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Abstract: The development of mathematical modeling of infectious diseases is
a key research area in various �elds including ecology and epidemiology. One
aim of these models is to understand the dynamics of behavior in infectious
diseases. For the new strain of coronavirus (COVID-19), there is no vaccine
to protect people and to prevent its spread so far. Instead, control strategies
associated with health care, such as social distancing, quarantine, travel restric-
tions, can be adopted to control the pandemic of COVID-19. This article sheds
light on the dynamical behaviors of nonlinear COVID-19 models based on
two methods: the homotopy perturbation method (HPM) and the modi�ed
reduced differential transform method (MRDTM). We invoke a novel signal
�ow graph that is used to describe the COVID-19 model. Through our mathe-
matical studies, it is revealed that social distancing between potentially infected
individuals who are carrying the virus and healthy individuals can decrease
or interrupt the spread of the virus. The numerical simulation results are in
reasonable agreement with the study predictions. The free equilibrium and
stability point for the COVID-19 model are investigated. Also, the existence
of a uniformly stable solution is proved.

Keywords: Nonlinear COVID-19 model; equilibrium point; stability; exis-
tence of uniformly stable; signal �ow graph; homotopy perturbation
method; reduced differential transform method

1 Introduction

Recently, the number of deaths around the world has increased dramatically due to the spread
of the new virus known as Coronavirus (COVID-19). The rapid escalation of cases in almost
all countries has created a real challenge for the entire world especially when the World Health
Organization declared that this virus has become a global pandemic since its outbreak has spread
rapidly from China to the rest of the world. Most countries around the world have implemented
suggested strategies based on restricting the movement or travelling to minimize the spread of
the potentially deadly virus among nations. Despite the negative impact on achieving economic
growth, restricted movement is considered one of the most effective ways to reduce the virus
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transmission in the global community. With the advent of the last two weeks, the number of
cases in the world has grown exponentially in many affected areas and reached over 29 million
throughout the world. Therefore, the spread of (COVID-19) is widely recognized as being one of
the most signi�cant outbreak in the last four decades. At this stage, there is no vaccine against
the new coronavirus COVID-19 and most individuals do not have any immunity that can defend
them against infections. This is why it is very important to address the current challenge of
COVID-19 to prevent infection and to take action to contain any further spread of the virus.
Based on the reports of experts’ medical professionals and dedicated faculty, the virus is primarily
spread through droplets. Therefore, the researchers feel the urge to contribute to promote the idea
of social distancing between potentially infected individuals and healthy individuals to decrease
or diminish the eruption of COVID-19 in all a populations. The challenge of COVID-19 is
now guiding researchers from medicine and molecular biology to applied mathematics toward
mathematical modeling that can play a signi�cant role in predicting, assessing, and controlling
potential outbreaks. In the last few years, numerous mathematical models have been developed to
provide insightful details into many problems of interest including the transmission and control
of infectious diseases. For example, Siettos et al. [1] brie�y reviewed and discussed approaches
that are used for the surveillance and modeling of infectious disease dynamics, while a more
detailed review by [2], also discussed the application programming interface for extending package
EpiMode. Multiscale modeling also has been proposed to deal with infectious diseases. Unlike
single scale modeling, this method ef�ciently captures the large scale features of the system. A
more detailed discussion on multiscale modeling can be found in [3–14]. Here, we restrict attention
to implement the concept of Susceptible-Infected-Removed (SIR) to model and control outbreaks
of COVID-19 is restricted. The researchers aim to develop and support mathematical modeling
of the spread of infectious disease [1,2,15–18]. By using the homotopy perturbation and modi�ed
reduced differential transform methods, the behavior of the Coronavirus can be studied. Despite
the simplicity of this model, signi�cant outcomes are extracted that can assist potential decisions
on the strategy to reduce the risk of spreading the virus. We emphasize that close contact between
susceptible and infectious people is a major risk factor for contributing to infections transmitted
directly in the community (see Figs. 2–6). Therefore, lower transmission is essential for controlling
potential outbreaks. This can be achieved by maintaining physical distances between people and
enforcing self-isolation for infected people.

Section 2 discusses the stability of the nonlinear COVID-19 model. Algebraic analysis and
numerical determination of eigenvalues for the nonlinear COVID-19 model demonstrate the
stability of the system. Section 3 proposes a novel signal �ow chart for the SIR model (see
Fig. 1), which can help in studying the topological structure of the model. Section 4 implements
the homotopy analysis technique to derive the analytic approximate solution for the nonlinear
Coronavirus COVID-19 in Eq. (1), while Section 5 studies the approximate solution for the model
by using MRDTM. Section 6 discusses the numerical results for the model and shows a good
agreement with our predictions.

