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ABSTRACT

Single-channel sewage pumps are generally used to transport solid-liquid two-phase media consisting of a fluid and
solid particles due to the good non-clogging property of such devices. However, the non-axisymmetric structure of
the impeller of this type of pumps generally induces flow asymmetry, oscillatory outflow during operations, and
hydraulic imbalance. In severe cases, these effects can jeopardize the safety and stability of the overall pump. In
the present study, such a problem is investigated in the framework of a Mixture multiphase flow method coupled
with a RNG turbulence model used to determine the structure of the flow field and the related motion of trans-
ported particles. It is shown that under different inlet particle concentrations, the flow field in the pump exhibits
periodic variations of the pressure. The volume fraction of solid particles at the trailing edge of the suction surface
of the blade is the largest, and solid particles tend to be concentrated at the outer edge of the pump body. With a rise
in import particle content, the pressure and volume fraction of particles in the sewage pump also increase; for a fixed
inlet particle concentration, the pressure pulsation amplitude increases with an increase in the flow rate. In addition,
under small flow conditions, as the inlet particle concentration increases, the flow field leaving the sewage pump
diaphragm near the outlet of the volute becomes more turbulent, and even a secondary back-flow vortex appears.
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1 Introduction

Single-channel sewage pumps are widely used in many industries, such as paper, coal, agriculture,
environmental protection, mining and aviation, because of their excellent non-clogging performance, wide
high efficiency area, steep lift curve and good non-destructive properties [1–3]. Their wide flow channel
can transport sewage containing large particles of long fibre materials, which has great advantages in
industrial or municipal applications requiring large flow and low head. However, the impeller has a non-
axisymmetric structure, which will inevitably cause flow asymmetry [4–6]. This non-axisymmetric
arrangement of the impeller blades, the pulse outflow and the huge radial force caused by hydraulic
imbalance during operation affect a wide range of applications [7–10].
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As the computational fluid dynamics (CFD) are successfully applied for calculating the flow field inside
the pump and optimizing the design of the pump flow passages [11], CFD technology has gradually become a
useful tool for the numerical prediction of solid-liquid two-phase flows of the pump. There has been a good
deal of investigation into solid-liquid two-phase flow, even regarding nanofluids [12]. Hussain et al. [13]
analysed the thermal performance of radiators in normal channel and small channel environments under
different volume concentrations of water and TiO2-H2 by using the fluent numerical simulation method.
Liu et al. [14] simulated the movement of particles with a particle size of 1–12 mm at different velocities.
They found that large particles were more concentrated in the rear cover and the middle flow channel and
small particles tended to gather at the back. Zhang et al. [15] studied the movement trajectories of
particles with different concentrations, sizes and densities, and found that the pump head and efficiency
decreased with the increase of particle size or concentration. However, the effect of particle density on
performance is relatively small. The particles are mainly concentrated on the working surface of the
impeller. With the decrease of particle size, particles tend to migrate to the back and the segregation
phenomenon becomes less obvious. Zhao et al. [16] also simulated the regular flow of solid-liquid two-
phase flow in the full flow channel of the dual-channel pump under different particle size and particle
volume concentration conditions. They found that the solid phase is mainly concentrated on the working
face and back cover plate at the impeller outlet. The larger the particle size, the more the particle impact
point was concentrated on the impeller working surface and the more obvious the segregation effect of
the solid phase. Shi et al. [17] studied the effects of particle solid phase volume distribution and particle
diameter on the solid-liquid two-phase flow in a submersible axial flow pump. They found that solid
particles were mainly distributed on the impeller pressure side in the impeller flow channel and were less
distribeted on the impeller suction surface. As the particle size increased, there was a tendency for
particles to move from the impeller pressure side to the back and to migrate to the outlet on the back.
With the particle solid phase volume distribution increase, the particles gradually moved toward the inlet
and hub on the blade pressure side, while the particles on the suction surface of the blade continued to
migrate toward the outlet and near to the hub. Lu et al. [18] studied a non-constant constant value
simulation of the solid-liquid two-phase turbulent flow in the dual-channel pump. They found that the
pressure distribution in the channel showed a periodic change with time and that the particles were
concentrated at the outlet of the impeller and at the back cover. Cao et al. [19] studied the solid phase
volume fraction and velocity distribution at different positions of the impeller blades in a three-blade
semi-open sewage pump under different solid phase volume fractions and different flow conditions. They
also explored the influence of solid phase and liquid phase on the internal flow field. Wan et al. [20]
analysed the influence of different particle concentrations on the unsteady characteristics of a centrifugal
pump with five blades. It was found that with the increase of particle concentration, the instantaneous
turbulent kinetic energy in the impeller was significantly enhanced, the pulsating amplitude and the radial
force acting on the impeller increased, but the pressure in the blade rotation channel, the tongue septum
and the radial force acting on the diaphragm decreased. Some other scholars have also conducted related
research [21–27].

