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ABSTRACT

Currently, the inexorable trend toward the electrification of automobiles has heightened the prominence of road
noise within overall vehicle noise. Consequently, an in-depth investigation into automobile road noise holds sub-
stantial practical importance. Previous research endeavors have predominantly centered on the formulation of
mechanism models and data-driven models. While mechanism models offer robust controllability, their applica-
tion encounters challenges in intricate analyses of vehicle body acoustic-vibration coupling, and the effective uti-
lization of accumulated data remains elusive. In contrast, data-driven models exhibit efficient modeling
capabilities and can assimilate conceptual vehicle knowledge, but they impose stringent requirements on both
data quality and quantity. In response to these considerations, this paper introduces an innovative approach
for predicting vehicle road noise by integrating mechanism-driven and data-driven methodologies. Specifically,
a series model is devised, amalgamating mechanism analysis with data-driven techniques to predict vehicle inter-
ior noise. The simulation results from dynamic models serve as inputs to the data-driven model, ultimately gen-
erating outputs through the utilization of the Long Short-Term Memory with Autoencoder (AE-LSTM)
architecture. The study subsequently undertakes a comparative analysis between different dynamic models and
data-driven models, thereby validating the efficacy of the proposed series vehicle road noise prediction model.
This series model, encapsulating the rigid-flexible coupling dynamic model and AE-LSTM series model, not only
demonstrates heightened computational efficiency but also attains superior prediction accuracy.
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1 Introduction

Amidst the escalating challenges of global environmental pollution and the concurrent energy crisis, the
incorporation of energy-efficient and environmentally sustainable pure electric vehicles has emerged as a
pivotal consideration in the eco-friendly evolution of the automotive industry. Specifically, pure electric
vehicles, devoid of engine-generated excitation noise, exhibit heightened sensitivity to road noise,
particularly within low and medium frequency ranges [1]. The prolonged exposure to road noise
generated during vehicular operation not only compromises ride comfort but also poses potential risks to
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human well-being [2]. Consequently, road noise has become a paramount concern within the realm of noise,
vibration, and harshness considerations (NVH), garnering substantial attention from leading manufacturers
of pure electric vehicles [3]. The suspension system, as a critical component in vehicular vibration and noise
mitigation, plays a pivotal role in dampening the impact vibrations induced by uneven road surfaces. Awell-
designed suspension not only ensures efficient force transmission between the wheel and chassis but also
enhances overall ride comfort and handling stability. Its performance directly influences the driving
experience of vehicle users, underscoring the importance of a comprehensive investigation into
suspension systems with both practical and engineering relevance.

Historically, due to technological constraints, scholars often elucidated the correlation between
suspension systems and vehicular vibration performance through the establishment of mathematical
models. In the mid-20th century, notable figures, such as Olley [4], Segel [5] in the United States, and
Matschinsky [6] in Germany made seminal contributions to the field of suspension. As scientific and
technological progress advanced, Wang [7] established an eight-degree-of-freedom vehicle vibration
mathematical model by simplifying the complex vehicle system. Li et al. [8] proposed a hybrid vehicle
suspension structure with springs, dampers, and inverters. Simultaneously, Hurel et al. [9] put forward a
planar quarter-car analytical model considering geometry and tire modeling. While such mechanical
analysis models simplify and clarify certain scenarios, subsequently reducing computational overhead,
significant discrepancies may arise in analytical outcomes in numerous cases. With the increasing
complexity of vehicle dynamics models and the proliferation of differential equations, this is particularly
evident. In this case, the modeling, analysis and analysis of mathematical models have become a key issue.

With the continual evolution of computer technology, Computer-Aided Engineering (CAE) technology
is now extensively employed in the automotive sector through computer programs. In comparison to
traditional mathematical models, the widespread use of CAE not only facilitates the construction and
analysis of multi-degree-of-freedom models of automobiles but also expands the scope of simulation
analysis applications. Conventional vehicle modeling approaches often involve reducing individual
vehicle components to rigid bodies [10], resulting in low modeling accuracy. The introduction of finite
element technology, however, ushered in the era of rigid-flexible coupling analyses for dynamic vehicle
models. Scholars, such as Chen et al. [11,12], Chang et al. [13], and Wang et al. [14] utilized mechanical
system dynamics simulation software ADAMS in conjunction with finite element analysis software to
model, simulate, and optimize the dynamic behavior of entire vehicles. While the multi-body dynamic
model of the entire vehicle demonstrates commendable modeling efficiency, it lacks direct capability in
ascertaining the vehicle’s interior noise. Furthermore, finite element technology has been directly applied
to prognosticate the road noise performance of vehicles. For example, Zeng et al. [15] and Yang et al.
[16] constructed a finite element model of the whole vehicle to analyze road noise and optimize the
suspension structure. Despite the commendable fidelity and precision of the finite element model of the
entire vehicle, it is marked by comparatively diminished modeling efficiency. The research is based on a
mechanistic model for computation, but relying purely on the mechanism model has considerable
limitations due to the fact that the abstraction and idealization of the model make the modeling
inadequate, and it requires a lot of manpower and material inputs if it is to be done accurately. Therefore,
the hope of purely mechanism modeling for endpoint prediction is susceptible to more interference,
which leads to a more difficult trade-off between accuracy and efficiency.

