on the
membership scheme (membership value function), the amount that any data point belongs to each
hyper-cluster is achieved according to the membership values of the data object to the primary
clusters in that hyper-cluster. There are three cases for member scheme. First, the case in which
membership scheme is max, membership degree of an arbitrary data object xl in each hyper-
cluster is the maximum membership degrees of the data object in all clusters of the hyper-cluster.
Second case is when the membership scheme is min in which the minimum of membership degree
of an arbitrary data point xl to the base clusters in a hyper-cluster is achieved and the minimum
achieved value is considered to be membership degree of the data object in that hyper-cluster. The
third case is when membership scheme is sum, where the membership degrees of an arbitrary data
object xl in each hyper-cluster is the average of the data object membership degrees in all clusters
of the hyper-cluster. Finally, data object membership degrees of each hyper-cluster is divided to
sum of the data object membership degrees in all hyper-clusters in order to set this sum to 1. The
following notations are used in this paper: hci is a hyper cluster, |hci| represents the number of
base clusters in hci, membership degree of xl in base cluster of Cj is shown by Cj (xl), and the
membership degree of xl in hyper-cluster hci is shown by µhci (xl) which is obtained according to
Eq. (11).

µhci (xl)=
S
(
µhci (xl)

)
∑c

j=1 S
(
µhcj (xl)

) (11)

where S
(
µhci (xl)

)
is the membership degree of the data object xl in hyper-cluster hci which is

calculated by scheme function. We can use different basic clustering algorithms depending on
their applications to accomplish the clustering task on the primary clusters. As an example, we
can replace kmeans clusterer algorithm by Kernelized FCM clusterer algorithm when we need
to extract the clusters with different shapes. We can use this algorithm to generate the �nal
fuzzy partition which bene�ts the smaller computation time in comparison with other consensus
algorithms. It will be analyzed in Section 5.4.

5 Experimental Study

5.1 Benchmark
In this paper, several datasets are selected to evaluate the robustness and performance of the

proposed fuzzy clustering ensemble approach. Here, for robustness and performance evaluation,
we have selected several datasets from UCI machine learning datasets [54], “Galaxy” dataset
described in [55] and handmade experimental dataset from a well-known HalfRing dataset as
described in Tab. 2.

5.2 Performance Evaluation Criteria
Clustering performance is evaluated using the accuracy (AC) and normalized mutual informa-

tion (NMI) criteria operating on the crisp clusterings and also the XB and FS criteria operating
on the fuzzy clusterings. In the following, a general description on these criteria is provided.

The accuracy measure [28] used for clustering performance evaluation, is one of the most
widespread evaluation criteria which creates a sound indication between the �nal clustering and
the ground-truth labels (the prior labeling information) of the examined dataset. When the AC
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values are larger, it means that better clustering results are achieved. NMI is another criterion
for evaluating clustering performance which is the normalized mutual information between a pair
of partitions [30]. Similar to AC metric, a larger NMI value indicates a better clustering result.
A fuzzy partition should be converted to a crisp partition before being given to AC and NMI
metrics, because these metrics are designed to operate on the crisp partitions. Another criterion
for evaluating fuzzy partition π1 is XB criterion proposed in [47] and modi�ed in [51]. Another
criterion is proposed for evaluating fuzzy clustering named FS. A good clustering result obtains
a small FS value [51].

Table 2: Speci�cations of the used datasets

Dataset Number of data
objects (M)

Number of
clusters (c)

Number of
attributes (N)

Breast 683 2 9
Galaxy 323 7 4
Glass 214 7 10
Haberman 306 2 3
Halfring 400 2 2
Ionesphere 351 2 34
Iris 178 3 13
Knowledge 258 4 5
Seeds 210 3 7
SAHeart 462 2 9
Vowel 990 11 13
Wine 178 3 13
Vehicle 846 4 18
Satimage 6435 7 36
Yeast 1484 8 10