At present, most of the researches focus on the abrasion characteristics of the sewage pump with
multiple blades. So far, few researchers have studied on the relationship among the internal flow field,
pressure pulsation and radial force. In this research, a single-blade sewage pump is chosen as the research
object, based on the Mixture model and RNG k‐e turbulence model. The internal flow field inside the
pump with different particle concentration of 5%, 10% and 15% are simulated for the dynamics under
low-flow-rate conditions. The pressure pulsations and radial force in the pump are studied, and then the
the unsteady characteristics of the secondary flow in the volute are researched. The theoretical basis for
the safety and stability of the single-blade sewage pump operation are concluded.
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2 The Investigated Pump and Numerical Simulation Method

2.1 Modeling and Meshing
A single channel sewage pump was chosen as the research object, which was a model pump produced by

Grundfos [28]. The rotational speed is 1470 r/min, and the designed flow is 100.3 m3/h. The inlet and outlet
diameters of the pump are 102 mm and 105 mm, and the specific speed is 167. The more detailed geometric
parameters for the pump can be found in reference [21]. The experimental head at the designed flow rate is
9.2 m. The shaft power is 3250 W, and the efficiency is 78.0%.

The unstructured grid was used in this simulation. The tetrahedron was adopted in the main part, and a
prism layer grid was used near the wall surface to capture the boundary layer flow. As shown in Tab. 1, the
final number of grid point was 2858290 after verification of grid independence. The fluid domain and local
calculation grid of the centrifugal pump are shown in Fig. 1. Compared with the experimental and calculated
head, it can be seen that the trend of the predicted value is basically consistent with the experimental value.
Because of simplified the computational domain in the numerical simulation, the gap between the ring and
the volute was not considered, so the predicted value is slightly higher than the experimental value.

2.2 CFD Numerical Simulation
The internal flow of the pump can be assumed to be incompressible turbulent viscous flow. The water

medium is single-phase flow, while sediment laden flow is typical solid-liquid two-phase flow. The Euler
algorithm can satisfy the continuity equation of solid phase, momentum equation of solid phase,
continuity equation of liquid phase and momentum equation of liquid phase respectively, Euler model is
suitable for solid-liquid two-phase flow. The characteristic of the Euler model is that different phases are

Table 1: Mesh independence verification

Number of grid points Head (m) Shaft power (W) Efficiency (%)

3786459 9.33 3081.3 82.7

2858290 9.36 3085.2 82.9

1856483 9.24 2992.5 80.8

Experiment 9.2 3250 78.0

Figure 1: Computational mesh of the pump
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treated as interpenetrating continuous media [29]. Since the Euler model fully considers the momentum
exchange between different phases when dealing with multi-phase flows, and requires high computing
hardware, it can calculate the flow field comprehensively. The mixture model can be used for two-phase
flow or multiphase flow, and can usually be regarded as a simplified form of the Euler model when the
inertia of the dispersed particles is relatively small. The mixed model solves the momentum equation of
solid-liquid two-phase, and the velocity of discrete phase is represented by relative velocity. It is usually
used in bubble flow, sedimentation and cyclone separators [30]. The dynamic equation is expressed by
Navier Stokes equation, while the particle phase is based on Lagrangian method. The position and
displacement of particles affect the influence of fluid on particles through resistance, so as to realize
mutual coupling [31].