In contemporary times, machine learning has emerged as a pivotal technical underpinning across diverse
domains, finding extensive applications in both scientific research and engineering disciplines [17–20].
Notably, within the realm of automotive NVH, machine learning has demonstrated noteworthy efficacy.
Huang et al. [21] and Liu et al. [22] employed the improved residual network and Long Short-Term
Memory (LSTM), respectively, to predict road noise problems. Lin et al. [23] demonstrated that the
combination of multifractal detrended fluctuation analysis and support vector machine has great potential
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for fault diagnosis of gearboxes. Data-driven machine learning methods have introduced a transformative
solution to the modeling of nonlinear dynamical systems in the automotive domain. While mechanism
modeling approaches rely on explicit knowledge of system dynamics, data-driven methods construct
equivalence laws between state variables based on historical operational data. This approach, while
versatile and adept at uncovering latent features, exhibits a reliance on data scale and may exhibit limited
generalization performance [24].

First, for a better trade-off between accuracy and efficiency, this paper will build an efficient rigid-
flexible coupled vehicle dynamics model and connect it in series with the data-driven model. This is done
by adding the data generated from the dynamic model to the data-driven dataset. This approach not only
avoids highly complex structure–acoustic coupling analysis, but also solves the problem that multi-body
dynamics models need to obtain in-vehicle noise through complex modeling. Meanwhile, the accuracy
and convergence of the data-driven model are improved by increasing the effective sample size. Second,
considering that road noise involves multiple features, an algorithmic framework combining autoencoder
(AE) and LSTM is explored, which can extract robust features from the dataset. It is shown that the
LSTM unit can capture the dependencies in the data, and the AE module can reduce the noise
interference in the data, thus realizing more accurate and efficient in-vehicle noise prediction.

The contributions of this study are delineated as follows: (1) Facing the problem of coordinating the
accuracy and efficiency of testing and simulation analysis in engineering, based on the serial modeling of
mechanistic model and data-driven model, combining the advantages of high efficiency of dynamics in
solving vibration as well as the ability of the data-driven model to fit the complex nonlinear problems,
the method of automobile road noise prediction combining the knowledge and the data is proposed. (2)
Considering that road noise involves more features, the prediction using the LSTM model will be
affected by some redundant features, which pulls down the computational efficiency, therefore, this paper
introduces an autoencoder (AE) on the basis of the LSTM model, and establishes an AE-LSTM model
oriented to the analysis of road noise, which is used for the prediction of driver’s right ear noise.

The paper is organized as follows: Section 2 elucidates the modeling process of the multi-body dynamic
model, explicating the establishment of the AE-LSTM prediction model, and providing an in-depth
exposition of the research methodology, delineating the framework of the series model. Section 3 outlines
the specific procedures employed for the acquisition of body side vibration acceleration data and interior
noise data from an automotive source, employing experimental techniques, and presents the ensuing data
outcomes. Section 4 is dedicated to the discussion and analysis of the results, encompassing the
validation of the accuracy of the multi-body dynamic model, the demonstration of the AE-LSTM
prediction outcomes, and the substantiation of the efficiency and precision of the series modeling
approach. Finally, Section 5 furnishes a comprehensive summary of the research content encapsulated
within this article.

2 Research method

2.1 Establishment of Dynamic Model for Vehicle Interior Noise
The vehicle assembly model encompasses the front MacPherson suspension system, the rear three-link

suspension system, the body system, the steering system, the powertrain system, and the tire system. To
faithfully replicate the operational conditions of the components and construct a precise multi-body
dynamics model, this paper will combine the road noise analysis frequency band requirements
(25–250 Hz), in the cut-off frequency band (generally the upper limit of the cut-off frequency is

ffiffiffi
2

p
times

of the upper limit of the analysis frequency [25], this paper selects 350 Hz as the upper limit of the cut-
off frequency) to screen the free modes of the front and rear suspension components and the body, and
then according to the screening results, the corresponding components are flexible. The free modes of the
body and suspension structures are summarized in Table 1, and since the first 6 orders are rigid body
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modes, we start the analysis from the 7th order structural modes. The body, subframe, and anti-roll bar have
more modal frequencies within the cut-off frequency (350 Hz), and only some of their modal orders and
modal frequencies within the cut-off frequency are listed in the table, and the parts exceeding the cut-off
frequency are indicated by “>350 Hz”. Meanwhile, since the seventh-order natural frequencies of the
front control arm, rear upper control arm, rear lower control arm, and rear trailing arm are larger than the
cut-off frequency, the interior noise within the analyzed frequency band will not be caused by the modes
of these four parts, so the table does not show the modal information in detail, and it is only indicated
by “>350 Hz”. According to the principle that the non-rigid free mode of the internal parts in the cut-off
frequency range needs to be flexible, the following components that need to be flexible are: front
subframe, rear subframe, front anti-roll bar, rear anti-roll bar and body.