For the purposes of this discussion, let I (t) be infected individuals who are carrying the virus,
and R (t) be recovered individuals. Let S (t) represents susceptible individuals, and σ represents
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the physical contact number between susceptible and infected individuals. Then the model can be
written in the following form [17,19]:

dR
dτ
= I ,

dI
dτ
= σ (1−R− I) I − I ,

(1)

together with S (t)= 1−R− I . Let τ = t/T where t represents the time in days, and T represents
the time of transmission of the virus which changes from 2–4 weeks. At the start of the outbreak
in day t= 0, we consider the initial number of infected people is I (0)= 0, and the initial recovered
people is R (0)= 0.

2 The Equilibrium Point and Stability of Nonlinear COVID-19 Model

This section discusses the equilibrium point and the stability of the nonlinear COVID-19
model (1).

2.1 Equilibrium Points
This subsection examines the equilibrium points of the nonlinear COVID-19 model. The

model has two equilibrium points. For more insights regarding the dynamical behaviors system
see [20]. Thus, by solving the next equations, the equilibrium points can be decided.

dR
dτ
= I = 0,

dI
dτ
= σ (1−R− I) I − I = 0.

(2)

This System (2) has two equilibrium points: E0 (0, 0) and E1 (R, 0) .

2.2 Studying the Stability of the Two Fixed Point
We calculate the Jacobian matrix for the Model (1) as follows:

J =

(
0 1

0 σ − 1− σR

)
. (3)

To study the stability of System (2), we need to study the stability of Eq. (2).

• The Jacobian matrix J (E0) for Model (1) is given by

J (E0)=

(
0 1

0 σ − 1

)
. (4)

Consequently, we have

|J − λI| =

∣∣∣∣∣−λ 1

0 σ − 1− λ

∣∣∣∣∣= 0. (5)
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Then, the eigenvalues are given by

λ= 0 and λ=−1+ σ , (5a)

the solution is stable if σ < 1.

• The Jacobian matrix J (E1) for model (1) is given by

J (E1)=

(
0 1

0 σ − 1− σR

)
. (6)

Consequently, we have

|J − λI| =

∣∣∣∣∣−λ 1

0 σ − 1− σR− λ

∣∣∣∣∣= 0, (6a)

then, the eigenvalues are given by

λ= 0 and λ= σ − 1− σR, (6b)

the solution is stable if σ < 1+ σR.

2.3 Existence of Uniformly Stable Solution
This subsection explores the existence of uniformly stable solution. Let us de�ne

f1 (R, I)= I ,

f2 (R, I)= σ (1−R− I) I − I .
(7)

Let D= {R, I ∈< : |R, I ≤ a, t ∈ [0, τT ]|} .

We have, at D :

∂f1
∂R
= 0,

∂f1
∂I
= 1,

∂f2
∂R
=−σ I ,

∂f2
∂I
=−1+ σ − σR− 2σ I ,∣∣∣∣∂f1∂R

∣∣∣∣≤ k⇒ f1 = k1,

∣∣∣∣∂f1∂I
∣∣∣∣≤ k2 = 1,

∣∣∣∣∂f2∂R
∣∣∣∣≤ k3,

∣∣∣∣∂f2∂I
∣∣∣∣≤ k4,

where k1, k2, k3, and k4 are positive constants. It is suggested that every one of both capacities
f1 and f2 agree with the Lipschitz condition as the two functions are absolutely continuous. For
more information on the existence and uniqueness, see [13,14,20].

3 Signal Flow Graph

The signal �ow graph is becoming more widely used since it empowers us with the �exibility
to construct and develop the electronic circuits for dynamical frameworks. It can be utilized to
delineate signals between the factors of the framework. In this section, the analysis is based upon
a signal �ow graph that is used to describe the COVID-19 model. More detailed discussion on
the diagram theory can be found in [12–14,21]. The constructed adjacency matrix empowers us to
determine all eigenvalues and the associated eigenvectors.
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Fig. 1 shows the sign �ow diagram
→

G of the framework in which every vertex communicate
with the condition of the framework. There is an edge (v1, v2) if the state v1 directly affects the
state v2.

I

R I^2 RI

Figure 1: Proposition signal �ow graph of the model

In this manner, the contiguousness grid A(
→

G) is as per the following:

• Adjacency matrix: The signal �ow graph of the system has the following adjacency matrix

A(
→

G)=


R

I

RI

I2




0 1 0 0

0 1 1 1

1 1 0 0

0 1 0 0

 .

• Eigenvalues: The above matrix has four eigenvalues, namely λ1 = 0, λ2 = 1.839286755

λ3 =−0.4196433777+ 0.60629073i and λ4 =−0.4196433777− 0.60629073i.