When the mixed model is used for calculation, the continuity equation can be listed according to the
rotating coordinate system method:

r � ðqm~umÞ ¼ 0 (1)

Among them:~um is the mass average relative velocity of the mixed phase, qm is the density of the mixed
phase, and [32]:

~um ¼ alql~ul þ asqs~us
qm

(2)

qm ¼ alql þ asqs (3)

The momentum conservation equation is written as:
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P is local pressure in flow field, τix is the shear stress perpendicular to the i-Axis and pointing to X, fx is
mass force of unit body in X direction, V is velocity vector.

2.3 Turbulence Model
The Reynolds time averaged simulation method was used to simulation because of its better

comprehensive performance [33]. At present, the most widely used model in Reynolds time averaged
simulation method is k–ε model, which includes standard k–ε model, RNG k–ε model and realizable k–ε
model. The standard k–ε model will produce certain distortions when calculating strong swirling flow,
curved wall flow or curved streamline flow. The RNG k–ε model considers the swirling and swirling flow
conditions in the average flow by modifying the turbulent viscosity, it can better simulate the three-
dimensional turbulent flow field. The RNG k–ε model not only has faster calculation efficiency and is
more stable in the calculation process, but also can describe a large range of turbulent flow quite
accurately. Compared with the standard k–ε model, the RNG k–ε model achieves a good simulation of the
solid-liquid organization in the pump, and the simulation results are in good agreement with the measured
data [34]. The RNG k–ε equation is as follows [35]:

@ðqkÞ
@t

þ @ðqkuiÞ
@xi

¼ @

@xj
akle

@k

@xj

� �
þ q Pk � eð Þ (5)

@ qeð Þ
@t

þ @ qeuj
� �
@xj

¼ @

@xj
aele

@e
@xj

� �
þ q

e
k

C�
1ePk � C2ee

� �
(6)

874 FDMP, 2021, vol.17, no.5



where ρ is the fluid density, μ is the dynamic viscosity, k is the turbulent kinetic energy, ε is the turbulent
dissipation rate, Pk is the generation term of the turbulent kinetic energy k due to the average velocity
gradient, and C1ε and C2ε are empirical constants.

where Cμ is the empirical constant, and μt is the turbulent viscosity coefficient, the expression is:

lt ¼ qCl
k2

e
(7)

In formula (12):
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μe is the effective viscosity coefficient, Eij is the time-average strain rate, Pk is the turbulent kinetic
energy generation term. Constant: αk = αε = 1.39, C1ε = 1.42, C2ε = 1.68, η0 = 4.377, β = 0.012.

2.4 Boundary Conditions and Solver Settings
RNG k-ε model was used for turbulence calculation of clear water medium and sandy water medium.

The velocity-pressure coupled PISO method was used in the simulations. For the space discretization, the
pressure standard discretization, momentum, volume fraction, turbulent kinetic energy and turbulent
dissipation rate, the second-order upwind difference scheme was used to ensure the accuracy of
calculation. The sliding grid was selected for the part of the flow field of the impeller, and the static
coordinate system was selected for the rest part. The Wen-Yu model was selected in the interphase
resistance model of the two-phase flow. The inlet boundary condition was set as velocity inlet and the
outlet boundary condition was set as free outflow. The impeller speed was set to 1470 r/min. The wall
roughness was set to 0.04 mm. The non-slip wall boundary condition was adopted for the liquid phase in
sediment laden flow. The free sliding wall boundary condition was adopted for solid phase. However, the
smooth wall boundary condition was adopted for the water medium.

Since the reference pressure has no effect on the calculation of external characteristics of centrifugal pump,
the reference pressure was set to 0. The convergence accuracy was set to 10−5. In order to improve the numerical
simulation efficiency, the results of steady numerical simulation were introduced into unsteady calculation as
initial boundary conditions. Since each time period in the non-steady-state numerical simulation is similar to
the quasi-steady state, to ensure that the quasi-steady state converges within the maximum number of
iterations and increase the accuracy of the calculation results, adjust the time step to 2.267574 * 10−4.