Based on the above analysis results, the vehicle rigid-flexible coupling model can be established, in
which the rigid-flexible coupling model of front MacPherson suspension, rigid-flexible coupling model of
rear three-link suspension, the body finite element model and the anti-roll bar finite element model are
shown in Fig. 1 Each subsystem can be assembled to form a complete vehicle rigid-flexible coupling
model, as shown in Fig. 2. It should be noted that the bushings used in the suspension and subframe
models are rubber bushing elements containing dynamic stiffness characteristics, which can be modeled
by the ADAMS/Ride module [26]. The constructed bushing model consists of the following three parts:
the non-linear spring model: to provide the static stiffness characteristics and the nonlinear characteristics
under the large deformation of the bushing, the Bouc-Wen model: to simulate the hysteresis effect of the
bushing, and the Transfer function model: to simulate the frequency dependence of the bushing. Based on
this, the identified bushing stiffness curve and loss angle curve are shown in Fig. 3.

In addition, for subsequent data-driven modeling analysis, it is imperative to acquire vibration
acceleration data from specific points, including the front strut to body connection point body side, front
subframe to body front connection point body side, front subframe to body rear connection point body
side, rear subframe to body front connection point body side, rear subframe to body rear connection point
body side, rear shock absorber to body connection point body side, rear spring to body connection point
body side, and rear trailing arm to body connection point body side acceleration. Therefore, when
creating suspension and subframe models, it is necessary to establish marker points and sensors at the
corresponding position on the body side. In the simulation, the ADMAS/Ride module is used to establish

Table 1: Free modal results

Modal order

Modal frequency (Hz) 7th 8th 9th 10th 11th … 40th

Front control arm >350

Front anti-roll bar 56 101 127 173 243 … >350

Front subframe 53 88 100 110 148 … >350

Rear upper control arm >350

Rear lower control arm >350

Rear trailing arm >350

Rear subframe 40 83 122 160 184 … >350

Rear anti-roll bar 55 79 105 109 155 … >350

body 25 38 44 49 53 … 324
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a B-level random road surface based on the Sayers empirical digital formula [27]. The road profile parameters
Ge = 0, Gs = 12, and Ga = 0.17 are set. The simulation speed is 60 km/h, the time is 10 s, and the sampling
frequency is 1000 Hz. The parameters required for the above modeling process are provided by the Changan
Automotive Global R&D Center.

Figure 1: Component structure. (a) MacPherson suspension. (b) Three-link suspension. (c) Body finite
element model. (d) Anti-roll bar finite element model
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Figure 2: Rigid-flexible coupling model of the whole vehicle

Figure 3: Identification results of x-direction parameters of the rear bushing of the control arm. (a) The
x-direction dynamic stiffness curve of the rear bushing of the control arm. (b) The x-direction loss angle
curve of the rear bushing of the control arm. (c) Comparison of simulated and experimental dynamic
stiffness for an amplitude of 0.2 mm. (d) Comparison of simulated and experimental loss angles for an
amplitude of 0.2 mm
Note: meas amp 0.1 is the dynamic stiffness at an amplitude of 0.1 mm for the test, calc amp 0.1 is the dynamic stiffness at an
amplitude of 0.1 for the identification calculation. Similarly, meas amp 0.2, calc amp 0.2, meas amp 0.4, and calc amp 0.4.
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2.2 Establishment of Interior Road Noise Prediction Model Based on AE-LSTM
The body-side vibration acceleration and the driver’s right ear noise were used as inputs and outputs

of the prediction model, respectively, and the frequency range was set to 20–250 Hz. Given the extended
nature of the road noise sequence spanning this frequency spectrum, conventional neural networks yield
suboptimal results in predicting such prolonged sequences [28]. Consequently, the vehicle interior road
noise prediction model leverages LSTM networks [29] to attain precise prognostication of the road noise
sequence data.

As an advanced iteration of Recurrent Neural Networks (RNNs), LSTM has garnered widespread
application across diverse domains, owing to its remarkable proficiency in handling sequential data
[30–32]. It effectively mitigates the challenges of gradient vanishing and explosion encountered by RNNs
when addressing long-term dependencies, achieved through the incorporation of specialized memory cells
within the hidden layer unit. These memory cells feature self-connections for retaining temporal network
states and are regulated by three gate mechanisms: the input gate, the output gate, and the forget gate.
The architectural configuration of an LSTM block at a discrete time step is presented in Fig. 4, while the
corresponding mathematical expressions are detailed in Eqs. (1) to (6).

The forget gate makes the decision of preserving/removing the existing information, defined as follows:

ft ¼ r Wf ht�1; xt½ � þ bf
� �

(1)

where, ft is the output of the forget gate, r represents the sigmoid activation function,Wf is weight matrices,
ht�1 is the output value of the LSTM unit at the previous time, xt represents the input, bf is the bias value.