5.3 Base Clustering Generation
By construction of the base clusterings through the FCM clustering algorithm, consensus per-

formance is evaluated over various ensembles. Different numbers of clusters for the FCM method
are randomly chosen in the interval

[
2,
√

M
]
; therefore, a diverse set of base clusterings could be

made, where M is the data objects number in the under test dataset. The base partitions should
be constructed for each dataset before applying all methods to a same set of base partitions. For
the considered methods, the performance evaluation, robustness assertion and execution-time are
respectively measured for the ensemble size β= 50, 20 and 10. The proposed approach and the
state-of-the-art fuzzy clustering ensembles are assessed using their performance criteria and average
robustness criterion (in terms of AC) over 100 runs in the simulation environment (MATLAB) to
provide a con�dent and fair comparison.

5.4 Experimental Results
Achieving a more robust and consistent consensus clustering is the main purpose in a cluster-

ing ensemble using combination of several primary partitions. We have compared three proposed
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consensus algorithms RBFCM, RBGP and RBHC (RBHC contains three versions: (a) RBHC-
max, (b) RBHC-sum and (c) RBHC-min) with the state of the art methods, i.e., ITK, sCSPA,
sHGPA, sMCLA, sHBGF and the FSCEOGA1 clustering ensemble methods. Performances of
the resultant consensus partitions in the proposed and baseline methods are determined by the
criteria AC, NMI, XB and FS. Note that in each dataset, number of the clusters is the same as
the number of them in pre-de�ned ground truth labels.

Here, each of the proposed methods and the baseline methods are executed 100 times.
Tabs. 3–6 respectively exhibit the average values of 100 runs for AC, NMI, XB and FS criteria
where the bolded value in each row is the best acquired performance of each dataset among all
of the algorithms. The average performance of all algorithms is shown in the last column for
each dataset, and in the last row, performance of each algorithm averaged over all datasets is
shown. Because the FSCEOGA1 and ITK are computationally expensive, these methods cannot
handle large datasets because of their large execution time. For this reason (i.e., this method
is computationally expensive), the performance results of FSCEOGA1 method are presented on
100 different subsamples on the datasets possessing large numbers of data objects including
Satimage, Yeast, Vehicle and Vowel. ITK is also a computationally expensive method which
makes us present its performance results on the Satimage and Yeast datasets as averaged on 100
different subsamples.

Table 3: Performance comparison of different algorithms in terms of accuracy

Dataset sHBGF sCSPA sMCLA ITK FSCEO-
GA1

RBGP RBFCM RBHC-
max

RBHC-sum RBHC-
min

Dataset
avg

Breast 0.8799 0.8389 0.9722 0.8902 0.9508 0.9619 0.9793 0.9707 0.9678 0.9707 0.9382
Galaxy 0.3901 0.3406 0.3777 0.4799 0.3808 0.4582 0.4815 0.4787 0.4465 0.4358 0.4270
Glass 0.5935 0.6215 0.6075 0.6168 0.5561 0.6542 0.6455 0.4871 0.5491 0.5586 0.5890
Haberman 0.7353 0.7353 0.7416 0.7353 0.7153 0.7353 0.7453 0.7386 0.7353 0.7451 0.7362
Halfring 0.7500 0.7500 0.7500 0.7800 0.7500 0.7850 0.7775 0.7550 0.7550 0.9000 0.7753
Ionesphere 0.6980 0.7550 0.6410 0.6410 0.7071 0.7179 0.7251 0.7094 0.7066 0.7236 0.7025
Iris 0.9467 0.9467 0.9133 0.6600 0.8400 0.9533 0.9700 0.8293 0.9600 0.8817 0.8901
Knowledge 0.5388 0.5349 0.4767 0.5155 0.5143 0.6008 0.5720 0.5853 0.5481 0.5576 0.5444
Seeds 0.9000 0.8143 0.9003 0.5333 0.8295 0.9005 0.9005 0.8181 0.7998 0.8567 0.8253
SAHeart 0.6537 0.6537 0.6537 0.6537 0.6537 0.6537 0.6637 0.6580 0.6565 0.6580 0.6558
Wine 0.9101 0.9045 0.6011 0.8876 0.6944 0.9438 0.9707 0.8348 0.8503 0.8003 0.8398
Vehicle 0.4598 0.4090 0.4173 0.4031 0.3917 0.4693 0.4663 0.4012 0.4243 0.4062 0.4248
Vowel 0.3556 0.2929 0.1879 0.1949 0.1784 0.3859 0.4417 0.1863 0.1891 0.2399 0.2653
Yeast 0.4313 0.4003 0.3854 0.3532 0.3469 0.4414 0.4128 0.3865 0.3929 0.4047 0.3955
Satimage 0.7043 0.6194 0.4906 0.5011 0.5129 0.6999 0.7600 0.5596 0.6512 0.6120 0.6111
Alg. Avg 0.6631 0.6411 0.6078 0.5897 0.6015 0.6907 0.7008 0.6266 0.6422 0.6501 0.6414
Friedman’s ANOVA table