In the simulation, it took 180 time steps for one revolution. After 10 revolutions, it showed obvious
periodicity. Then another 10 revolutions went on in the simulation, and the results of the last
5 revolutions were analyzed. The RNG k-ε model was used in the simulations, which had a high
calculation accuracy for the centrifugal pump internal wall area and separation flow. The flow rate is
0.8 times of the design flow rate. The boundary conditions were the velocity inlet and the pressure outlet,
and the wall treatment was no-slip. In the calculation, the position of pressure fluctuation monitoring
points on the volute was shown in Fig. 2. During the unsteady calculation, the monitoring points are P1,
P2, P3 and P4 along the flow direction. In every time step, the maximum iterations were set as 16.
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In order to further verify the reliability of the calculation model, the X-direction velocity UX and
Y-direction velocity UY obtained from the numerical simulation at the design flow- rate of single-phase
fluid were quantitatively compared with the velocity measured by the laser Doppler velocimeter. The test
table is shown in Fig. 3. The test position of the laser Doppler velocimeter was on the “V” section of the
volute, and a straight line was selected on the section, as shown in Fig. 4. The ordinate Z is the position
of the fluid particle, and the abscissa X is the velocity of the fluid particle. The experimental comparison
is shown in Fig. 5. It can be seen that the calculated the value of UY is basically consistent with the
experimental value, and the error was small. However, the error of UX in the upper part of the section is
slightly larger, but the trend is basically consistent with the experimental value.

Figure 2: Monitoring points locations

Figure 3: Pump test [35]
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3 Pressure Fluctuation of Volute

The transient pressure value was dimensionless by using pressure coefficient. The calculation formula is:

CP ¼ ðPi � PÞ=0:5qu22 (11)

among them: u2 is the peripheral speed of the impeller outlet, m/s; Pi is the transient static pressure value, Pa;
P is the average static pressure value, Pa; q is the density of water, kg/m3.

Fig. 6 shows the time domain diagram of pressure fluctuation under different particle concentrations at
monitoring points P1, P2, P3 and P4, respectively. It can be seen that the pressure fluctuation waveforms of
the four monitoring points show obvious periodic changed, and the time interval between the two adjacent
peaks was 0.04 s. The maximum value of CP in positive direction was greater than that in negative absolute
value. P2 monitoring point has the largest range of pressure fluctuation. The pressure fluctuation of
P1 monitoring point near the tongue was small. The peak values of P3 and P4 were in the middle and
relatively closed. With the increased of particle concentration, the pressure fluctuation amplitude of the
four monitoring points increased.

Fig. 7 shows the frequency domain diagram of P1–P4 pressure pulsation obtained by FFT. It shows that
the four monitoring points all exhibited similar pressure pulse frequency domain characteristics. It can be
seen from Figs. 7(a)–7(c) that under low flow conditions, the maximum pressure fluctuation amplitude of
each monitoring point appeared at the blade frequency of about 25 Hz. The largest pressure fluctuation

Figure 4: Cross section of volute. (a) Section V, (b) LDV test location
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Figure 5: Test comparison [10]
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amplitude was at the P2 monitoring point, with the smallest at the P4 monitoring point near the outlet. Under
low flow rate conditions, with the increase of particle concentration, the pressure fluctuation amplitude of the
four monitoring points increased (Figs. 6(a) and 6(b)). When the particle concentration increased from 5% to
15%, the pressure fluctuation amplitudes of P1, P2 and P3 first increased and then decreased, while the
pressure fluctuation amplitude of P4 near the outlet increased. The amplitude of pressure fluctuation of
the four monitoring points was relatively small. The pressure fluctuation amplitude of P2 was always
high, and the pressure fluctuation amplitudes of the other three were relatively close and relatively small
compared with P1.

Fig. 8 shows the pressure pulsations of four monitoring points at different inlet particle concentrations
under rated conditions. Fig. 9 shows the pressure pulsation diagram of four monitoring points with different
inlet particles under high flow rate conditions. The overall change in trend of pressure fluctuation at each
monitoring point under rated condition and high flow rate conditions showed little difference to that
under low flow conditions. It can be concluded that the pressure fluctuation amplitude of each monitoring
point in the volute increased with the increase of flow rate under the same inlet particle concentration.
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Figure 6: Pressure fluctuations at monitoring locations of volute. (a) 5% particle concentration, (b) 10%
particle concentration, (c) 15% particle concentration
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Figure 7: Frequency domain diagram of pressure pulsation at the monitoring point on the volute under low
flow conditions. (a) 5% particle concentration, (b) 10% particle concentration, (c) 15% particle concentration

