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ABSTRACT

The loss factors and their effects on the magnitude and frequency of resonance peaks in various mechanical sys-
tems are reviewed for acoustic, vibration, and vibration fatigue applications. The main trends and relationships
were obtained for linear mechanical models with hysteresis damping. The well-known features (complex module
of elasticity, total loss factor, etc.) are clarified for practical engineers and students, and new results are presented
(in particular, for 2-DOF in-series models with hysteresis friction). The results are of both educational and prac-
tical interest and may be applied for NVH analysis and testing, mechanical and aeromechanical design, and noise
and vibration control in buildings.
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1 Introduction

Careful work is required to optimize the quality and reliability of engineering projects. It is not easy to
develop things right the first time, and much effort is spent on corrective actions. One of the main problems is
a lack of true understanding of the physical effects and parameters. Many engineers used to offer immediate
practical solutions, rather than performing preliminary theoretical analysis. So did Thomas Edison, the great
inventor who persistently applied the “trial and error” method to his work. But a purely empiric approach
does not guarantee positive results. Nikola Tesla, another great inventor, was “a sorry witness” to
Edison’s procedure, “knowing that just a little theory and calculation would have saved him ninety per
cent of the labor”.

On the other hand, accurate theoretical models may look complicated. Even computer modeling may not
fully compensate for this shortage. This is why brief reviews and tutorials are highly helpful for practical
engineers engaged in design, testing, and manufacture.

This paper is devoted to the mechanical loss factor which controls the magnitudes and frequencies of
resonance peaks in vibration and acoustical phenomena. In this paper, some well-known aspects are
clarified for practitioners, and some results are new.

The mechanical loss factor may depend on (1) the energy dissipation capacity of materials, (2)
geometric, inertial, and elastic properties of the whole construction, (3) vibration energy dissipation in the
links between the construction and adjacent structures, (4) vibration transmission into adjacent structures,
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and (5) sound radiation into an ambient gas or liquid medium [1–6]. It can be also affected by the ambient
temperature and other physical phenomena (in particular, by electrostatic phenomena in MEMS). The
resonance effects sometimes look complicated but even a general theoretical knowledge helps avoiding
serious errors in the engineering projects.

The paper is addressed to the design, analysis and test engineers engaged in noise, vibration, and vibration
fatigue control (in particular, NVH engineers). The possible applications are multiple: building structures,
automotive and aerospace vehicles, rotating machinery, fans and blowers, microelectromechanical systems
(MEMS), etc.

2 Definition of Mechanical Loss Factor

For a vibrating system excited by a steady-state harmonic force, the mechanical loss factor is
defined as

g ¼ D

2pE (1)

where E is the total vibration energy of the system, andD is the vibration energy dissipated per cycle which is
equivalent to the vibration energy input; hence, the value D/(2π) is the average energy loss per radian [1–3].
Commonly, the loss factor η << 1 but theoretically it can exceed 1. The latter is not in contradiction with the
law of conservation of energy since the internal energy loss is partly compensated by the continuous energy
input from outside.

There are three prime parts in the lumped mechanical models: rigid mass, massless spring, and dashpot,
or viscous damper. We may call them elements because each of them represents only one physical property:
the mass simulates inertia, the spring controls elastic deformation, and the dashpot symbolizes velocity-
proportional energy dissipation of the vibration elements.

Express the Eq. (1) in terms of massm, stiffness k, and viscous damper coefficient c of the Kelvin-Voight
model (Fig. 1a) which represents the classic linear 1-DOF (single-degree-of-freedom) viscoelastic system. In
this case, the elastic and viscous forces can be expressed respectively as Fe ¼ kx ¼ kAcos xtð Þ and
Fv ¼ c_x ¼ �kxAsin xtð Þ where the vibration displacement xðtÞ ¼ Acos vtð Þ. Here, x ¼ 2pf is the
angular frequency and f is the frequency of vibration. If _x 0ð Þ ¼ 0, the total vibration energy equals the
initial elastic energy:

E ¼ kx 0ð Þ2
2

¼ kA2

2
:

The vibration energy dissipated per each cycle calculates

D ¼
Z T

0
Fv _xdt ¼ cA2x

Z 2p

0
sin xtð Þ½ �2d xtð Þ ¼ p cA2x

where T ¼ 2p=x is the period of vibration.

