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Abstract: The objectives of this study involve the optimization of longitudinal
porous fins of square cross-section using metaheuristic algorithms. A generalized
nonlinear ordinary differential equation is derived using Darcy and Fourier’s laws
in the energy balance around a control volume and is solved numerically using
RFK 45 method. The temperature of the base surface is higher than the fin sur-
face, and the fin tip is kept adiabatic or cooled by convection heat transfer. The
other pertinent parameters include Rayleigh number (100 ≤ Ra ≤ 104), Darcy
number, (10−4 ≤Da ≤ 10−2), relative thermal conductivity ratio of solid phase to
fluid (1000 ≤ kr ≤ 8000), Nusselt number (10 ≤ Nu ≤ 100), porosity (0.1 ≤ φ
≤ 0.9). The impacts of these parameters on the entropy generation rate are inves-
tigated and optimized using metaheuristic algorithms. In computer science, meta-
heuristic algorithms are one of the most widely used techniques for optimization
problems. In this research, three metaheuristic algorithms, including the firefly
algorithm (FFA), particle swarm algorithm (PSO), and hybrid algorithm (FFA-
PSO) are employed to examine the performance of square fins. It is demonstrated
that FFA-PSO takes fewer iterations and less computational time to converge
compared to other algorithms.

Keywords: Optimization; firefly algorithm; particle swarm algorithm; hybrid
algorithms; porous media; entropy generation rate

1 Introduction

The heat transfer rate from a solid surface can be enhanced with the help of the fins of different shapes.
They are employed in numerous appliances such as microelectronics and heat exchangers. The geometry of
the fin plays a key role in improving the overall performance that needs to enhance the efficiency of the fin.
Several researchers, including [1–5] have examined several fins shapes for the longitudinal and annular fins
and optimized the thermal performance of these fins. Porous fins have been widely used as a viable thermal
candidate for effective cooling. The research on the performance and efficiency of porous fins is a new
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dimension of research in the field of heat transfer. Porous fins enhance the heat transfer rate by increasing the
surface area by convection through the pores in addition to reducing the weight of the assembly. The thermal
performance of the Porous fins is excellent compared with the thermal performance of conventional equal
weight solids, where many studies have examined the thermal performance of the porous fins [6–9].

In 2001, Kiwan et al. [10] proposed a newmethod that enhances the heat transfer from a given surface by
using porous fins. They found that the performance of the porous fin leads to much more improvement in the
heat transfer coefficient compared to the performance of the conventional fin. Ghasemi et al. [11] solved the
nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature using
differential transformation method (DTM). Their results reveal that the technique is highly effective and
convenient. Kundu et al. [12] studied the thermal performance of porous fin of various shapes working in
a convection environment. They investigated the Straight fins (rectangular, convex parabolic and two
exponential types). Kiwan [13] proposed a new method to study the performance of porous fins in a
natural convection environment. He found that the rate of heat transfer from the porous fin could exceed
the rate of the solid fin. Kiwan [14] studied the problem of laminar natural convection heat transfer from
a porous fin attached to a vertical surface. Gorla et al. [15] examined the effects of heat transfer and
convection in rectangular porous media. Kundu et al. [16] proposed a computational model to determine
the best performance and optimal dimensions of porous fins. They also studied the effects of all
parameters on performance and conditions for improvement. Hatami et al. [17] found that the thermal
performance of rectangular profiles was better compared to convex and triangular shapes.

The primary purpose of any optimization algorithm is to detect the optimal value of system parameters
under various conditions. An optimization algorithm is desired to be robust, has a low computational cost, is
able to rapidly reach the globally optimal values of a problem, has very few control parameters, and easy to
implement in different problem paradigms [18]. In the last two decades, nature-inspired metaheuristic
algorithms have become very popular because of their ability to solve several real-world optimization
problems in artificial intelligence (AI), optimization, engineering applications, computational intelligence,
data mining, and machine learning. These metaheuristic algorithms are now one of the most widely used
techniques for optimization. They are incredibly diverse and include Particle Swarm Optimization (PSO),
Firefly Algorithm (FFA), Simulated Annealing, Differential Evolution, Genetic Algorithms, Harmony
Search, Ant and Bee algorithm, and others.