Source SS Df MS Chi-sq Prob> chi-sq

Columns 513.133 9 57.0148 57.63 3.82481e-09
Error 688.867 126 5.4672
Total 1202 149
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Table 4: Performance comparison of different algorithms in terms of NMI

Dataset sHBGF sCSPA sMCLA ITK FSCEO-
GA1

RBGP RBFCM RBHC-
max

RBHC-sum RBHC-
min

Dataset
Avg

Breast 0.5501 0.4416 0.8050 0.5471 0.6977 0.7690 0.7898 0.7979 0.7819 0.7979 0.6978
Galaxy 0.3147 0.2319 0.2678 0.3612 0.2309 0.3041 0.3309 0.2465 0.2084 0.1520 0.2648
Glass 0.2707 0.2992 0.3641 0.2979 0.2797 0.3653 0.3609 0.2711 0.3490 0.3437 0.3202
Haberman 0.0104 0.0010 0.0516 0.0072 0.0003 0.0104 0.0015 0.0197 0.0143 0.0627 0.0179
Halfring 0.2000 0.3000 0.1400 0.3132 0.2886 0.3317 0.3118 0.2986 0.2986 0.5451 0.3028
Ionesphere 0.1118 0.2209 0.0000 0.1412 0.1227 0.1591 0.2629 0.1284 0.1468 0.2733 0.1567
Iris 0.7980 0.8308 0.8054 0.5453 0.6813 0.8464 0.8640 0.7264 0.8640 0.7378 0.7699
Knowledge 0.2155 0.2273 0.1017 0.2002 0.2455 0.2828 0.2665 0.2806 0.1919 0.2465 0.2259
Seeds 0.6885 0.5264 0.6972 0.2349 0.5963 0.6730 0.6852 0.4998 0.4666 0.5999 0.5668
SAHeart 0.0624 0.0665 0.0000 0.0508 0.0741 0.0844 0.0838 0.0910 0.0878 0.0916 0.0692
Wine 0.7321 0.7219 0.3866 0.7088 0.4033 0.8051 0.8466 0.4256 0.5124 0.5112 0.6054
Vehicle 0.1814 0.1237 0.1472 0.1294 0.1254 0.1943 0.2015 0.1093 0.1337 0.1282 0.1474
Vowel 0.3024 0.2512 0.1379 0.1372 0.1341 0.3788 0.4249 0.1593 0.1433 0.2194 0.2289
Yeast 0.1320 0.1383 0.1238 0.1109 0.1005 0.1448 0.1338 0.1123 0.0991 0.1382 0.1234
Satimage 0.4704 0.4558 0.3440 0.3479 0.3545 0.4889 0.5534 0.2186 0.3830 0.3346 0.3951
Alg. Avg 0.3360 0.3224 0.2915 0.2755 0.2890 0.3892 0.4078 0.2923 0.3121 0.3455 0.3261
Friedman’s ANOVA table

Source SS Df MS Chi-sq Prob> chi-sq

Columns 349.83 9 38.8704 38.23 1.58807e-0.5
Error 885.67 126 7.0291
Total 1235.5 149

The results of the proposed and other consensus algorithms for different datasets are provided
in Tabs. 3–6. From Tab. 3, we can observe that RBGP, RBHC-min and RBFCM outperform other
algorithms on �ve, one and nine datasets respectively while other algorithms do not outperform
the rest in any datasets. We can also see that the proposed RBFCM outperforms the other cluster
ensemble algorithms in terms of the averaged AC value.