Substituting the expressions for E and D into Eq. (1), obtain

g ¼ cx
k

¼ cffiffiffiffiffiffi
mk

p x
x0

(2)

where the angular undamped natural frequency of the system

x0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
: (3)
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Commonly, the damped (resonance) and undamped natural frequencies of 1-DOF systems are close to
each other as shown in Chapter 3.5 (this may not be true for 2-DOF systems, see Chapter 4.4). Then, as
follows from Eq. (3), the loss factor of 1-DOF system at the resonance frequency may be given as

g � cffiffiffiffiffiffi
km

p : (4)

Basing upon the classic 1-DOF model, two general conclusions can be made:

1. The mechanical loss factor depends on both inertial, elastic, and energy dissipation parameters of
vibrating systems.

2. Under the same energy dissipation ability, the lower the system stiffness and mass, the higher the loss
factor. This trend is observed in many practical cases.

3 Loss Factor of 1-DOF System

3.1 Classic Model of 1-DOF System
In the classic model of 1-DOF system (Fig. 1a), the spring and dashpot are linear, that is, the elastic and

viscous forces are proportional respectively to the displacement and velocity. Such approximations are
reasonable for the most practical cases though (1) the real dissipation mechanisms may be nonlinear (in
particular, dry friction or hysteresis), and (2) the famous Hooke’s Law of Elasticity, is fully relevant only
to linear-elastic or “Hookean” materials.

The differential equation of steady-state harmonic motion is

mx€þ c _xþ kx ¼ Feixt (5)

where F is the amplitude of an external harmonic force, and the system parameters are described in Chapter 2.
The solution of Eq. (5) is x ¼ Aeixt.

Therefore _x ¼ ixAeixt ¼ ixx: Substituting this relationship into Eq. (5) and using Eq. (2), obtain

mx€þ ~kx ¼ Feixt (6)

where the complex stiffness

~k ¼ k 1þ igð Þ: (7)

Figure 1: Classic (a) and NVH (b) 1-DOF linear models of mechanical vibration systems
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The solution of Eq. (6) is

x tð Þ ¼ F

k

eixt

1� ðx=x0Þ2 þ ig
(8)

where x0 is defined by Eq. (3).

3.2 NVH Model of 1-DOF System
This model is similar to the classic model of 1-DOF system except for the excitation way: it is driven by

a harmonically moving base attached to the spring (Fig. 1b). It may be mentioned as the NVH model since
the vibrating base may simulate a shaker head on NVH testing.

Here, the differential equation of steady-state motion is similar to Eq. (6) for the relevant classic model if
the force amplitude is expressed in the form F ¼ ~k x0 where x0 ¼ Beixt describes the base displacement.

Using Eq. (8), one can derive the expression for vibration transmissibility (the module of the ratio of the
mass movement to the base movement).

T ¼ x

x0

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

1� ðx=x0Þ2
n o2

þ g2

vuuut � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx=x0Þ2

n o2
þ g2

r (9)

3.3 Free-Damped Vibration of 1-DOF System
The amplitude of steady-state vibration does not change with time because the outside input energy

equals the energy dissipation inside the system. But there is no input energy in case of damped free
vibration, and the amplitude decays with time.

Free harmonic vibration of 1-DOF system starts as soon as the external force is off. This motion,
described by Eq. (5) in case F ¼ 0, can be given by

x ¼ x0 e
�fx0tþix0

ffiffiffiffiffiffiffiffiffi
1�f2

p
t (10)

where x0 is the initial displacement amplitude and the initial velocity equals zero.

Here, the well-known damping ratio

f ¼ c=ð2
ffiffiffiffiffiffi
km

p
Þ ¼ g=2 (11)

where η is the loss factor given by Eq. (4).

As shown, the relationship (11) between the damping ratio and loss factor is quite simple. This is
important to know because two wrong opinions are shared by some practical engineers: (1) the damping
ratio and loss factor are the same parameters, (2) not the same parameters but the relationship between
them is quite cumbersome.

It is also important to remember that the damping ratio is defined just in case of viscous friction, while
the loss factor exists for any type of vibration energy dissipation.

As follows from Eq. (10), the free-damped vibration amplitude changes in time as exponentially
decaying function if f < 1, or, as follows from Eq. (11), g < 2. In most practical cases, the loss factors
are much lower (mainly between 0.01 and 0.10). However, the loss factors of some special structural
elements (in particular, vibration isolation mounts) can be up to 0.3 and even higher.
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3.4 Correct Sign for Imaginary Part of the Complex Modulus of Elasticity
The complex modulus of elasticity is commonly defined as

E� ¼ E 1þ ihð Þ (12)

where E is the real modulus of elasticity [1–3]. For solid structures, the stiffness k is proportional to modulus
of elasticity E, so, Eq. (7) directly follows from Eq. (12).