Hatami et al. [19] used the Least Square Method and fourth-order Runge–Kutta method to predict the
temperature distribution in circular convective-radiative porous fins. Hatami et al. [20] used three analytical
methods for predicting the temperature distribution in a rectangular porous fin with temperature-dependent
internal heat generation. The methods are the Differential Transformation Method, Collocation Method, and
Least Square Method. Das et al. [21] used a simulated annealing method to choose parameters of a
rectangular porous fin, which can meet the desired temperature distribution. Deshamukhya et al. [22]
used FFA to optimize the important parameters of rectangular porous fins with the reflective boundary
condition. They have used three metaheuristic optimization algorithms, namely FFA, PSO, and
Gravitational Search Algorithm (GSA). They optimized the parameters responsible for transferring heat
from the porous fin subjected to convective tip conditions and insulated end condition.

The above literature review reveals that there is no single study that investigates the modeling and
optimization of a longitudinal square fin using metaheuristic algorithms. To fill this gap, mathematical
models are developed for the heat transfer and optimization of a longitudinal square fin. For optimization,
PSO, FFA, and their hybrid algorithms were employed to obtain the optimum values of the governing
parameters for the minimum average entropy generation rate.
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2 Problem Statement

Consider a longitudinal porous fin of square cross-section, which is attached to a base plate, as shown in
Fig. 1. The side of the square fin is s, and the length is L, and the fluid (air) is flowing axially along the fin
length. Two different materials (Aluminum and copper) are used for the porous fin. The fin surface transfers
heat to ambient by convection through fin pores and solid surface. The fluid flow rate is assumed to be _m, the
ambient temperature is T1, and the heat transfer coefficient is h. The fin tip is considered to be either
adiabatic or convectively cooled. This analysis is based on the following assumptions:

1. The porous fin is homogeneous, isotropic, and saturated with the single-phase ambient fluid.
2. The thermophysical properties are constant,

3. The entire system is in local thermodynamic equilibrium,

4. The heat conduction occurs only in the axial direction, and

5. The fluid velocity is modeled by Darcy’s law.

We get the following dimensionless equation for a longitudinal fin of arbitrary profile with uniform
cross-section:

d2h
dX 2

¼ RaDa

�2�
h2 þ Nu‘ð1� fÞ

�2�
h (1)

or
d2h
dX 2

� &ph
2 � &c

2h ¼ 0 (2)

Figure 1: (a) Schematic diagram of porous longitudinal fin of square cross-section (b) Control volume of
porous fin for energy and entropy balance
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where &p and &c are the porous and convective parameters respectively and can be written as:

&p ¼ RaDa

�2�
and &c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nu‘ð1� fÞ

�2�

r
(3)

The porous parameter &p shows the effect of the permeability of the porous medium, while the convective
parameter &c shows the effect of convection heat transfer from the fin surface and� ¼ s=L is the dimensionless
geometry parameter. The dimensionless temperature and the efficiency of the fin are plotted in terms of these
two parameters. Eq. (2) is subjected to the following dimensionless boundary conditions:

h ¼ 1 at X ¼ 0

dh
dX

¼ 0ðAdiabatictipÞ

DðhÞð1Þ ¼Nu‘
��

� ðhÞð1ÞConvectivetip

9>=
>;atX ¼ 1

(4)

The second-order differential Eq. (2) with boundary conditions (4) can be solved numerically by the
finite difference method or analytically by the homotopy perturbation method. Thus, the dimensionless
distribution within the porous square fin up to first order for adiabatic tip boundary condition can be
written as:

hðX Þ ¼ cosh fcð1� X Þ
cosh fc

� e�fcð4�X Þ þ e�fcð6�X Þ� �
fp e10fc � 3e8fc � 14e6fc � 14e4fc � 3e2fc þ 1
� �
192f2ccosh

5fc cosh fc
þ

fpe
�fcð2Xþ5Þ

96fc
2cosh5ðfcÞ

e10fc � 6e2fcðXþ4Þ þ efcð4Xþ6Þ þ 3e8fc � 18e2fcðXþ3Þ þ 3e4fcðXþ1Þ

þ3e6fc � 18e2fcðXþ2Þ þ 3efcð4Xþ2Þ þ e4fc � 6e2fcðXþ1Þ þ e4fcX

� �
9>>>=
>>>; (5)