The input gate makes the decision of whether to add new information to the LSTM memory, defined as
follows:

it ¼ r Wi ht�1; xt½ � þ bcð Þ (2)

eCt ¼ tanh Wc ht�1; xt½ � þ btð Þ (3)

where, it is the output of the input gate, r represents the sigmoid activation function, Wi is weight matrices,
ht�1 is the output value of the LSTM unit at the previous time, xt represents the input, bc is the bias value, eCt

is the new state of memory cell, tanh represents the tanh activation function, Wc is weight matrices, bt is the
bias value.

Figure 4: The structure of an LSTM block
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Among them, Ct is selectively updated by the calculation results of the forget gate and the input gate,
defined as follows:

Ct ¼ ft � Ct�1 þ it � eCt (4)

where, Ct is the final state of memory cell, ft is the output of the forget gate, Ct�1 is the old state of
memory cell, it is the output of the input gate, eCt is the new state of memory cell, � represents the
point-wise multiplication.

The output gate can output information selectively as needed, defined as follows:

Ot ¼ r Wo ht�1; xt½ � þ boð Þ (5)

ht ¼ Ot � tanh Ctð Þ (6)

where,Ot is the output of the output gate, r represents the sigmoid activation function,Wo is weight matrices,
ht�1 is the output value of the LSTM unit at the previous time, xt represents the input, bo is the bias value, ht is
the new output value of the LSTM unit, Ct is the final state of memory cell, � represents the point-wise
multiplication.

AE is an algorithm in unsupervised learning, which can automatically learn features from unlabeled
data, it is a kind of neural network with the goal of reconstructing the input information, which can give
better feature descriptions than the original data, and has a strong feature learning ability. In deep
learning, good results have been achieved by using features generated by AE instead of original data [33–
35]. In this paper, we introduce that AE processing the data before inputting it into the LSTM model can
provide a variety of benefits, which including but are not limited to, improving data representation,
reducing the impact of redundant features, and reducing the risk of model overfitting. These benefits
enable LSTM model to better fit the data when applied to data processing tasks and improve model
performance and prediction accuracy.

The AE-LSTM model consists of two parts, the first part is the encoding part of the AE model, whose
main role is to generate the sequence data that can be input into the LSTM prediction model, and the second
part is the LSTMmodel, whose main role is to predict the feature data extracted from the AE model. The AE-
LSTM model can be realized by the following steps, where Fig. 5 is a schematic diagram of the structure of
the AE-LSTM model and Eqs. (7) to (9) are the used equations.

Figure 5: Structure diagram of the AE-LSTM model
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The first step is to input the original data X(t) into the AE model for training, and use the encoding
process to calculate the encoding data.

X̂ tð Þ ¼ f dec f enc X tð Þð Þð Þ (7)

x tð Þ ¼ f enc X tð Þð Þ (8)

where, X tð Þ is the original input sequence data, X̂ tð Þ is the output of the decoder, x tð Þ is the output of the
encoder, the superscript dec represents decoding, f dec �ð Þ is the decoding function, the superscript enc
represents encoding, and f enc �ð Þ is the encoding function.

The second step: input x(t) into the LSTM model to obtain the output value Y(t).

Y tð Þ ¼ f LSTM x tð Þð Þ (9)

where, x tð Þ is the output of the encoder, Y tð Þ is the LSTM prediction output, the superscript LSTM represents
the LSTM model, and f LSTM �ð Þ is the LSTM function.

2.3 A Series Model Framework for Vehicle Interior Noise Prediction
Mechanism and data series modeling is to connect the mechanism model with the data-driven model

in series to realize the analysis and prediction of vehicle vibration and noise. In this paper, a vehicle road
noise prediction series architecture is proposed. As shown in Fig. 6, the mechanism model in the figure is
the lower layer of the series model, whose modeling parameters include Geometric parameter
(dimensional parameters and hard point coordinates of the control arm, steering tie rod and knuckle),
Quality parameter (inertial moment, mass and center of mass of the control arm, steering tie rod and
knuckle), External parameter (road parameter), and Mechanical parameter (damping characteristics of the
damper, stiffness of springs, bushings and limit blocks), and the extracted parameters are the vibration
acceleration at each measurement point of the body side (the front strut to body connection point body
side, front subframe to body front connection point body side, front subframe to body rear connection
point body side, rear subframe to body front connection point body side, rear subframe to body rear
connection point body side, rear shock absorber to body connection point body side, rear spring to body
connection point body side, and rear trailing arm to body connection point body side, and rear trailing
arm to body connection point body side acceleration). For the data-driven model, the input is the
vibration acceleration at each measurement point on the body side, and the output is the noise at the
driver’s right ear. The vibration acceleration at each measurement point on the body side is used as both
the output of the mechanism model and the input of the data-driven model, which serves as a bridge
between the two models. Therefore, a series model with mechanism model modeling parameters as input
and driver ‘s right ear noise as output is built. This method not only solves the limitations of the
mechanism model in terms of accuracy and efficiency, but also solves the problem of lack of effective
data for the data-driven model.