From Tab. 4, we can see that RBGP, RBHC-min, RBFCM outperform the other algorithms
on three, four and �ve datasets. It is also obvious that RBHC-sum, sMCLA and ITK outperform
the other algorithms on one, two and one datasets respectively. The averaged performance values
on all datasets show that RBFCM algorithm achieves the best performance and RBGP has the
next best performance in terms of the averaged NMI value.

Tab. 5 shows that RBHC-sum, RBHC-max and RBHC-min outperform the other algorithms
on eight, �ve and four datasets, respectively while RBFCM outperforms the other algorithms on
one dataset. It is also observable that the best averaged XB is achieved by RBHC-max. Also,
the proposed RBHC algorithm outperforms the other algorithms on most of the datasets. Using
Tab. 6, we can see that, among all algorithms on all datasets, the RBHC methods achieve the
best results.

Robustness is a fundamental property for machine learning algorithms, which measures the
learning algorithms’ tolerance against perturbations (i.e., noises). In order to assess the per-
formance (here, the performance is only accuracy) robustness of the proposed methods as a
fundamental property which measures the algorithms’ tolerance against perturbations, �ve infected
datasets with 5% to 20% noise ratios are selected from KEEL-dataset repository including Glass,
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Ionesphere, Iris, SAHeart, and Wine [56]. The datasets are infected with 5% to 20% noise ratios
and the ensemble size of this evaluation is β = 20. Fig. 2 shows the accuracies of the proposed
methods against baseline methods of sCSPA, sMCLA, sHBGF and ITK; it is worthy to be
mentioned that the accuracies are averaged on all of the infected datasets here. We can conclude
from Fig. 2 that RBGP, RBFCM and sHBGF are respectively the most robust methods against
the noises in the infected datasets. We can also see that compared with these three methods,
RBHC-sum has a lower accuracy but higher robustness.

Table 5: Performance comparison of different algorithms in terms of XB

Dataset sHBGF sCSPA sMCLA ITK FSCEO-
GA1

RBGP RBFCM RBHC-
max

RBHC-
sum

RBHC-
min

Dataset
Avg

Breast 3.01 3.16 3.42 2.91 3.62 2.97 2.87 1.76 1.90 1.78 2.74
Galaxy 5.64 5.85 5.03 7.91 6.13 3.52 1.54 1.27 1.18 1.20 3.93
Glass 2.63 2.97 3.58 3.29 3.19 2.58 0.72 0.76 0.51 1.05 2.13
Haberman 5.54 6.07 10.60 5.20 4.62 4.40 3.01 2.69 2.75 3.21 4.81
Halfring 4.06 4.06 4.06 20.69 19.46 15.46 2.02 2.06 2.76 2.33 7.70
Ionesphere 6.11 4.23 3.88 3.85 6.50 4.95 3.30 2.16 2.06 2.07 3.91
Iris 4.52 4.13 3.80 3.20 4.78 3.19 2.00 1.89 2.05 1.62 3.12
Knowledge 3.17 3.32 3.90 3.79 2.91 2.68 0.93 0.83 0.84 0.87 2.32
Seeds 5.31 6.92 5.47 8.73 7.28 0.43 3.07 2.78 3.05 3.00 4.60
SAHeart 2.10 2.07 2.54 2.24 1.98 1.99 1.57 1.17 1.17 1.17 1.80
Wine 1.96 1.86 2.12 2.08 10.88 1.81 1.02 0.69 0.66 0.73 2.38
Vehicle 3.94 4.26 4.01 4.50 4.53 3.78 2.13 2.32 2.12 2.41 3.40
Vowel 2.22 2.19 2.38 2.14 2.18 1.90 0.42 0.29 0.27 0.28 1.43
Yeast 3.88 3.95 4.01 4.02 3.92 3.93 1.19 0.52 0.72 0.52 2.67
Satimage 2.62 2.62 4.53 3.85 3.47 2.62 2.43 0.96 0.73 0.88 2.47
Alg. Avg 3.78 3.84 4.22 5.23 5.70 3.75 1.88 1.48 1.52 1.54 3.29
Friedman’s ANOVA table