Similarly, the dimensionless distribution within the porous square fin up to first order for convective tip
boundary condition can be written as:

hðX Þ ¼ � Ncþ fcð ÞefcXþ Nc� fcð ÞefcðX�2Þ

Nc� fcð Þe2fc � Ncþ fcð Þ þ 4fp
3 e2fc þ 1ð Þf2c

�

1

Nc2 � f2c
� �

e2fc � Nc� fcð Þ2e4fc � Ncþ fcð Þ2
2

" # � Ncþ fcð Þ2
8

e�fcðX�2Þ � e2fcðXþ1Þ
h i

þ
(

Nc� fcð Þ2
8

� e�fcðX�6Þ � e�2fcðX�3Þ � e�2fcðX�2Þ þ efcðXþ4Þ
h i

þ 3

4
Nc2 � fc

2� �
e�fcðX�4Þ þ efcðXþ2Þ
h i

�Nc � fc e�fcðX�3Þ þ efcðXþ3Þ� �� 3

4
ðNcþ fcÞ �

1

6
ðNcþ fcÞ e2fcX � efcX

� �þ ðNc� fcÞ e2fc þ e4fc
� �� ��

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(6)

These temperature distributions depend upon the porous and convective parameters. They can be used to
determine the heat transfer rate from the porous fins and the efficiency that will be defined in the next section.

3 Fin Efficiency

Following [23], the actual heat transfer rate, maximum heat transfer rate, and the heat transfer rate of the
un-finned surface can be written as:
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Qact ¼
ZL

0

qcpgbKP
m

ðT � T1Þ2 þ hPð1� fÞðT � T1Þ
� �

dx

Qmax ¼ qcpgbKP
m

ðTb � T1Þ2 þ hPLð1� fÞðTb � T1Þ
� � (7)

The efficiency of the porous fin is defined as the ratio of the actual rate of heat transfer of the fin to the
maximum heat transfer rate and can be written as:

g ¼ Qact

Qmax
¼

RL
0

qcpgbKP
m

ðT � T1Þ2 þ hPð1� fÞðT � T1Þ
� �

dx

qcpgbKP
m

ðTb � T1Þ2 þ hPLð1� fÞðTb � T1Þ
� � (8)

Using dimensionless variables, Eq. (8), and simplifying, we get

g ¼

R1
0

RaDa � h2 þ Nu‘ð1� fÞ � h� 	
dX

RaDaþ Nu‘ð1� fÞ½ � (9)

or g ¼ 1

&p þ &c

Z1

0

&p � h2 þ &c � h
� 	

dX (10)

Thus, the efficiency of the porous fin depends on the porosity, as well as Rayleigh, Darcy, and Nusselt
numbers. The selection of these dimensionless numbers is very vital in improving the efficiency of porous fins.

4 Entropy Generation Model

Following [24], the entropy generation rate for steady flow can be obtained from entropy balance across
the control volume (Fig. 1) and can be written as:

_Sgen ¼ _mðse � siÞ � qx
Tx

þ qxþDx

TxþDx
(11)

Assuming uniform pressure across the control volume, and following [25], the change in entropy can be
written as:

_mðso � siÞ ¼ _mcp ln
T

T1
(12)

Considering the limiting case, Dx ! 0 and using Eqs. (11) and (12) gives:

_Sgen ¼ _mcp ln
T

T1
� 1

T

@qx
@x

dx (13)

Using Darcy’ law, the mass flow rate through the porous fin can be written as:

_m ¼ P � Dx � q � gKbðT � T1Þ=m (14)
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Using Fourier’s law of conduction and Eq. (13), the entropy generation rate can be written as:

_Sgen ¼ P � Dx � q � gKbðT � T1Þ
m

cp ln
T

T1
� 1

T

@qx
@x

Dx

¼ P � Dx � q � gKbðT � T1Þ
m

cp ln
T

T1
þ keff

T
Ac

d2T

dx2
Dx

(15)

Thus, the entropy generation rate per unit volume of the longitudinal porous fin of the arbitrary cross-
section can be written as:

_S
000
gen ¼

_Sgen
Ac � dx ¼

keff
T

d2T

dx2
þ P � q � gKbðT � T1Þ

Acm
cp ln

T

T1
(16)

In dimensionless form, the total entropy generation rate can be written as:

Nst ¼
_S
000
gen

kf =Ac
¼ kr

Ac

L2


 �
Tr

1þ hTr


 �
d2h
dX 2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nsh

þ P

‘


 �
Ra � Da lnð1þ hTrÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nspm

(17)

where Nsh and Nspm are the dimensionless entropy generation rates due to heat and porous medium, kr and
Tr are the dimensionless ratios and defined as:

kr¼ keff
kf

and Tr ¼ DTb
T1

(18)

while the characteristic length ‘, cross-sectional area Ac and the perimeter P of the square fin are defined as:

‘ ¼ s;Ac ¼ s2;P ¼ 4s (19)

The average entropy generation rate in the longitudinal fin can be determined from:

Nsavg ¼
Z 1

0
NsðX Þ � dX (20)

The irreversibility ratio also known as Bejan number [26] is defined as:

Be ¼ Nsh
Nst

(21)

Concerning the entropy generation analysis of convective heat transfer problems, Bejan presented the
expression of irreversibility distribution ratio as follows [26]:

� ¼ Nspm
Nsh

(22)

It is noteworthy to underline that when � > 1, the porous medium irreversibility Nspm is the major
source, whereas if 0 < � < 1 the heat transfer irreversibility Nsh is dominant when � ¼ 1; the
irreversibility due to heat transfer (Nsh) and due to porous medium (Nspm) have the same share.

5 Optimization

The optimization algorithms, searching for optimal solutions, are based on the information they collect
through several iterations [27]. To avoid local search, three metaheuristic algorithms, including firefly
algorithm (FFA), particle swarm optimization (PSO), and hybrid PSO-FFA algorithms are used for global
optimization. The general optimization procedure and the essential aspects of each algorithm will be
presented in the coming sections.
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5.1 Optimization Procedure

In this study, the dimensionless average entropy generation rate Nsavg is the objective function (fitness
function) that is to be minimized subject to the following constraints. So, the mathematical model for the
optimization of Nsavg can be written as:

Minimize f ðxÞ ¼ Nsavg (23)

Subject to

10 � Ra � 50; 0 < Da < 1; 0:5 � f � 0:9; 10 � NuL � 50; 100 � ks � 500 (24)

We focus on finding the optimal values of the above parameters through the selected algorithms. The
other fixed parameters are given in Tab. 1.

5.2 Firefly Algorithm

Based on the behavior of fireflies, Yang [28] presented the FFA as a very effective algorithm. The FFA is
flexible to both continuous and clustering problems because of its several characteristics [29,30]. The key
advantages of FFA arise in two main parts: The ability to deal with the automatic subdivision and
multimodality. Therefore, the population of FFA is automatically divided into groups, with each group
trying to achieve the optimal local position.

The main idea of the FFA relies on the attraction of fireflies to each other depending on the strength of
brightness, aware that sceneries will determine the strength of the brightness of an objective function.
According to that, the fireflies are going to move to the brighter ones, whereas a firefly will have a
random movement if there are no brighter fireflies. According to Yang [28], the new position of a firefly i
in reference to a brighter firefly j is given by:

xiðt þ 1Þ ¼ xiðtÞ þ b0e
�c�r2 ijðxikðtÞ � xi;pbestðtÞÞxiðtÞ þ at 2t

i (25)

where xiðtÞ represents the position of the firefly xi at time t (i = 1, 2,…, N), where N is the number of fireflies.
b0 represents the attractiveness at a distance of r ¼ 0 and if b0 ¼ 0, then the firefly xi has a random walk, c�
represents the brightness absorption parameter, α represents a random vector over the interval [0,1], at and 2t

i
represent random parameter and vector, respectively, at time t [31]. FFA techniques and practical steps are
briefly summarized in the following.