Figure 8: Frequency domain diagram of pressure pulsation at the monitoring point on the volute under rated
flow conditions. (a) 5% particle concentration, (b) 10% particle concentration, (c) 15% particle concentration

Figure 9: Frequency domain diagram of pressure pulsation at the monitoring point on the volute under high
flow conditions. (a) 5% particle concentration, (b) 10% particle concentration, (c) 15% particle concentration

FDMP, 2021, vol.17, no.5 879



4 Flow Field Analysis in the Volute

Four typical moments of impeller rotation were selected in order to observe the secondary flow changes
in the volute, with T a rotation period of the impeller. The distribution of particles in the volute with different
particle concentrations was observed in a cycle and the variation characteristics of secondary flow in the
volute were analysed based on the cross-section pressure distribution and streamline diagram. Fig. 10
shows that distribution of the volume fraction of particles in the volute changed periodically with the
rotation of the impeller at low flow rate. In one cycle, the distribution of particles on the impeller wall
showed little changed. The volume fraction of the volute from the tongue to the eighth section along the
flow direction was high, with a maximum value of 5.4%. The area with lower particle volume fraction
appeared in the tongue. On the blade surface, the particle volume fraction of the leading edge near
the blade suction side was lower, while the fraction of pressure side was higher. Fig. 10 shows that the
particle content distribution on the blade surface did not change with the rotation of the blade. The
particle volume fraction increased gradually from the the minimum value on the suction side to the local
maximum value at the trailing edge. It can be seen from the 1/2T and 3/4T diagrams that the volume
fraction of particles on the suction surface of the blade increased gradually. The particle volume fraction
distribution on the side of the volute is shown at 0 and 1/2T. The volume fraction of particles near the
suction side and the leading edge was small, and gradually increased toward the outside. On the pressure
side, the volume fraction of particles on the volute side was larger than that on the suction side,
especially at the region near the trailing edge.

Comparing Figs. 10(a)–10(c), it can be seen that with the increase of particle concentration, the volume
fraction of particles on the volute wall also increased, with an increase range almost directly proportional to
the particle concentration at the inlet of centrifugal pump.

Fig. 11 shows that the radial force vector diagram of the impeller of single blade sewage pump under
three flow-rate conditions. The X-axis and Y-axis represent the radial force of spiral case in the X-
direction and Y-direction, respectively. The results show that the radial force of the impeller of a single
blade centrifugal pump changed periodically, presenting symmetrical distribution at low flow rate and
four different particle concentrations. The peak radial force was at its largest at a particle concentration of
15%. When the particle concentration increased from 0% to 10%, the radial force also increased, and
when the particle concentration increased from 10% to 15%, the radial force in the Y-direction also
increased, while the radial force in the X-direction was largely unchanged. For four different particle
concentrations, the radial force in the positive direction of the X-axis was greater than that in the negative
direction at two points with the same absolute value on the X-axis. With the particle concentration
increases, the magnitude of the radial force gradually increased.

It shows that the pressure distribution of one cycle under low flow condition when the inlet particle
concentration is 5% in Fig. 12(a). We can find that the pressure changed periodically. At 0, the maximum
pressure distribution was at the bottom of the volute near the wall surface and the volute outlet near the
tongue. A small part of the pressure is also higher on the tongue. The minimum pressure was distributed
on the suction side of the blade and increases gradually along the leading edge to the trailing edge. At
1/4T, the high pressure region of flow field on the cross-section expanded, mainly concentrated near the
volute outlet. When the blade turns to 1/2T, the tail appeared at the blade head, and the pressure on
the suction side changed gradually. With the rotating of the blade, the high pressure area of the fluid in
the volute decreased gradually. When it turns to 3/4T, the high-pressure area was mainly located at the
bottom of the volute, and the low-pressure area was always near the suction side of the blade.