Source SS Df MS Chi-sq Prob> chi-sq

Columns 968.933 9 107.659 106.26 8.47214e-19
Error 262.067 126 2.08
Total 1231 149

In Tab. 7, the execution time of the proposed methods is compared with the other related
methods for ensemble size of β = 20 over all of our 15 datasets. The execution time per con-
sensus clustering in all algorithms is computed. It is obvious that among the baseline algorithms,
FSCEOGA1, and ITK have longer execution times respectively. Since time complexity is quadratic
in terms of number of data objects, co-association based algorithms (sCSPA, RBFCM) are with
longer execution times after FSCEOGA and ITK. We can also conclude that considering both the
performance and the computational cost, RBHC has better performance than the other algorithms
because for most of the datasets, it has a shorter average execution time per consensus with sum
membership scheme.

Here, performance assessment of the proposed method is carried out through statistical
analysis to assure that the results are not accidental. It is assumed that the data are with normal
distribution or homogeneous variance and multiple variables are similar to those in [57] for
non-parametric Friedman test [58].
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Figure 2: Averaged accuracy of different methods on all of the infected datasets

Table 7: Consumed times of the different algorithms in terms of second

Dataset sHBGF sCSPA sMCLA ITK FSCEOGA1 RBGP RBFCM RBHC-
max

RBHC-
sum

RBHC-
min

Breast 1.2265 4.5234 0.8768 488.3621 813.8615 1.1016 0.5087 0.0140 0.0137 0.0160
Galaxy 0.6780 1.4241 0.5683 89.5773 1684.6240 0.6539 5.0256 0.0214 0.0253 0.0293
Glass 0.1707 0.2718 0.1403 35.8495 2428.7338 0.6379 0.3940 0.0317 0.0235 0.0346
Haberman 0.4060 0.6921 0.3048 67.3522 448.4177 0.7007 0.1475 0.0178 0.0152 0.0169
Halfring 0.7792 1.4650 0.5272 115.9970 313.8434 0.7367 2.3107 0.0194 0.0175 0.0207
Ionesphere 0.3985 0.7905 0.2592 129.4893 488.6612 0.6654 0.1032 0.0164 0.0142 0.0126
Iris 0.1229 0.1828 0.1317 3.5215 564.0581 0.4078 0.0426 0.0142 0.0225 0.0199
Knowledge 0.5598 0.7415 0.4433 64.1924 996.1224 0.5443 0.9201 0.0143 0.0159 0.0204
Seeds 0.4029 0.6438 0.3482 31.0934 585.1133 0.4323 0.0559 0.0214 0.0184 0.0182
Sheart 0.4570 1.3129 0.2678 242.3952 9193.5573 0.7466 0.6663 0.0307 0.0146 0.0108
Wine 0.2298 0.3559 0.2140 16.4309 606.6856 0.3720 0.0599 0.0200 0.0116 0.0115
Vehicle 0.7527 4.0906 0.3193 715.7038 Inf 1.1639 2.6166 0.0452 0.0322 0.0485
Vowel 0.8877 6.1771 0.3734 4450.8780 Inf 1.2301 47.7147 0.0700 0.0428 0.0452
Yeast 1.9942 21.8639 0.9816 Inf Inf 2.7541 69.6770 0.0754 0.0783 0.0686
Satimage 12.7071 922.9457 5.7616 Inf Inf 18.7358 822.9457 0.2513 0.1728 0.3240
Friedman’s ANOVA table