1. The FFA starts with N initial solutions (N fireflies) that are generated randomly. Note that initial
solutions provide the initial values of the optimal variables Ra;Da;f;NuL; s; and ks: These initial
solutions will develop over time to create a new generation. Furthermore, the random vector α
and the brightness absorption parameter c� are assigned fixed parameters. Here, the parameter c�
defines the convergence speed between the fireflies and contributes to how the FFA behaves.

Table 1: Constant values of fixed parameters

Fixed Parameters Values

L (m) 0.1

kf (W/m-K) 0.02

Tb (K) 373

T∞ (K) 300
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2. The optimization process starts by generating initial populations. In every iteration, the attractiveness
(β) and the distance (r) values of the fireflies are computed from the best firefly.

3. The value of light intensity IðrÞ changes with the firefly movements. This means that the positions
of the fireflies are affected depending on their performance given the attractiveness and distance
values IiðrÞ > IjðrÞ; then the firefly i will move towards the firefly j; otherwise, the firefly i
will move randomly.

4. Announce the optimal solution (optimal value of Ns). Fig. 2 illustrates the structure of the FFA
algorithm.

5.3 Particle Swarm Optimization Algorithm

The working principle of the PSO algorithm was inspired by the birds flock’s social behavior and the
fish’s shoaling behavior [32,33]. The solutions generated by the PSO algorithm have the name particles.
Note that particles of this work are the values of Ra, Da, f, Nul, s, and Ks. Using the Eqs. (26) and (27),
each particle flies according to the change in its velocity vector v and its position x [32,34]:

vikðt þ 1Þ ¼ vikðtÞ þ c1 � r1kðtÞðyikðtÞ � xikðtÞÞ þ c2 � r2kðtÞðy^ ikðtÞ � xikðtÞÞ (26)

xiðt þ 1Þ ¼ xiðtÞ þ viðt þ 1Þ (27)

Initialize a random group of fireflies
(Ra,Da,ø,Nul,s,Ks)

Evaluate the value of the fitness
function(Nsavg)

The termination criterion
has been met

Update location of all
fireflies using Eq. (25)

No

Yes

End

Update all particles using
Eqns. (26) and (27)

Update all particles
using Eqns. (28) and (29)

PSO

FFA FFA-PSO

Start

Figure 2: Structure of FFA, PSO, and hybrid FFA-PSO algorithms
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where xiðtÞ; viðtÞ; yiðtÞ, and ŷ kðtÞ are the position, the velocity, the best personal position (pbest), and the
global best position (gbest) of each respectively, while c1 and c1 are the learning factors (acceleration
coefficients) of pbest in the interval [0,2], r1 and r2 are the random numbers in the interval [0,1].

Kennedy and Eberhart suggested c1 ¼ c2 ¼ 1:49 in his calculations [35]. Note that, when the best
particle, i.e., the solution with the best performance (optimal value of Nsavg), is determined, the other
particles will follow it. Additionally, each particle will retain the best position it achieved before.

5.4 Hybrid FFA-PSO Algorithm

The purpose of using of PSO-FFA is improving the overall performance of FFA and PSO algorithm in a
research field by combining the two algorithms together so that the weaknesses of one algorithm are
compensated by the strengths of other algorithm [36]. The new position vectors of the FFA-PSO is
generated randomly by using the following equations [36].

xi;kðt þ 1Þ ¼ xikðtÞ þ vikðt þ 1Þ (28)

viðt þ 1Þ ¼ vikðtÞ þ c1e
�c�r12 ijðxikðtÞ � xi;pbestðtÞÞ þ c2e

�c�r22 ijðxikðtÞ � xi;gbestðtÞÞ þ aðc � �1Þ (29)

where r1 is the Cartesian distance between xikðtÞ and xi;pbestðtÞ. r1 is the Cartesian distance between xikðtÞ and
xi;gbestðtÞ.

6 Results and Discussion

This study demonstrates the mathematical modeling and optimization of longitudinal porous fins of
square cross-section. For the modeling, the first and second laws of thermodynamics together with Darcy
and Fourier’s laws, are employed, whereas three metaheuristic algorithms are utilized to minimize the
entropy generation rate. The dimensionless nonlinear differential equations are solved analytically using
Homotopy Perturbation Method (HPM) for the two selected fin tip boundary conditions. The effects of
dimensionless numbers, including Rayleigh, Darcy, Nusselt numbers on the dimensionless temperature,
fin efficiency, total entropy generation rate, and Bejan number, are investigated theoretically. In each case,
it is assumed that f ¼ 0:8; ks ¼ 200; Nu‘ ¼ 20; s ¼ 0:01.