It should be noted that in some old publications, the complex modulus of elasticity is defined with the
negative imaginary part:

E� ¼ E 1� ihð Þ: (13)

The difference between Eqs. (12) and (13) is critical in mathematical modeling. As shown in paper [7],
Eq. (12) is correct if the time-oscillating factor in the equations of motion is eixt, and Eq. (13) is correct if the
time-oscillating factor is e�ixt. If Eqs. (12) and (13) are used with the oscillating factors e�ixt and eixt,
respectively, the energy conservation law is violated. Certainly, the same holds true for the complex
stiffnesses.

This important issue is not mentioned in the standard [1] and most engineering textbooks. The reason
can be the following: Eqs. (12) or (13) are just symbolic for practical engineers who are not directly engaged
in mathematical modeling.

3.5 Effect of Loss Factor on the Resonance Frequency of 1-DOF System
The peak frequency response of 1-DOF vibration system occurs at its resonance frequency fr (also

known as the damped natural frequency) which coincides with the undamped natural frequency f0 only if
the loss factor is independent of frequency [2,4]. Otherwise, the resonance and undamped natural
frequencies differ. Sometimes, this becomes a matter of disputation among engineers (what frequency is
greater and how much). In most publications, the relationship between the two is analyzed just for
viscous damping.

But the loss factors can be created by various energy dissipation mechanisms. Generally, in the narrow
vicinity of the undamped natural frequency, the loss factor may be described by a power function

g ¼ bf p

where b is a constant value, f is the frequency and parameter p depends on the type of energy dissipation.
Therefore, as shown in paper [8], the ratio of the resonance frequency fr and undamped natural frequency
f0 can be expressed as

fr
f0
¼ 1� pg

4
: (14)

There are three important cases:

1. p ¼ 1 for viscous friction or airborne sound radiation,

2. p ¼ 0 for hysteresis type of internal friction in solids,

3. p ¼ �1=2 for structural energy losses (see Chapter 6).

Thus, as follows from Eq. (14), the resonance frequency may slightly exceed (for structural energy
losses), equal (for hysteretic friction), or slightly fall below the undamped natural frequency (for viscous
friction). Even for the relatively high loss factor g ¼ 0:2, the ratio fr=f0 calculates close to 1: 0.95, 1.00,
and 1.025, respectively. This trend is graphically illustrated in Fig. 2.
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In most practical cases, hysteretic damping is acceptable for mathematical models because the real loss
factors do not much change within relatively narrow frequency intervals (in particular, near the resonance
frequencies).

3.6 Loss Factor in Micro Electromechanical Systems (MEMS). Negative Spring and Squeeze-Film
Effects
MEMS technology combines micromachining with microelectronics and is widespread in aerospace,

automotive, biological/medical, military, and photonics applications. A typical MEMS design incorporates
a microsensor (accelerometer, load cell, microphone, etc.), micro actuator (lever, gear, micro-mirror,
valve, pump, motor, etc.), processor chip, and package. The size of micro transducers (microsensors and
micro actuators) is commonly within millimeters or even microns. The conventional electrostatic parallel-
plate model of a capacitive sensor includes a narrow air film between the plates where one of the plates
plays the role of mechanical mass and the other plate is fixed.

There are two important effects influencing the loss factor of this system: the squeeze-film damping and
negative spring effect [9,10].

The moving plate’s displacement squeezes air in and out of the gap, and the relevant viscosity force can
be significant since the air film is very thin. Besides, the mass of the moving plate is rather small. For such
two reasons, as follows from Eq. (4), the loss factor gets high values and therefore impedes the plate
movement. The squeeze-film effect can be mitigated via reducing air pressure in the gap to very low
values (to the condition of molecular slip flow when the mean-free molecular path gets smaller than the
air gap). In this case, the air molecules strike the plates rather than other air molecules, and the viscous
friction becomes insignificant.

The negative spring effect is caused by the elastic and electrostatic force acting in the opposite
directions. Thus, the effective stiffness of the system is lower than the elastic stiffness. As follows from
Eq. (4), such a difference increases the loss factor.