3 Experimental Tests

3.1 Test Scheme
In order to collect the road noise sample data and verify the accuracy of the vehicle dynamic model, a

real vehicle road test is required. The experimental samples are constructed by Latin hypercube experimental
design [36]. The design variables are the dynamic stiffness of the front suspension to body connection point
bushings, dynamic stiffness of the rear suspension to body connection point bushings, dynamic stiffness of
the front subframe to body connection point bushings, dynamic stiffness of the rear subframe to body
connection point bushings, front shock absorber damping, and rear shock absorber damping. The test
object is a class A vehicle and the vehicle meets the technical requirements of vehicle operation safety.
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The experimental equipment includes Leuven Measurement Systems (LMS) digital acquisition front-end,
non-directional BSWA sound pressure microphone (model: MPA201-550507) and PCB three-way
vibration sensor (model: BW13510-J0810/BW13510-J0812).

Figure 6: Series model architecture for vehicle interior noise prediction
Note: ① Front strut to body connection point body side acceleration. ② Front subframe to body front connection point body side
acceleration. ③ Front subframe to body rear connection point body side acceleration. ④ Rear subframe to body front connection
point body side acceleration.⑤ Rear subframe to body rear connection point body side acceleration.⑥ Rear shock absorber to body
connection point body side acceleration.⑦ Rear spring to body connection point body side acceleration.⑧ Rear trailing arm to body
connection point body side acceleration.
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In order to collect the vibration data at the body structure and the noise data in car, the acceleration
sensors are arranged on suspension to body connection point body side and subsystem to body
connection point body side. All the sensors of the vehicle are arranged as shown in Fig. 7. The sound
pressure microphone is arranged in the driver’s right ear, its vertical coordinates for the seat surface and
the backrest surface of the intersection of the line directly above (0.7 ± 0.05) m, the horizontal
coordinates in the center of the seat face to the right at a distance of (0.20 ± 0.02) m, as shown in Fig. 8.
After all the test points are arranged, set the parameters of the data acquisition system, in order to
accurately respond to the correspondence between the two signals and ensure that the data volume is not
excessively redundant, the sampling time is set to 10 s, and the sampling frequency of noise and
vibration signals is set to 1000 Hz, with a resolution of 1 Hz.

Synchronous acquisition of vehicle noise and vibration data through real vehicle road test. In order to
make the vehicle response significantly during the test, the vehicle is selected to travel on the rough
asphalt pavement at a uniform speed of 60 km/h. According to the test requirements, there are no three-
dimensional buildings and other large objects that can reflect the noise within 20 m on both sides of the
road, and the road condition is shown in Fig. 9. During the test, Belgium LMS software was used to
collect data online and perform data analysis and processing. Through multiple tests, 40 sets of road
noise and vibration data were collected, and the LMS software was used to convert the time-domain data
of the interior road noise collected in the test into frequency-domain curves. The vibration acceleration
curve with a resolution of 1 Hz and a frequency range of 0 to 250 Hz and the sound pressure curve of
20 to 250 Hz are derived.

Figure 7: Sensors in the whole vehicle

Figure 8: Sensor layout. (a) Layout of sound pressure microphone. (b) Layout of rear shock absorber to
body connection point body side sensor
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3.2 Test Results
The interior noise of the vehicle and the vertical vibration of front subframe to body front

connection point body side, rear subframe to body front connection point body side, front strut to
body connection point body side and rear spring to body connection point body side are shown in
Figs. 10 and 11, respectively. Due to the large number of test results, the text only lists some of them.
As can be seen from Fig. 10, in the frequency range of 20–250 Hz, there are multiple resonance peaks
in the sound pressure level curves of the right ear noise extraction points, with the peaks appearing at
25, 64, 111, 127, 211, and 226 Hz, respectively, of which the maximum sound pressure occurs at
25 Hz, with a value of 74.76 dB, and the peaks appear more densely in the frequency range of
50–150 Hz. The peaks in the frequency range of 50–150 Hz are more intensive. Combined with the
results of modal analysis in Table 1, the peaks of interior noise at 25, 64, 111, 127 and 226 Hz are
mainly caused by the body modes; and the peak at 211 Hz is mainly caused by the rear subframe
modes. In addition, as shown in Fig. 11a, because the front subframe has a natural frequency at
166 Hz, the vibration response of the front subframe to body front connection point body side has a
resonance peak at 166 Hz; as shown in Fig. 11b, the rear subframe has natural frequencies at 83 and
211 Hz, so the vibration response of the rear subframe to body front connection point body side has
resonance peaks at 83 and 211 Hz. Similar characteristics are found for the front strut and the rear
spring, as shown in Figs. 11c and 11d.