6.1 Theoretical Results

Figs. 3(a) and 3(b) display the effects of Rayleigh and Darcy numbers on the dimensionless temperature
along the fin surface for the adiabatic and convective tip conditions. The Rayleigh number plays the same
role in free convection, as Reynolds number plays in the forced convection. The dimensionless
temperature is found to be maximum at the base surface and decreases along the fin surface. As the
Rayleigh number increases, the dimensionless temperature decreases in each case. For convective fin tip
condition, the Rayleigh number enables a better heat transfer rate at higher values of Nu‘. The Darcy
number signifies the comparative impact of the permeability of the porous medium. It is observed that the
dimensionless temperature decreases with an increase in the Darcy number, see Figs. 3(a) and 3(b). The
variation of fin efficiency with both Ra and Da along the fin surface is depicted in Figs. 4(a) and 4(b) for
both boundary conditions, respectively. Like temperature, the fin efficiency is maximum at the base
surface and decreases along the fin surface. Both Ra and Da tend to reduce the efficiency of the fin. As
Da increases, the ideal heat transfer rate increases, which reduces the fin efficiency.

The total dimensionless entropy generation rate Nst includes the entropy generation due to heat transfer
Nsh and porous medium Nspm. In the porous medium, the entropy generation rate depends upon Ra and Da.
The total dimensionless entropy generation rate is plotted versus the fin length in Figs. 5(a) and 5(b) for both
tip boundary conditions. In each case, the effects of Ra and Da on Nst are displayed for the same fixed
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parameters. As expected, the total dimensionless entropy generation rate is maximum at the base surface and
decreases along the fin length. As the Rayleigh number increases, the total dimensionless entropy generation
rate decreases due to the decrease in temperature gradients. As the Darcy number decreases, the permeability
of the porous medium decreases, and as a result, the entropy generation rate also decreases. The Bejan
number is plotted versus fin length in Figs. 6(a) and 6(b) for both boundary conditions. The effect of Ra
and Da on the Bejan number are displayed. It is shown that the Bejan number decreases with an increase
in the Ra, but increases with Da. In fact, Bejan number shows the relative measure of irreversibility due
to heat transfer over irreversibility due to porous medium. In both cases, the Bejan number is close to
unity which indicates the dominance of irreversibility due to heat transfer, see Fig. 6.
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Figure 3: Effects of Rayleigh and Darcy numbers on dimensionless temperature for (a) adiabatic tip and (b)
convective tip condition
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Figure 4: Effects of Rayleigh and Darcy numbers on fin efficiency for (a) adiabatic tip and (b) convective tip
condition
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6.2 Simulation Results

In this study, a longitudinal square cross-section porous fin is modeled and optimized using three robust
metaheuristic algorithms, namely, PSO, FFA, and hybrid PSO-FFA, for the two selected boundary
conditions. The personal and global best values of Nsavg are plotted in Fig. 7(a) adiabatic tip and Fig. 7
(b) convective tip conditions using the PSO algorithm. During the optimization process, the position of
each particle will be automatically adjusted in the direction based on the best position founded by itself
(personal best), and the other is the best position in the whole swarm (Global best) [32]. In each iteration,
the algorithms memorized the personal best value of the fitness function (the lowest value of Nsavg
founded by that iteration). Moreover, each iteration memorized the Global best value of the fitness
function (the lowest value of Nsavg found so far). These curves show a decreasing trend from first
iteration until a point that has no more improvement, and then there is convergence in the algorithms. For
the adiabatic tip condition, the global best value of Nsavg ¼ 0:83 is found after 8 iterations, whereas for
the convective tip condition, the global best value of Nsavg ¼ 0:84 is found after 38 iterations.
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Figure 5: Effects of Rayleigh and Darcy numbers on total dimensionless EGR for (a) adiabatic tip and (b)
convective tip condition
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Figure 6: Effects of Rayleigh and Darcy numbers on Bejan number for (a) adiabatic tip and (b) convective
tip condition