4 Loss Factors of 2-DOF in-Series System with Hysteretic Friction

4.1 Equations of Motion for 2-DOF in-Series System with Vibrating Base (NVH Model)
Both classic and NVH 2-DOF in-series mechanical systems (Figs. 3a and 3b) are important for

engineering applications. Let’s discuss the NVH model with a harmonically vibrating base, two masses
and two springs with internal hysteretic damping (Fig. 3b). The elements are arranged in the following

Figure 2: Typical frequency responses for 1-DOF models with the same undamped natural frequency f0 and
various damping mechanisms: (a) hysteresis, (b) viscous friction, (c) structural damping
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order: vibrating rigid base—first dampened spring—first mass—second dampened spring—second mass.
Such a construction includes two in-series 1-DOF systems: (1) the main subsystem, consisting of the first
spring and the first mass, and (2) auxiliary subsystem including the second spring and the second mass.

Consider that the rigid base vibrates with the displacement Y0 ¼ y0eixt; the masses of the first and second
rigid elements are m1 and m2; both damping and elastic properties are combined in the springs via the
complex stiffnesses K1 ¼ k1 1þ igp1

� �
and K2 ¼ k2 1þ igp2

� �
. Here, k1 and k2 are the real stiffnesses; gp1

and gp2 are the partial loss factors (all the parameters are constant values).

The imaginary parts of the complex stiffnesses are positive because of the plus-sign oscillating factor eixt

(see Chapter 3.4). The equations of motion can be written as

mY1€ þK1Y1 þ K2 Y1 � Y2ð Þ ¼ K1y0eixt;
mY2€ þK2 Y2 � Y1ð Þ ¼ 0 :

�
(15)

Here Y1 ¼ y1eixt and Y2 ¼ y2eixt are the displacements of the first and second mass, respectively.

4.2 Characteristic Equation and Its Roots
The characteristic equation for Eq. (15) is a quadratic equation with the unknown value �2:

�4 � �2 x2
p1 1þ igp1
� �þ x2

p2 1þ igp2
� �

1þ lð Þ
h i

þ x2
p1x

2
p2 1þ igp1
� �

1þ igp2
� � ¼ 0 (16)

where the mass ratio

l ¼ m2=m1 (17)

and

p ¼ xp2=xp1 (18)

The ratio of the partial undamped natural angular frequencies is xp1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
and xp2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k2=m2

p
.

Figure 3: Classic (a) and NVH (b) 2-DOF linear models of mechanical vibration systems
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The roots of Eq. (16) are

~�2
2;1 ¼ �2

2;1 1þ igp1;2
� �

(19)

where �1 and �2 are the undamped natural angular frequencies (�2 > �1), and g1 and g2 are the relevant
loss factors of the 2-DOF system. As shown in papers [11,12], upon neglecting the very small values g1g2
and gp1gp2, one can obtain

�2;1 ¼ xp1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bð Þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r

p� �
=2

r
; (20)

g1;2 ¼ g� b� 1ð Þ
2 bþ 1ð Þ ffiffiffiffiffiffiffiffiffiffiffi

1� r
p gp1 � gp2

� �
(21)

where the average loss factor

g ¼ gp1 þ gp2
2

; (22)

r ¼ 1

1þ l
4b

1þ bð Þ2 ; (23)

b ¼ p2 1þ lð Þ: (24)

From Eqs (23), (20), four interesting conditions can be derived

(1) g1 þ g2 ¼ gp2 þ gp2;

(2) g1 ! gp1 and g2 ! gp1 if the parameter b � 1,

(3) g2 ! gp1 and g1 ! gp1 if the parameter b � 1,

(4) g1 ¼ g2 ¼ g if the parameter b ¼ 1.

The first condition may be related to the Energy Conservation Law. The other three conditions indicate
that both loss factors of the 2-DOF in-series system may notably depend on the dimensionless parameter b:
Here, the condition b ¼ 1 is most important because in this case the loss factors of the 2-DOF system get
similar even if the partial loss factors are different.

4.3 The Nearby Natural Frequency Case
As follows from Eqs. (24) and (18), the condition b ¼ 1 is equivalent to

p ¼ xp2

xp1
¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1þ l
p : (25)

In this case, parameter r, given by Eq. (23), attains its maximum

rmax ¼ 1

1þ l
; (26)

The undamped natural frequencies of the 2-DOF system are defined by equation

�2;1 ¼ xp1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rmax

pq
; (27)
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And the ratio of the undamped natural frequencies q ¼ �1=�2 attains its minimum

qmin ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l

p
� ffiffiffiffi

l
p

(28)

For the given mass ratio l defined by Eq. (17).