Figs. 12(b) and 12(c) show the pressure distribution in the 1/2T volute when the inlet particle
concentration is 10% and 15%, respectively. It can be concluded that the pressure of the whole volute
increased with the increase of the inlet particle concentration under low-flow-rate condition.
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It shows that the flow diagram of one cycle of the volute with a low flow rate condition and a particle
concentration of 5% at the inlet in Fig. 13(a). It can be found that the flow in the pump is relatively stable, and
the back-flow occurred on the suction surface of the blade near the inlet of the impeller. The shape, size and

Figure 10: Volume fraction of volute wall particles. (a) 5% particle concentration (b) 10% particle
concentration (c) 15% particle concentration
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position of the vortex did not change significantly with the rotation of the blade. From the partition tongue
along the flow direction to the Section IV, a part of the blank area appeared near the blade direction. With the
rotation of the blade, when the pressure side of the blade rotated to the fourth section along the flow direction,
the blank area was the largest, because of the sand particles entered the volute. With the rotation of the blade,
the sand particles were close to the outer edge due to the impelling of the blade and the centrifugal force,
while the area near the middle was blank, so the sand content was less. When the suction surface and
blade head were close to the diaphragm, the distribution of sand particles from the baffle plate to
Section IV was stable and uniform.

Figs. 13(b) and 13(c) show the flow field diagram in the volute at 1/2T under 10%, 15% of the particle
concentration, respectively. It can be obtained that under low flow rate conditions, as the particle
concentration increased, the flow field at the outlet of the volute starts to appeared turbulent. When the
particle concentration reached to 15%, a backflow vortex appeared at the outlet.

Figure 12: Fluid pressure cloud diagram of the internal cross section of the volute. (a) 5% particle
concentration (b) 10% particle concentration (c) 15% particle concentration
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5 Conclusion

The RNG k-ε turbulence model was used to numerically simulate the internal flow field of a single-
channel sewage pump at three different particle concentrations under low flow rate conditions. The
particle volume fraction and volute pressure pulsation characteristics of the sewage pump under different
operating conditions were also simulated. The following conclusions can be made:

1. The main frequency of the pressure pulsations on the volute casing is the rotational frequency of the
impeller (25 Hz). With frequency increases, the amplitude of the pressure pulsations gradually
decreases. At the same time, with increases of particle concentration, the pressure pulsation
amplitude at the monitoring point P4 near the outlet also increases; the pressure pulsation
amplitude at the others points first increases, then decreases, with a small amplitude. The pressure
pulsation amplitude at each monitoring point increases with the flow rate under the same particle
concentration conditions.

2. Under low flow rate conditions, the distribution of particle volume fraction in the volute exhibits
periodic changes with the rotation of the impeller. In one cycle, the distribution of particles on the
wall and the surface of the impeller is largely unchanged. The volume fraction of the volute from

Figure 13: Flow diagram inside the volute. (a) 5% particle concentration (b) 10% particle concentration
(c) 15% particle concentration
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the partition tongue along the flow direction to Section VIII of the volute is higher; the maximum
value reaches 5.4% and an area with a lower volume fraction of particles occurs at the partition
tongue. On the blade surface, the particle volume fraction is lower on the impeller suction surface
and blade head, and higher on the blade pressure side and trailing edge. With the rotation of the
blade, the particle content distribution on the blade surface does not changed. The particle volume
fraction gradually increases from the blade suction surface to the position of the blade trailing
edge. The particle volume fraction reaches the minimum value on the blade suction surface and
the local maximum value on the blade trailing edge. As the particle concentration increases, the
particle volume fraction of the volute wall surface also increases. The increase in amplitude is
almost proportional to the particle concentration at the inlet of the centrifugal pump.

3. The pressure distribution in the volute shows a significant periodic change and a small high-pressure
region forms at the trailing edge of the blade. The area and pressure of the high-pressure area also
changes periodically with the rotating of the impeller. The pressure increases with the increase of
particle concentration.

4. The back flow vortex appears on the suction surface of the blade close to the inlet of the impeller. Its
shape and size are largely unchanged as the flow rate increases. Under low flow rate conditions, as the
particle concentration increase, the flow field at the outlet of the volute starts to appear turbulent.
When the particle concentration reaches 15%, a backflow vortex appears at the outlet.
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