CMC, 2021, vol.67, no.1 83



Figs. 8 and 9 display the convergence of Nsavg using PSO for both fin tip conditions, respectively. The
constriction factors (c1 and c2) were introduced into PSO to improve its search performance, where
c1 ¼ c2 ¼ 1:49 has been suggested by Zeng et al. [35]. The constriction factors represent jumping steps
that affect finding the best solutions. In order to find appropriate values for the constriction factors (PSO
algorithm parameters), we examined different values for c1 and c2 find the optimum value of Nsavg: As a
result, we found that the best values for the parameters for both boundary conditions are c1 ¼ c2 ¼ 1:9;
as shown in Fig. 8(a) adiabatic tip and Fig. 8(b) convective tip conditions. The initial population that we
have used is 80, and the number of iterations is 100. As a result, the best values of PSO algorithm
parameters are c1 ¼ c2 ¼ 1:9: PSO algorithm parameters represent jumping steps that affect finding the
minimum possible value.

Figure 7: Personal and global best values of Nsavg using PSO algorithm for (a) adiabatic tip and (b)
convective tip conditions

Figure 8: (a) Convergence of Nsavg for adiabatic tip condition using PSO algorithm, (b) Convergence of
Nsavg for convective tip condition using PSO algorithm
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In addition to the PSO algorithm, we also made an effort to improve the objective function Nsavg of
longitudinal porous fins by calculating optimal values using FFA and hybrid PSO-FFA. The initial
population starts by 80, and the number of iterations is determined by 100, while c1 ¼ c2 ¼ 1:9; a¼ 2;
and c ¼ 0:05: In the first experiment (adiabatic tip condition), the optimal value of Nsavg is 0.8261, and
the corresponding value of g is 0.91.

Fig. 9(a) adiabatic tip and Fig. 9(b) convective tip conditions demonstrate the convergence of the fitness
functions Nsavg for both fin tip conditions using three selected MAs. The best results or the minimum entropy
generation rate obtained after all the runs have been shown in both figures. MAs examine the whole domain for
improved combinations of design variables, which would give the minimum value of Nsavg is observed that
hybrid PSO-FFA converges after 5 iterations, then PSO converges after 16 iterations, and FFA converges after
80 iterations for the adiabatic fin tip condition. Therefore, PSO-FFA has performed better than FFA and PSO in
terms of convergence speed and computational effort. However, for the convective fin tip condition, the
convergence rate is found slow. Note that the three algorithms determine the same optimal value. As a result,
the best values of the parameters for adiabatic tip conditions are Ra ¼ 10;Da ¼ 0:0010;f ¼ 0:5;Nu‘ ¼ 10;
ks ¼ 100 and s ¼ 0:008 (Fig. 9(a)).

On the other hand, the optimal value of Nsavg for the convective tip condition is 0.8425, as shown in
Fig. 9(b). This figure shows that the optimum value obtained is the same value that was determined using
the three algorithms. In addition, the best values of the parameters are Ra ¼ 10;Da ¼ 0:0010;
f ¼ 0:5;Nu‘ ¼ 10; ks ¼ 100, and s ¼ 0:008.

7 Conclusion

Metaheuristic algorithms have been used to optimize the thermal performance of longitudinal porous
fins with a square cross-section using the entropy generation model. The information of the local and
global best positions is exploited to update the particle’s velocity in each iteration. The effects of two
different tip boundary conditions on the performance of fins are examined. The following important
conclusions are drawn from this study:

Rayleigh and Darcy’s numbers reduce the dimensionless temperature and fin efficiency along the
fin surface.

� The convective tip condition provides higher efficiency than the adiabatic tip condition.

Figure 9: (a) Convergence of Nsavg for adiabatic tip condition-comparison of three Mas, (b) Convergence of
Nsavg for convective tip condition-comparison of three Mas
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� The Rayleigh number reduces the total entropy generation rate, whereas the Darcy number increases
the entropy generation rate.

� The optimum value obtained is the same value that was determined using the three algorithms

� The hybrid PSO-FFA is found to be more efficient than PSO or FFA algorithms in terms of
convergence speed and computational efforts.

� The global best values for both fin tip conditions are found to be very close.
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