• Eigenvectors: The corresponding eigenvectors to these eigenvalues are easily found to be
1
1.839286755
1.543689013
1

 ,


0.9999999984+ 1.450752802e (−10) i
−0.4196433772+ 0.6062907290i
0.2281554928− 1.115142508i
1

 ,


0.9999999984− 1.450752802e (−10) i
−0.4196433772− 0.6062907290i
0.2281554928+ 1.115142508i
1

 ,


0
0
0
1

 .

Which can help study the topological structure of the mode see [9,13].



680 CMC, 2021, vol.67, no.1

4 HPM Approximates the Solution for Nonlinear COVID-19 Model

This section presents the analytic approximate solution to the nonlinear COVID-19 (1).
By using HPM technique [22,23], we construct a homotopy R (t, p) : R+ × [0, 1] → R+,
which satis�es:

dR
dτ
− pI = 0, (8)

dI
dτ
+ I + σp (1−R− 1) I = 0. (9)

According to the HPM technique, we suppose the solutions of Eqs. (8) and (9) as a power
series in p, where p is the embedding small parameter:

R (t)=R0 (τ )+ pR1 (τ )+ p2R2 (τ )+ p3R3 (τ )+ · · · (10)

I (t)= I0 (τ )+ pI1 (τ )+ p2I2 (τ )+ p3I3 (τ )+ · · · (11)

Substituting Eqs. (10) and (11) into Eqs. (8) and (9), collecting the coef�cients p, after some
calculations we obtain:

dR0 (τ )

dτ
= 0, R0 (0)=A,

dR1 (τ )

dτ
− I0 (τ )= 0, R1 (0)= 0,

dR2 (τ )

dτ
− I1 (τ )= 0, R2 (0)= 0,

dR3 (τ )

dτ
− I2 (τ )= 0, R3 (0)= 0, (12)

and

dI0 (τ )
dτ

+ I0 (τ )= 0, vI0 (0)=B,

dI1 (τ )
dτ

− I1 (τ )+ σp [1−R0 (τ )− I0 (τ )] I0 (τ )= 0, I1 (0)= 0,

dI2 (τ )
dτ

− I2 (τ )+ σp [1−R1 (τ )− I1 (τ )] I1 (τ )= 0, I2 (0)= 0, (13)

and so on. The above system of differential Eqs. (12) and (13) has the following solutions:

R0 (τ )=A,

R1 (τ )=−Be−τ +B,

R2 (τ )= σB
[
−B

(
−τe−τ − e−τ

)
−

1
2
Be−2τ

+Be−τ − τe−τ − e−τ
]
− σB

(
3
2
B− 1

)
, (14)
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and

I0 (τ )=Be−τ

I1 (τ )= e−τ
[
−σB

(
Bτ −Be−τ − τ

)
− σB2

]
,

I2 (τ )=
1
2
σBe−τ

(
4σB2

− 2σB+ 2B
)
−

1
2
σBe−τ

[
4σB2τe−τ + 6σB2e−τ − 2σB2e−2τ

− σB2τ 2

−2σB2τ − 2σBe−τ + 2σBτ + 2σBτ 2
− 4e−τσBτ + 2Bτ + 2Be−τ − στ 2

]
, (15)

and so on. If p→ 1 the analytic approximate solution takes the following form:

R (τ )=A−Be−τ +B+ σB
[
−B

(
−τe−τ − e−τ

)
−

1
2
Be−2τ

+Be−τ − τe−τ − e−τ
]
− σB

(
3
2
B− 1

)
,

(16)

I (τ )= Be−τ + e−τ
[
−σB

(
Bτ −Be−τ − τ

)
− σB2

]
+

1
2
σBe−τ

(
4σB2

− 2σB+ 2B
)

−
1
2
σBe−τ

[
4σB2τe−τ + 6σB2e−τ − 2σB2e−2τ

− σB2τ 2
− 2σB2τ − 2σBe−τ

+2σBτ + 2σBτ 2
− 4e−τσBτ + 2Bτ + 2Be−τ − στ 2

]
. (17)

Figs. 2–5 discuss the behavior of the approximate solution (16) and (17), where A = 0.001
and B= 0.01.