Figure 9: Rough asphalt pavement

Figure 10: Noise in the driver’s right ear
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4 Results Discussion and Analysis

4.1 Dynamic Model Verification for Vehicle Interior Road Noise
The initial step involves a rigorous validation of the dynamic model pertaining to interior road noise

within the vehicle. The vehicle dynamics model is simulated under conditions as closely aligned as
possible with the test conditions, yielding vibration acceleration data at each measuring point. A
comparison between the simulated vibration acceleration results and those measured during the test is
conducted to verify the reliability of the vehicle dynamics model. Fig. 12 illustrates a comparative
analysis of vibration accelerations between the vehicle’s rigid-flexible coupling model and the actual test
vehicle, both traveling at a consistent speed of 60 km/h. Focusing on key connection points, such as the
front subframe to body front connection point, front strut to body connection point, rear subframe to
body rear connection point, and rear shock absorber to body connection point, the comparison reveals a
congruence in acceleration trends. Notably, the simulation curves adeptly capture peak effects at
frequencies of 25, 64, and 226 Hz, with relative errors in peak amplitudes well within 10%. Furthermore,
absolute errors in peak frequency points remain within a 2 Hz margin. Consequently, the simulation and

Figure 11: Vibration acceleration test results. (a) Front subframe to body front connection point body side
acceleration. (b) Rear subframe to body front connection point body side acceleration. (c) Front strut to body
connection point body side acceleration. (d) Rear spring to body connection point body side acceleration
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test curves exhibit commendable alignment, affirming the capacity of the whole car’s rigid-flexible coupling
model to accurately compute the vibrational characteristics of the vehicle under uniform linear motion
conditions.

4.2 Series Model Interior Noise Prediction Results
Moreover, this study conducts the prediction and validation of vehicle interior noise based on a series

model. In terms of data preparation, the AE-LSTM model is employed to generate simulated samples of the
driver’s right ear noise. Initially, to capture effective information and mitigate the impact of redundant
features in the input sequence data, body-side vibration acceleration data from 40 test sample groups are
fed into the AE. Subsequently, the corresponding data features are obtained through the encoding and
decoding processes of the AE. These features are then input into the LSTM model. Following
the learning and adjustment of the LSTM network, efforts are made to minimize the error between the
predicted values of the driver’s right ear noise and the labeled values, leading to the convergence of the
AE-LSTM network. The trained model is finally applied to 30 sets of simulation data to derive
corresponding predictions of the driver’s right ear noise. During the model training process, the initial
learning rate of the AE is set to 0.005, and the coding layer structure is specified as 48-32-25. The

Figure 12: Comparison of simulation and experimental results. (a) Front subframe to body front connection
point body side acceleration. (b) Front strut to body connection point body side acceleration. (c) Rear
subframe to body rear connection point body side acceleration. (d) Rear spring to body connection point
body side acceleration
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hyperparameters of the LSTM model, including the initial learning rate (0.01), the number of hidden layer
units (64), and the maximum number of rounds (150), are optimized using the grid search method [37].

The test samples are the data obtained through the real-vehicle test, which can reflect the actual situation
more accurately and have higher authenticity and credibility, so in order to increase the effective sample size,
30 sets of simulation data and 40 sets of test data are used as the sample set, which is randomly divided into
the training set as well as the test set in the ratio of 8:2 for training and testing of the AE-LSTM model. The
super parameters of the AE are specified with an initial learning rate of 0.005 and a encoding layer structure
of 48-32-25. The hyperparameters of the LSTM are optimized through the grid search method, with the
initial learning rate set at 0.005, the number of hidden layer units at 64, and the maximum number of
rounds at 200.

Three evaluation metrics, namely Mean Square Error (MSE), Coefficient of Determination (R2), and
Relative error, are used to quantify the model’s prediction results in the frequency domain. MSE and
Relative error reflect the gap between the predicted values and the actual values, while the R2 measures
the similarity between these values. In general, the closer the MSE and Relative error are to 0, and the
closer the R2 is to 1, the higher the prediction accuracy of the model. The corresponding equations are
found in Eqs. (10) and (11). From Fig. 13 and Table 2, it can be seen that the prediction accuracy of AE-
LSTM is better on a random sample in the test set, and the maximum relative error between the predicted
value and the true value in the frequency band of 20–250 Hz is 3.78%., the mean square error is
0.67 dB2, and the R2 is 0.98. Meanwhile, from Fig. 14 and Table 3, it can be seen that the prediction
accuracy of AE-LSTM is better in the training and testing sets, and the prediction accuracy of the model
in the training set in the frequency band of 20–250 Hz is 3.78%. In the 20–250 Hz frequency band the
maximum relative error between the predicted and true values of the training set samples is 5.23%., the
maximum MSE is 1.02 dB2, the average MSE is 0.63 dB2, the maximum R2 is 0.99, and the average R2

is 0.97, and similarly, the accuracy of the testing set can be obtained. The accuracy results affirm the
feasibility of the established AE-LSTM model for road noise prediction, confirming its effectiveness and
high prediction accuracy. It is worth mentioning that AE-LSTM does not appear over-fitting in the
prediction process. The reason may be that AE can help extract effective features in the data and remove
noise interference, making the data input to the LSTM model more recognizable and robust; through the
grid optimization method, the initial learning rate, the number of hidden layer units and the number of
epochs of the AE-LSTM model are appropriately adjusted; use a model with appropriate complexity to
simplify the network structure as much as possible.