Source SS Df MS Chi-sq Prob> chi-sq
Columns 1126.83 9 125.204 123.03 3.20515e-22
Error 109.67 126 0.87
Total 1236.5 149

Implementing Friedman test [59], we have provided the experimental results in Tabs. 3–7
subject to null hypothesis. The last row of Tab. 3 shows the experimental results according to
Friedman test in Tab. 3 where the hypothesis of equal mean rank (in terms of accuracy) is
rejected, because of the signi�cant difference shown by probability-value of 3.82E-09. We can also
observe that RBFCM, RBGP, sHBGF and RBHC-min are respectively with the highest accuracy
scores while ITK has the lowest score. The last rows of Tabs. 4–7 exhibit respectively the Friedman
tests of the experimental results for data of Tabs. 4–7. The equal mean rank null hypothesis of
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the NMI (the XB, the FS and the consumed time) is rejected due to the signi�cant difference
provided by probability-value of 1.59E-05 (8.47E−19, 3.02E−16 and 3.21E−22).

Time complexity of RBFCM algorithm is analyzed according to Algorithm 1 which results
in complexity of O

(
c
(
c+M2

)
+Mn∗t

)
, where c is the quantity of all of the fuzzy clusters in

the primary partitions, n∗ is number of consensus clusters, t represents quantity of the iterations
that the FCM needs to converge and M stands for the dataset size. The co-association matrix
computation is performed using the term c2 corresponding to lines 1 to 4 of Algorithm 1. The
term cM2 from line 5 and the term Mn∗t are related to the time complexity of the FCM. For
RBGP, the time complexity is acquired as O (c (c+M)+Mn∗β) using Algorithm 2, where the
terms c2 and Mc are related to bipartite graph construction corresponding to lines 1 to 4, and
line 5 respectively. The term Mn∗β is also the METIS time complexity with the ensemble size of
corresponding line 6. Algorithm 3 is used for the time complexity calculation of RBHC which is
derived as O

(
c2
+ cn∗t+Mn∗

)
, where Mn∗, c2 and cn∗t (k means’ time complexity) are related to

lines 3 and 1 and 2 respectively. In comparison with the other algorithms, RBHC is more ef�cient
in reality, because of the rapid growth of the majority term, i.e., Mn∗, provided that M � c,
and M� n∗.

6 Conclusions and Future Work

Based on fuzzy cluster unreliability estimation, a novel fuzzy clustering ensemble approach
was proposed in this paper. Cluster unreliability was estimated according to an entropic criterion
using the cluster labels in the entire ensemble. After that, based on the cluster unreliability and
local weighting strategy, a new RDCI measure was proposed that is independent on features of
the original data and is without any pre-assumption on data distribution. In order to promote
the conventional co-association matrix, a local weighting scheme was proposed through the RDCI
weight (WFCA) which determines how much amount each primary fuzzy cluster should contribute
in construction of the co-association matrix; indeed, it should be with respect to its reliability in
the ensemble. Three algorithms of RBFCM, RBGP and RBHC (suitable for large datasets) were
proposed that respectively achieve the �nal clustering from WFCA matrix, the �nal clustering with
respect to the reliability of each cluster and the �nal clustering by computing the acceptability of
each cluster over other clusters of the ensemble. In comparison to other fuzzy clustering ensem-
ble methods, the proposed approach has shown performance improvement and more robustness
against noisy datasets through experimental results over �fteen datasets. We concluded that RBHC
and RBGP algorithms are appropriate for large datasets because they are linear to the number of
data points and have good performance comparison to other fuzzy clustering ensemble methods.
It was shown in the paper that RBHC is the best method in terms of time complexity and
performance, while RBGP is the best in terms of performance and robustness. RBFCM was also
relatively the best in terms of performance. For future works, challenging high dimension datasets
in RBFCM and missing values in a dataset can be considered to be problems to be solved. As
other challenges for future studies, we can address the diversity impact of the proposed method
and its performance in different sampling mechanisms.
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