The “tuning formula” (25) describes the nearby natural frequency case where the undamped natural
frequencies of 2-DOF in-series system with hysteretic friction and given mass ratio are most close to each
other. In this case, as shown above, the loss factors of the 2-DOF system are similar and equal to the
average loss factor g given by Eq. (22).

4.4 Transmissibility Functions in the Nearby Natural Frequency Case
Using Eq. (15), calculate the ratio of the displacement amplitudes y1 and y2 of the first and second

masses to the base displacement amplitude y0:

y1
y0

¼
1þ igp1
� �

1� ðx=xp2Þ2 þ igp2
h i

� xð Þ ; (29)

y2
y0

¼ 1þ igp1
� �

1þ igp2
	 


� xð Þ (30)

where the polynomial

� xð Þ ¼ 1� ðx=�1Þ2 þ ig1
h i

1� ðx=�2Þ2 þ ig2
h i

: (31)

It can be noted that Eqs. (29) and (30) are also valid in case if the base does not move (Fig. 3a) and the
vibration is excited by harmonic force F ¼ F0eixt where F0 ¼ K1y0.

Using Eqs. (29)–(31), calculate the transmissibility functions for the main 1-DOF subsystem

T1 xð Þ ¼ y1
y0

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2p1

� �
H xð Þ

� xð Þ

vuut
(32)

And for the whole 2-DOF system

T2 xð Þ ¼ y2
y0

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2p1

� �
1þ g2p2

� �
� xð Þ

vuut
(33)

where the functions H xð Þ and � xð Þ are given by equations

H xð Þ ¼ 1� ðx=xp2Þ2
h i2

þ g2p2 ;

� xð Þ ¼ 1� ðx=�1Þ2
h i2 þ g21

� �
1� ðx=�2Þ2
h i2 þ g22

� �
:

8><
>: (34)

To illustrate the most important physical effects, several transmissibility functions for the main and
auxiliary subsystems are calculated using Eqs. (32) and (33) and plotted in Figs. 4 and 5.

As seen in Fig. 4, the vibration of the main subsystem is notably lower than that for the 1-DOF system
(without the auxiliary subsystem) and this difference grows with the partial loss factor of the auxiliary
subsystem. On the other hand, as seen in Fig. 5, the vibration of the auxiliary subsystem may be very
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high. Thus, in the nearby natural frequency case, the 2-DOF in-series system with hysteretic friction works as
a tuned mass damper [4,10–12] with the “tuning formula” given by Eq. (25). More simple and useful
analytical relationships can be found in paper [11].

The theory of such a tuned mass damper was originally developed for 2-DOF systems with viscous
friction [2–4]. The physical effects are about similar to those in case of hysteretic friction but the “tuning
formula” is different from Eq. (25) and is given by

p ¼ xp2

xp1
¼ 1

1þ l
(35)

in the classical case of viscous friction.

Figure 4: Transmissibility in the nearby natural frequency case for the main subsystem of 2-DOF in-series
system if (a) l ¼ 0:05; gp1 ¼ gp2 ¼ 0:05; (b) l ¼ 0:5; gp1 ¼ gp2 ¼ 0:05; (c) l ¼ 0:05; gp1 ¼ gp2 ¼ 0:25;
(d) for comparison with the 1-DOF system: l ¼ 0; gp1 ¼ 0:05 (no auxiliary system)

Figure 5: Transmissibility in the nearby natural frequency case for the auxiliary subsystem of 2-DOF in-series
system if (a) l ¼ 0:05; gp1 ¼ gp2 ¼ 0:05; (b) l ¼ 0:5; gp1 ¼ gp2 ¼ 0:05; (c) l ¼ 0:05; gp1 ¼ gp2 ¼ 0:25
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4.5 Critical Loss Factor
The other important phenomenon is related to the resonance (damped natural) frequencies. In the nearby

natural frequency case, the lower resonance frequency relatively does not change much with the average loss
factor. On the other hand, the upper resonance frequency can reduce notably. As a result, the higher-
frequency resonance peak fully vanishes in the vibration spectrum of the auxiliary subsystem (Fig. 5).
Such a degenerate case happens [13] if the average loss factor equals or exceed its critical value.

gcr � 0:354 1� q2
� �

(36)

where q ¼ �1=�2 is the ratio of the undamped natural frequencies of the 2-DOF system.