Figure 13: Random sample prediction results. (a) The comparison between the true value and the predicted
value. (b) Relative error between true value and predicted value
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MSE ¼ 1

N

XN
i¼1

ðyi � eyiÞ2 (10)

R2 ¼ 1�
PN

i¼1ðyi � eyiÞ2PN
i¼1ðyi � yiÞ2

(11)

where, N is the sample size, yi represents the true value, eyi represents the predicted value and yi represents the
mean of the true value.

Table 2: Random sample prediction accuracy

Model Index Value

AE-LSTM Maximum relative error 3.78%

MSE 0.67 dB2

R2 0.98

Figure 14: AE-LSTM model training and testing results. (a) Results of the training set. (b) Results of the
testing set

Table 3: Accuracy of training set and testing set

Data set Index Maximum value Mean value

Training set Relative error 5.23 \

MSE 1.02 dB2 0.63 dB2

R2 0.99 0.97

Testing set Relative error 6.04 \

MSE 1.13 dB2 0.72 dB2

R2 0.99 0.97
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4.3 Comparative Analysis
In order to further verify the high efficiency and high precision of the series model built in this paper,

based on the rigid-flexible coupling model and the AE-LSTM prediction model, the full rigid body dynamics
model and the full flexible body dynamics model of the vehicle are introduced, as well as Convolutional
Neural Network (CNN) and LSTM. MSE, R2 and Relative error are used to test and evaluate the
accuracy of noise data prediction of different prediction models and the simulation accuracy of different
types of models. At the same time, the efficiency of different neural network models and different
dynamic models is evaluated by combining the calculation time. The software used for modeling is MSC
Adams2020, MATLAB R2021a, and the computer is configured with 13th Gen Intel (R) Core (TM) i9-
13900K processor and 64 GB memory.

Table 4 shows the accuracy and efficiency of the full rigid body model, the rigid-flexible coupling model
and the full flexible body model. Among the above models, the full-flexible model has the best accuracy with
an MSE of 0.38 × 10−4 m2/s4 and an R2 of 0.83, and the maximal relative errors at 25, 64 and 226 Hz are
6.81%, 8.34% and 9.02%, followed by the rigid-flexible coupling model and the full flexible body model.
The corresponding values of each precision index of the rigid-flexible coupling model are 0.42 × 10−4

m2/s4, 0.80, 8.86%., 9.89%. and 9.36%, and the corresponding values of each precision index of the full
rigid body model are 0.58 × 10−4 m2/s4, 0.74, 12.36%, 14.51%. and 16.77%. The accuracy difference
between the fully flexible model and the rigid-flexible coupling model is small, and the difference of each
index is 0.04 × 10−4 m2/s4, 0.03, 2.05%., 1.55%. and 0.34%, respectively. In terms of simulation time,
the full rigid body model has the shortest time, followed by the rigid-flexible coupling model, and finally
the full flexible body model. The difference between the full flexible body model and the rigid-flexible
coupling model is 102.99 s in simulation time. Considering the three factors, the rigid-flexible coupling
model performs best in terms of accuracy and efficiency.

Table 5 and Fig. 15 compare the prediction accuracy and efficiency of CNN model, LSTM model and
AE-LSTMmodel with the simulation results of rigid-flexible coupling model as input data. Among them, the
MSE, R2, maximum relative error and training time of the noise prediction results using the CNN model are
4.71 dB2, 0.87, −8.83% and 19.516 s, respectively. The corresponding values of the LSTMmodel prediction
results are 1.15 dB2, 0.95, −6.51%. and 35.667 s, and the corresponding values of the AE-LSTM model
prediction results are 0.64 dB2, 0.98, and 3.78%. and 33.478 s. In terms of accuracy, the AE-LSTM
model has the highest accuracy, followed by the LSTM model, and finally the CNN model. In terms of
training time, the CNN model has the shortest training time, followed by the AE-LSTM model, and the
longest LSTM model. The CNN model has poor noise prediction accuracy, but high efficiency. The
LSTM model has high accuracy for noise prediction, but low efficiency. The AE-LSTM model has high

Table 4: Comparison of simulation results of different dynamic models

Model MSE (m2=s4) R2 25 Hz maximal
relative error

64 Hz maximal
relative error

226 Hz maximal
relative error

Simulation
time (s)

Full rigid model 0.58 × 10−4 0.74 12.36% 14.51% 16.77% 79.76

Rigid-flexible
coupling model

0.42 × 10−4 0.80 8.86% 9.89% 9.36% 105.64

Full flexible
model

0.38 × 10−4 0.83 6.81% 8.34% 9.02% 208.63
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noise prediction accuracy and high efficiency. Based on the above considerations, the combination of the
rigid-flexible coupling model and the AE-LSTM model has high computational efficiency and prediction
accuracy, and the effectiveness of the tandem model is verified from the model perspective.