Figure 2: The evolution of the outbreak depends on the contact number σ
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Figure 3: Solutions of the COVID-19 model over 200 days with an initial recovered individuals
of 0. The recovered fractions as a function of time t

Figure 4: Solutions of the COVID-19 model over 200 days with an initial infected individuals of
0.1, an initial recovered individuals of 0, and a contact rate σ of 3

Figure 5: Evolution of the asymptotic fraction of infected individuals as a function of contact
number σ
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Figure 6: Evolution of the asymptotic fraction of recovered individuals after as a function of
contact number σ

5 RDTM Method Approximates the Solution for Nonlinear COVID-19 Model

In this section, we study the approximate solution to the nonlinear coronavirus Model (1)
which is subject to the initial conditions at the beginning of the outbreak R (0)= 0, and I (0)=
0.001. Applying the RDT technique [24–29], we obtain the following iteration relations:

(k+ 1)Rk+1 (τ )= Ik (τ ) ,

(k+ 1)Ik+1(τ )= (σ − 1)Ik(τ )− σ
k∑
r=0

Ir(τ )Ik−r(τ )− σ
k∑
r=0

Rr(τ )Ik−r(τ ),

or

Rk+1 (τ )=
Ik (τ )
(k+ 1)

,

Ik+1 (τ )=
1

(k+ 1)

(σ − 1) Ik (τ )− σ
k∑
r=0

Ir (τ ) Ik−r (τ )− σ
k∑
r=0

Rr (τ ) Ik−r (τ )

 .

Finally, the differential inverse transforms are given by:

I (t)=
N∑
n=0

In (t/T)n , R (t)=
N∑
n=0

Rn (t/T)n . (18)

Consequently, after some calculations we get the approximate series solutions as

I (t)= 0.001
(
t
T

)
+

1
2

(
t
T

)2 [
0.001 (σ − 1)− σ × 10−6

]
+

1
6

(
t
T

)3 [
0.001 (σ − 1)− σ × 10−6

]
(σ − 1)− σ × 10−6

− 0.002
[
0.001 (σ − 1)− σ × 10−6

]
σ+
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R (t)= 0.001+
(
t
T

)[
0.001 (σ − 1)− σ × 10−6

]
+

1
2

(
t
T

)2 [
0.001 (σ − 1)− σ × 10−6

)
(σ − 1)− σ × 10−6

− 0.002
[
0.001 (σ − 1)− σ × 10−6

]
σ + . . .

Tab. 1 shows how the number of susceptible, infected, and recovered individuals changes over
20 days.

Table 1: Outbreak of the COVID-19 over 20 days. The initial infected people is 10−3, the initial
recovered people is 0, the transmission rate σ is 2.5

Days (t) R (t) I (t) S (t) I (t)+ S (t)+R (t)

0 0 0.001 0.999 ≈ 1
2 0.000106837 0.0011587 0.998734 ≈ 1
4 0.000224992 0.00132914 0.998446 ≈ 1
6 0.000351346 0.00150273 0.998146 ≈ 1
8 0.00048327 0.00167298 0.997844 ≈ 1
10 0.00061856 0.001835 0.997546 ≈ 1
12 0.000755383 0.00198522 0.997259 ≈ 1
14 0.000892221 0.00212117 0.996987 ≈ 1
16 0.00102783 0.00224128 0.996731 ≈ 1
18 0.000116122 0.00234466 0.996494 ≈ 1
20 0.00129156 0.00243101 0.996277 ≈ 1

6 Numerical Simulations and Discussion

This section presents numerical simulations to illustrate the key aspects of the development
of analysis of COVID-19. Figs. 2–4 illustrate a typical scenario for the dynamical behavior of
COVID-19. The spread of the virus grows exponentially until much of the population is infected
or recovered, at which point the risk of infections begins to decline. Fig. 2 shows that the risk
of spreading the virus depends on the contact number σ between susceptible and infected people.
It is clear that as the contact number σ increases; the proportion of infected people increases
rapidly, resulting in a decreasing number of susceptible populations (Fig. 3). The importance of
physical distance can be understood by reducing the contact number between susceptible and
infected people from σ = 3 to σ = 1.7.

As shown in Fig. 3, the coronavirus outbreak could reach its peak on around day 35–40, with
almost 28% of the population infected, while 20% of the population recovered from the disease.
Most importantly, it is obvious that towards the end of the epidemic, around 60% of people
remain susceptible, this means the susceptible people escaping from contracting infectious diseases
and the COVID-19 has died out before everyone in the population has contracted it. Figs. 5
and 6 represent respectively, the evolution of the asymptotic fraction of infected and recovered
individuals as a function of physical contact number σ .
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7 Conclusion

This article explores the behavior of COVID-19 model by using the homotopy perturbation
and modi�ed reduced differential transform methods. The free disease equilibrium and stability
point for the COVID-19 model are discussed. The model is described by a novel signal �ow
chart. Through our mathematical studies, the severity of the virus is clari�ed, which shows more
in�uence by increasing the contact number. The numerical simulations demonstrate that the close
connect between susceptible and infectious individuals is a major risk factor for spreading the
virus while maintaining physical distance is essential to reduce the risk of spreading the virus.
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