5 Internal, Structural, and Total Loss Factors for Diffuse Vibration Fields in thin Plates

The ideal model of diffuse sound field for air volumes is widely applied to calculate the sound energy
distribution and propagation in rooms and other enclosures. It suggests that the acoustic energy is uniform
(the same everywhere inside a room) and isotropic (the flow of acoustic energy in all directions is equally
probable). The diffuse-field model is reasonably valid at relatively high frequencies and is formed by
multiple reflections of the free sound or vibration waves from the boundaries (for example, room walls or
rod edges).

Here, one of the most important parameters is the mean-free path which is the average distance travelled
by sound or vibration waves between successive reflections from the boundaries. In particular, the mean-free
path for the diffuse vibration field in a thin rod is the length of the rod. It is true for both longitudinal and
bending waves. For a thin plate, the mean-free path is given by

L ¼ pS=P (37)

where S and P are respectively the area and perimeter of the plate (for comparison, the mean-free path for the
diffuse sound field in a room is L ¼ 4V=S where V and S are the room volume and area). The other important
parameter is the average boundary sound (vibration) absorption coefficient a which is defined as the ratio of
the energy, absorbed on the boundary, to the incident sound (vibration) wave energy. Both mean-free path
and boundary absorption coefficient are averaged over a large number of reflections and directions of
wave propagation inside the field region.

Let us estimate the loss factor for the diffuse harmonic vibration field with the mean-free path L, average
vibration absorption a, and angular frequency x. For simplicity, the internal vibration absorption (in the
material between the boundaries) is first neglected.

The average time between successive reflections is s ¼ L=C where C is the free vibration wave speed.
Hence, the corresponding number of cycles calculates n ¼ f s ¼ fL=C where f is the vibration frequency.
Therefore, the average vibration energy dissipated per cycle because of the boundary absorption equals
D ¼ aE=n ¼ ðaECÞ= fLð Þ where E is the average vibration energy. Substituting this value into Eq. (1),
calculate the so-called structural loss factor

gstr ¼
aC
xL

: (38)

For a thin plate, the speed of free bending waves can be given by equation C ¼ C0

ffiffiffiffiffiffiffiffi
f =f0

p
where C0 and

f0 are respectively the sound speed in air and critical coincidence frequency of the plate for airborne sound
transmission. In this important case, Eq. (38) can be rewritten in the form
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gstr ¼
aC0

2p
ffiffiffiffiffi
ff0

p
L

(39)

where parameter L is given by Eq. (37).

The total loss factor of bending vibration of a thin plate is

gtot ¼ gint þ gstr (40)

where gint is the internal loss factor which characterizes the internal absorption in the region between the
boundaries [14,15].

Both internal and structural loss factor is high for triplexes, laminated glass panes consisting of two glass
panes coupled with a transparent polyvinylbutyral film (commonly 0.7 or 1.4 mm thick [16]). The thickness
and coincidence frequency of a laminated pane are about identical to those of a common glass pane of the
same surface density. For instance, a triplex made of two 4 mm “ordinary” panes coupled with a
polyvinylbutyral film 1.44 mm thick has a surface density of 24 kg/m2 and coincidence frequency of
1250 Hz (close to the parameters of an “ordinary” glass pane 9.5 mm thick). The frequency
characteristics of the sound transmission loss for such panes (1.3 × 0.9 m2) are compared in Fig. 6.

As seen, the sound transmission loss of triplex is higher: in particular, by 5–7 dB at 800–2000 Hz (in the
range centered at the coincidence frequency).

6 Conclusions

The paper is written as a brief tutorial for engineering students and specialists in the areas of NVH
analysis and testing, mechanical and aeromechanical design, and noise and vibration control in buildings.
The loss factors and their effect on resonance peaks in various mechanical systems are reviewed for
acoustic, vibration, and vibration fatigue applications.

Figure 6: Frequency characteristics of the sound transmission loss for two glass panes of the same mass
density and total thickness: (a) ordinary pane, 9.5 mm thick, and (b) triplex (two 4 mm “ordinary” panes
coupled with a polyvinylbutyral film 1.44 mm thick)

12 SV, 2023, vol.57



The well-known features (complex module of elasticity, total loss factor, etc.) are clarified, and new
results are presented (in particular, for 2-DOF in-series models with hysteresis friction). The classic and
NVH models of mechanical systems are considered for analysis.

The results can be of both educational and practical interest in particular because some of the known
terms and equations were not clearly explained in the standards and engineering textbooks (for instance,
why the complex modulus of elasticity is defined with the positive or negative imaginary part).
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