Table 6 shows the comparative analysis of the prediction accuracy and efficiency of the AE-LSTM
model against noise when different numbers of simulation samples and test samples of the rigid-flexible
coupled model are used as input data. As can be seen from the table, the MSE, R2, maximum relative
error and training time are 1.08 dB2, 0.97, −6.03% and 32.195 s when 0 simulation samples and 40 test
samples are used as the dataset, and the values are 0.64 dB2, 0.98, 3.78% and 33.478 s when
30 simulation samples and 40 test samples are used as the dataset, respectively. The results show that
when the kinetic model simulation results are added to the dataset, the prediction accuracy is greatly
improved and has less impact on the efficiency, which affirms that the mechanistic model can effectively
solve the problem of data-driven model construction under small sample conditions. Further, when
40 simulation samples and 30 test samples are used as the dataset, the MSE, R2, maximum relative error
and training time are 0.93 dB2, 0.97, 4.57% and 37.356 s. When 50 simulation samples and 20 test
samples are used as the dataset, the corresponding values are 1.22 dB2, 0.94, −6.71% and 35.587 s. It can
be seen that the highest simulation accuracy and efficiency is achieved by using 30 simulation samples
and 40 test samples as the data set, followed by 40 simulation samples and 30 test samples as the data

Table 5: Comparison of prediction results of different series models

Model MSE (dB2) R2 Maximal relation error Training time (s)

Rigid-flexible coupling 4.71 0.87 −8.83% 19.516

model + CNN

Rigid-flexible coupling 1.15 0.95 −6.51% 35.667

model + LSTM

Rigid-flexible coupling 0.64 0.98 3.78% 33.478

model + AE-LSTM

Figure 15: Comparison of prediction results of different models. (a) Comparison of true and predicted
values. (b) Relative error between true and predicted values
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set, and the worst is 50 simulation samples and 20 test samples as the data set. It shows that the data quality of
the test data is higher than the quality of the simulation data, and the increase of the distribution proportion of
the test data can correspondingly improve the accuracy of the network prediction, which affirms the
efficiency and accuracy of the series of models from the data perspective.

Based on the above analysis, the following four conclusions can be drawn: (1) the rigid-flexible coupling
model has the best performance in terms of accuracy and efficiency; (2) the rigid-flexible coupling model and
the AE-LSTM fusion model have higher computational efficiency and prediction accuracy; (3) the
mechanism model can effectively solve the problem of constructing the data-driven model under the
condition of small samples; (4) the quality of the test data is higher than the quality of the simulation
data, and an increase in the distribution ratio of test data can correspondingly improve the accuracy of
network prediction. These four conclusions play an important role in proving the superiority of the
mechanistic model in tandem with the data-driven model used in the article.

5 Conclusion

In order to overcome the problem that the dynamic model cannot accurately reflect the dynamic
characteristics of the vehicle, a rigid-flexible coupling model with dynamic stiffness bushing and flexible
components is established. On the basis of this rigid-flexible coupling model, a series model combining
mechanism modeling and data-driven modeling is constructed, in which the simulation data of the rigid-
flexible coupling model is used as the data source of the data-driven model. In addition, in order to
further verify the superiority of the series model constructed in this paper, different types of dynamic
models are compared respectively. The results show that the accuracy and efficiency of the rigid-flexible
coupling model are better than those of the full rigid body model and the full flexible body model. The
MSE, R2, maximum relative error at 25, 64, and 226 Hz and training time are 0.42 × 10−4 m2/s4, 0.80,
8.86%, 9.89%, 9.36% and 105.64 s, respectively. The prediction results of the rigid-flexible coupling
model and the series model of different types of data-driven models are compared. The results show that
the rigid-flexible coupling model series AE-LSTM has higher accuracy and efficiency, and its MSE, R2,
maximum relative error and training time are 0.64 dB2, 0.98, 3.78% and 33.478 s, respectively. The AE-
LSTM prediction results with different simulation and test data ratios are compared. The results show that
the overall performance of accuracy and efficiency is the best when using 30 sets of simulation samples
and 40 sets of test samples as data sets, with values of 0.64 dB2, 0.98, 3.78% and 33.478 s, respectively.

Table 6: Comparison of prediction results of different sample sets

Model MSE (dB2) R2 Maximal relation error Training time (s)

0 simulation sample 1.08 0.97 −6.03% 32.195

+ 40 experimental samples

30 simulation samples 0.64 0.98 3.78% 33.478

+ 40 experimental samples

40 simulation samples 0.93 0.97 4.57% 37.356

+ 30 experimental samples

50 simulation samples 1.22 0.94 −6.71% 35.587

+ 20 experimental samples
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